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Resumen 

 

 

El presente trabajo de Tesis Doctoral, se vertebra en el estudio y desarrollo, dentro del 

campo de la Teoría de Juegos, de los escenarios de Juegos de Costes Cooperativos de 

Utilidad Transferible, donde la cooperación se produce de manera bilateral entre pares 

de agentes.  

A tal fin se desarrolla en una primera parte  un avance en los conceptos de benefactor y 

beneficiario, a la vez que presenta un nuevo modelo de Corporate Tax system 

descubriendo y analizando  las propiedades que aparecen en los juegos de coste 

coalicionales cuando existen múltiples benefactores y  una dualidad de roles, o dicho en 

otros términos,  cuando ambos roles pueden ser desempeñados por un mismo jugador. 

Unido a ello, se constata el valor de Shapley como criterio o regla de reparto idónea para 

este tipo de juegos y se presenta una expresión simplificada e intuitiva del mismo que 

facilita sobremanera su cálculo. 

En una segunda parte, y desde la estructura de biform-games , se estudia un escenario 

híbrido donde los agentes cooperan tras una primera fase competitiva previa donde los 

jugadores, con el objetivo de reducir sus costes, determinan estratégicamente el nivel de 

esfuerzo que van a dedicar, o dicho de otro modo, el grado de cooperación con el que van 

a participar anticipando la reducción de costes  que se obtendría, según el nivel de 

esfuerzo aportado,  en el reparto como resultado de la cooperación.  Posteriormente a la 

fase competitiva, se analiza y estudia el modo en el que  los jugadores, de manera 

bilateral, entre pares,  cooperan según el nivel de esfuerzo adoptado al objeto de reducir 

sus costes. 

A tal efecto, se presenta un nuevo modelo de juegos cooperativo denominado Pairwise 

Effort Games (PE Games) desde el que se analiza el impacto de los esfuerzos bilaterales 

entre pares de jugadores en las reducciones de costes producto de la cooperación  y se 

estudia la existencia de criterios o mecanismos eficientes de asignación de costes que 

permitan distribuir idóneamente entre la totalidad de jugadores  las ganancias obtenidas.  

Se demuestra la estabilidad de la gran coalición y la existencia de asignaciones que 

incentivan a la totalidad de jugadores a cooperar a través de un nivel óptimo de esfuerzo. 

Se identifica y presenta una familia de repartos con reducciones por pares ponderadas 

por separado (Weighted Pairwise Reduction, WPR) en la que se halla y se constata la 

generación de dicho nivel óptimo de esfuerzo. Dentro de esta familia, se identifica y se 

presenta a su vez, la regla que genera el único equilibrio de esfuerzo eficiente. 

Por otro lado, se constata que el reparto propuesto por el Valor de Shapley se halla 

dentro de la familia WPR pero se constata también que los incentivos provocados por 

dicho reparto conducen a estrategias ineficientes de esfuerzo en la fase competitiva.  



Se consigue hallar y demostrar  la existencia de equilibrios de esfuerzo en esta fase 

competitiva. (Pairwise Effort Equilibria, PEE). 

Una vez presentada y demostrada la existencia de esta familia de valores de reparto 

WPR,  se identifica y se presenta una subfamilia de repartos donde las reducciones por 

pares no se ponderan por separado sino que, en su lugar, se ponderan de forma agregada. 

A esta subfamilia se le denomina WPAR (Weighted Pairwise Aggregate Reduction).   

Se prueba que el nivel de eficiencia es menor cuando cuando las reducciones entre pares 

se ponderan de manera agregada para cada agente en lugar de hacerlo separadamente. 

Se identifica y se propone, tras la comparación entre la familia WPR y la subfamilia 

WPAR,  una regla de reparto dentro de la subfamilia WPAR que, sin alcanzar, tal y 

como se ha indicado,  los valores del nivel óptimo de equilibrio eficiente, si es capaz de  

generar  esfuerzos de equilibrio más cercanos a los esfuerzos de equilibrio óptimamente 

eficientes. 

El  trabajo contenido en la presente Tesis doctoral, abre  interesantes y prometedoras 

líneas  de estudio e investigación que ahonden tanto  en la interdependencia o 

complementariedad entre los agentes y  los diferentes niveles de esfuerzo llevados a cabo, 

como al desarrollo, entre otras líneas o vías, del estudio de modelos bilaterales con 

múltiples reducciones de costes  y el impacto que dichos esfuerzos realizados provoquen 

en las mismas.  
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Summary 

This Doctoral Thesis is based on the study and development, within the field of 

Game Theory, of the scenarios of Transferable Utility Cooperative Cost Games, 

where cooperation occurs bilaterally between pairs of agents. 

To this end, the first part of this Thesis develops an advance in the concepts 

of benefactor and beneficiary, and at the same time presents a new model 

of Corporate Tax system, discovering and analyzing the properties that appear 

in coalitional cost games when there are multiple benefactors and a duality of 

roles, or in other words, when both roles can be played by the same player. In 

addition, the Shapley value as an ideal distribution criterion or rule for this type 

of games is established and a simplified and intuitive expression of it is 

presented, which greatly facilitates its calculation. 

In a second part, and from the biform-games structure, a hybrid scenario is 

studied where the agents cooperate after a first competitive phase where the 

players, with the objective of reducing their costs, strategically determine the level 

of effort they are going to devote, or in other words, the degree of cooperation 

with which they are going to participate, anticipating the cost reduction that 

would be obtained, according to the level of effort contributed, in the distribution 

as a result of the cooperation.   

After the competitive phase, we analyze and study the way in which the players, 

bilaterally, between pairs, cooperate according to the level of effort adopted in 

order to reduce their costs. 

To this end, a new model of cooperative games called Pairwise Effort Games (PE 

Games) is presented, from which the impact of bilateral efforts between pairs of 

players on the cost reductions resulting from cooperation is analyzed, and the 

existence of efficient cost allocation criteria or mechanisms that allow the gains 

obtained to be ideally distributed among all the players is studied. 

The stability of the grand coalition and the existence of allocations that 

incentivize all players to cooperate through an optimal level of effort are 

demonstrated. A family of allocations with Weighted Pairwise Reduction (WPR) 

is identified and presented in which the generation of such optimal level of effort 

is found and verified. Within this family, the rule that generates the unique 

efficient effort equilibrium is identified and presented. 



On the other hand, it is found that the distribution proposed by the Shapley value 

is within the WPR family, but it is also found that the incentives caused by this 

distribution lead to inefficient effort strategies in the competitive phase.  

The existence of Pairwise Effort Equilibria (PEE) in this competitive phase is 

found and demonstrated. 

Once the existence of this family of WPR partitioning values has been presented 

and demonstrated, a subfamily of partitionings is identified and presented where 

pairwise reductions are not weighted separately but instead are weighted in 

aggregate. This subfamily is referred to as WPAR (Weighted Pairwise Aggregate 

Reduction).   

It is proved that the level of efficiency in is lower when the pairwise reductions 

are weighted in aggregate for each agent instead of separately. It is identified and 

proposed, after the comparison between the WPR family and the WPAR 

subfamily, a sharing rule within the WPAR subfamily that, without reaching, as 

it has been indicated, the values of the optimal efficient equilibrium level, it is 

able to generate equilibrium efforts closer to the optimally efficient equilibrium 

efforts. 

The work contained in this doctoral thesis opens up interesting and promising 

lines of study and research that delve into the interdependence or 

complementarity between the agents and the different levels of effort carried out, 

as well as the development, among other lines or ways, of the study of bilateral 

models with multiple cost reductions and the impact that these efforts have on 

them. 
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Preliminaries: decision making

In the day-to-day reality, the human being as an individual in his personal sphere or the

human being as an agent or integral part of a social, economic or professional ecosystem,

is continually subjected to the need to make decisions in situations or scenarios that pose

more than one possible alternative. Each individual, faced with each decision to be taken,

according to his capacity and available information, must determine the best or optimal

solution from among all the possible options in order to maximize the bene�t or minimize

the costs or losses.

Consequently, the need to face decisions is a constant in every aspect of human existence

(Bradley, 2017), being these logically more complex as the development achieved is greater,

so that decision making, from any �eld or area whether personal, professional, individual,

collective or institutional, directly or indirectly, conditions and shapes with each action our

own degree of evolution. In other words, determines and de�nes our own development and

existence.

Economics, as a social discipline intrinsically attached to the events of everyday life, was

born, among others, with the aim of analyzing and identifying ways to o¤er solutions to

the continuous questions that arise from a human nature already de�ned long time ago by

Aristotle as "social animal".

Questions and problems that inevitably arise as a consequence of the continuous inter-

actions centred on obtaining means or resources to satisfy needs. In other words, one of the

ultimate aims of economics is the study of the di¤erent models of organisation and distrib-

ution of resources that are not unlimited. The way in which these resources are organised

and distributed will be the result of a complex set of con�icting decisions in which the need

to act strategically is assumed to be necessary to obtain optimal results.

If resources were not limited, the existence of risk would naturally be less, and therefore

decisions would be of signi�cantly less relevance, and certainly economics itself as a discipline

might �nd no reason to continue to exist.

The limitation of resources leads directly or indirectly to the fact that the number of
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possible decisions or strategies to adopt aimed at satisfying needs is also not unlimited and

will force us to continually rede�ne new strategies and new decisions that will always have

the same objective: to optimise the allocation of limited resources (Poveda and Bualó, 2024)

or, in other words, to obtain the maximum possible satisfaction with respect to the degree

of scarcity of the resources available to us.

As Braund (2005) signi�catively stated, development or underdevelopment, growth,

stagnation, evolution or individual or joint backwardness have depended in the past and

will continue to depend in the future on the degree of success and the degree of success of

each decision strategy adopted.

Logically, each strategy and each decision is transcendental for the agents who must

make them, and it is this importance that makes it necessary to develop a theoretical body

with the capacity for real and practical application that allows, through study and analysis,

to minimize the probabilities of error and maximize the options for success.

Mathematics and its application to the so-called social sciences allows us to respond to

the need to model the situations or decision scenarios that take place in real life, situations

or con�ict scenarios in which there is a certain degree of opposition in the interests of each

player and the achievement of these interests will depend on a decision-making strategy that,

to a greater or lesser extent, will be strongly conditioned in turn by the decision-making

strategies adopted by the other players.

Game Theory, from its economic and mathematical origin, arises speci�cally as a re-

sponse, as Bonome (2010) de�nes, to the need to analyze and study decision making or,

in other words, the strategies that each player can adopt in order to obtain the maximum

bene�t in any possible scenario where he cooperates or competes against other agents.
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Game Theory: origins and brief historical approach

Although there is a more than wide consensus in recognizing the contributions of von

Neumann and Morgenstern (1944) as the starting point of game theory as an area or scien-

ti�c discipline with its own identity and independence, it was not until two centuries ago,

in the eighteenth century, when the �rst references were published that were consolidated

as precursors proposing the basis for an imminent formal mathematical development that

would determine the theoretical frameworks of the same.

As detailed by Villalón and Caraballo (2015), in their publication "A walk through the

history of Game Theory", the works of G.W. Leibniz (1704), P.R.Montmort (1713) or A.N.

Caritat (1785) where, respectively, the appearance of a new model of scenarios or logical

reasoning games from the premises of probability was noted, the concept of mixed strategy

and the proposals of solution through the minimax rule were introduced for the �rst time,

and where, �nally, in the work of the Marquis de Condorcet, the Jury Theorem and the

well-known Condorcet Paradox were shown for the �rst time. All of them were contributions

of notable relevance that opened up avenues of research hitherto unknown.

The 19th century marked the beginning of a growing production that re�ected the

incipient interest generated. The �rst publications on mathematical modeling appeared

which, in the end, would be the embryo that would de�ne and lay the future foundations of

the discipline. In 1913 the work of F. Zermelo and E. Borel (1913) stands out among them.

Borel (1913) laid the early foundations of Game Theory by proposing models between pairs

of players who interact moved by opposing or con�icting interests, as bipersonal zero-sum

games with imperfect information. Although it is true that this publication focused on

the characterization of strategies, it did not, however, show any interest in identifying the

existence of an optimal strategy above the rest. It was Borel (1920) who for the �rst time

identi�ed and proposed the existence of a single optimal strategy in certain game scenarios.

During the course of the century, a succession of authors and works, each time with

greater projection, developed the bases of a future game theory that already showed a clear

potential for its application to more and more problems or situations of everyday life. The
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works, among others, of Cournot (1838), Bertrand (1883), or Edgeworth (1881) solidly

consolidated the lines that in the near future would give rise to the birth and irruption of

Game Theory.

The �rst half of the twentieth century witnessed an exponential increase in academic

production that continued to develop and expand both the theoretical bases and new prac-

tical scenarios of a future game theory that was about to burst forth in full force. Authors

such as Steinhaus (1925) formally delimiting for the �rst time the concept of strategy or

H. Loomis (1946) delving into the proof of the minimax rule proposed by Neumann, are a

very succinct example of the unstoppable interest aroused by a discipline that revealed an

unusual potential for use and a vast range of applications from its beginnings.

The milestone reached and the repercussion caused by the publication in 1944 of "Theory

of games and economic behavior" by Neumann and Morgenstern would mark the moment in

which Game Theory would de�nitively consolidate itself as an independent mathematical

branch with the consideration as a scienti�c discipline and with its own identity. The

Nobel Prize awarded to John Nash together with C. Harsanyi and R. Selten in 1994 for

their contribution to game theory, introducing the essential concept of equilibrium and

analyzing the so-called "market imperfections", recognized for the �rst time with this award

its signi�cance in economic theory, rewarding, in the words of the Royal Swedish Academy

of Sciences, "the pioneering analysis of equilibria in the theory of non-cooperative games".

Fifty years had passed since the 1944 publication of Neumann and Morgenstern and

Game Theory, as S. Monsalve (2003) rightly de�ned it, had unanimously reached the status

of a fundamental discipline of modern economic analysis.

The Nobel Prize awarded to Nash was not the only one in the �eld of economics to

recognize game theory as a tool for understanding and modeling decision-making processes.

Mirrlees and Vickrey in 1996 would obtain it for their work on Game Theory and asymmetric

information. Aumann and Schelling would do the same in 2005 for their work on con�ict

and cooperation scenarios. Hurwicz, Maskin and Myerson were awarded in 2007 for their

contributions to the theory of mechanism design and market e¢ ciency. Shapley and Roth
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in 2012 won the same award for "the theory of stable allocations and the practice of market

design", Thaler in 2017 for his work on the possible absence of rationality in decision making,

and Wilson and Milgrom were also recognized with the same award in 2020 for their work

on the improvement of auction theory.

As can be seen, Game Theory, at present, has reached a notable and consolidated

degree of maturity that allows it a relevant status and position, beyond Economics itself,

in areas of knowledge a priori as disparate as, among others, Computer Science, Biology,

Engineering, Medicine, Political Science, Marketing, Sociology or even within the �eld of

military strategy or even too in Literature, where appears as an signi�cant element within

the development of the plot of novels and literary narratives in which the strategic choice of

characters is treated (Brams, 1992) or it has been desired to analyze or model the choices

of the characters using this discipline (Mehlmann, 2000; Moza¤ari and Eghbal, 2020).

With the imminent development of calculation and computation capacities together with

the exponential advances in quanti�cation, identi�cation and data management, essential

tools are provided which, when applied to Game Theory, will allow it to reach a capacity of

faithful re�ection of reality that will lead to levels of accuracy in the proposals of strategic

solutions not yet reached, projecting for this discipline a long way to go and a future as

solid as it is remarkably promising.

Con�ict, rationality and interdependence

Game Theory seeks, from the analysis, to propose or identify the optimal solution in

scenarios with interactional and decision making problems (Sohrabi and Azgomi, 2020),

environments that also could be de�ned as involving per se a con�ict of interests and

presenting a marked strategic interdependence among the players. The individual rational

behavior of any agent involved will depend, therefore, on his capacity for analysis and also

on his capacity to anticipate the actions of the other players in situations, generally, of

incomplete or imperfect information.

Logically, we can deduce that the lesser the amount of information available to each
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player, the greater and deeper the strategic capacity for analysis and anticipation must be

in order to de�ne the optimal behavior of each player when the cost or bene�t of each action

is not given and depends in turn on the actions of the other players.

Strategic interaction, as Hammerstein (1973) indicated, is an intrinsic consequence of

the existence of con�icts of interest in scenarios where the behavior of each agent will be

conditioned by his own decisions, taking into account that these decisions will in turn be

conditioned by the decisions of the other agents.

Consequently, con�ict and the strategic way of behaving or acting in the face of it

is nothing more than the way in which each player will try to satisfy his own interest

to the maximum extent possible, either in a confrontational manner, without any type of

transaction or prior agreement, or through agreements for which consensus will be necessary

with each agent who, in turn, will also look after his own interest.

By de�nition, con�icts exist logically and naturally at all social levels, both individually

and collectively and from any approach or prism (Bashir et al., 2020), will exist whenever

the interests or motivational priorities (Hand, 1998) of one player are di¤erent from the

interests of another player with whom he interacts, so that this scenario must be rationally

managed by all the agents involved if they all seek to obtain the highest possible payo¤,

bene�t or utility value.

It is therefore necessary to identify four pillars or basic elements on which every inter-

action between players is generally based :

a) Con�ict Scenario: Each player pursues the maximum bene�t for himself without

taking into account the degree of bene�t that the rest of the players may �nally achieve.

Arrow (1951), in a theorization that is still accepted and valid today, and from the point

of view of rational utilitarianism, de�ned con�ict as the scenario that occurs when each

individual player seeks to satisfy his own interest without taking into account the possible

preferences of the other players. He thus established a conceptual framework that is still

fully valid today to determine both the rational behavior of each agent and the very structure

or foundation of game theory.
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b) Strategic behavior: the existence of a con�icnt leads each player, depending on his

interests and the information available to him and using the knowledge ot the others play-

ers payo¤s (Rapoport, 2012), to develop or adopt a certain strategy of action, that will

determine the way in which he interrelates respectively with the other players.

c) Rational behavior: This strategy will be focused in order to maximize the satisfac-

tion of individual self-interest. The search for self-interest in turn de�nes the character of

interactions between agents in the framework of game theory, presupposing and taking for

granted that every agent will act rationally. To this e¤ect, it is necessary to refer again

to the work contributed by Arrow (1951), to understand the relationship between the con-

cept of rationality and utility, de�ning the former as the behavior focused on obtaining the

highest individual utility, rejecting any decision that does not maximize it.

Consequently, players act in an attempt to optimize their utility functions in both com-

petitive and cooperative scenarios, re�ecting rational behavior that seeks to maximize their

expected allocation of cooperative bene�ts (Chen, 2024). However, it should not be forgot-

ten that, sometimes, altruistic behavior can also be integrated and contemplated in utility

functions.

d) Interdependence: Finally, ties of dependence is the last feature that conditions and

determines the behavior of all agents insofar as their decisions will always be conditioned

by the decisions of the other players. Therefore, it will always should be necessary to reach

points of equilibrium, coalitions or unions that allow the materialization of agreements

between two or more players. The non-existence of such agreements would only deprive

the purpose or objective of the agents of meaning insofar as the veiled intention to extract,

dominate or subordinate some agents to others would be evident, and would also deprive

the reason for a game scenario and, logically, the purpose of the game itself of all meaning.



8

Confrontation or Cooperation

Having arrived at this point and having conveniently identi�ed the structure on which

every game is based and takes place, it is equally appropriate to focus on the relationship

that causes every interaction to entail by nature the existence of a con�ict that must be

resolved strategically by each player in a rational way (Schelling, 1958), either competing

against another player or cooperating with a group or set of players.

Game Theory, faced with the concept and existence of con�icts, o¤ers unique and re-

markable advantages as a mathematical tool capable of analyzing and even modeling such

this con�ict situations (Rapoport, 2012) totally or partially, allowing to identify possible

vectors of strategies between antagonistic agents and �nding common objectives between

them that move to points of equilibrium or agreement.

To this end, a distinction is made between two possible scenarios or game models:

cooperative or non-cooperative or competitive, depending on whether or not decisions are

made with or without commitments to the other players, or depending, for example, on

whether or not there is transparency in the coalitional costs, the prior possibility for the

players involved to share information, or the possibility of reaching prior agreements that

allow them to adapt or coordinate their strategies in order to maximize the incomes for all

the players involved in a consensual manner. Cooperative games, turn, can also be classi�ed

into games with or without transferable utility 1 depending on whether or not the utility

that motivates cooperation can be tangible (Peters and Peters, 2015) in the sense of whether

or not it can be transferred as currency from one player to another.

In cooperative environments, where the aim is to maximize the bene�ts derived from

cooperation, perhaps the analysis or identi�cation of the strategies of each player will not

have excessive relevance insofar as each agent seeks to cooperate to increase his pro�ts,

so that the coalitional payments resulting from cooperation will be the key element or

aspect that determines the incentive so that, e¤ectively, all the players decide and accept

1Games with Transferable Utility (TU Games) , as Myerson (1992) stated , could be considered as an

special case of NTU- Games ( Games with nontransferable utility)
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to cooperate.

Given that, as rightly synthesized by R. Sexton (1986), for any game cooperation be-

tween agents is absolutely voluntary, no player would decide to cooperate if he does not

perceive that he can obtain a bene�t from it, so that the existence of stable coalitions of

players will only occur insofar as such stability is a consequence of the absence of any other

possible coalitional alternative that improves the results of the �rst.

We are faced with two possible scenarios: cooperative or competitive, two scenarios in

which there is a con�ict of interests (Aumann and Schelling, 2005) that is resolved through

negotiation in di¤erent ways and in which, indistinctly, each player will always act rationally

trying or pursuing to maximize or optimize his payment function , either by confronting

another player and trying to win or obtain a bene�t to the detriment of his partner, or by

using the group as a way to achieve what would not be achievable or feasible individually

or through confrontation or absence of cooperation. The way in which each player acts in

pursuit of his own interest will make agreements possible or, on the contrary, will lead the

players to an impasse with no coalitional value.

From the competitive approach, the interaction under only and exclusively non-cooperative

models, entails, in certain scenarios, certain di¢ culty for its projection or real application

beyond the theoretical modeling. An example is the approach of the minimax theoretical

body (Neumann, 1928) where, given the mathematical nature of game theory, the existence

of an "optimal" strategy in zero-sum games has been a standard in non-cooperative models

that has practically been unanimously consolidated as an instrument of analysis in decision

making. This theory, that although from the theoretical approach the optimal or ideal way

of proceeding in a game can be clearly re�ected, from the empirical or practical point of

view and applied to the reality of human interactions, it only hints at certain limitations

since it is hardly feasible to comply with the conditions required for its application (Riker,

1992), being perhaps one of the most evident limitations the conditional requirement of zero

sum, in which there are two entirely confronted interests, whereby everything that a player

wins must correspond to what his opponent loses, a scenario that can hardly be observed
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in a reality not only because of the forcefulness of the restrictions but also because of the

signi�cant risk and the absence of incentives or stimuli to conform a game that would not

mean anything other than the complete elimination or defeat for one of the two participants.

On the other hand, Cooperative Games do not contemplate a scenario of loss for some

players in favor of others, in them, the players pursuing the so-called common good (as

a way of expressing the maximum possible bene�t for each and every one of the agents

involved in the game), will be predisposed to reach certain agreements that entail sharing

and even making certain sacri�ces aimed at obtaining a bene�t that optimally compensates

them.

Consequently, Game Theory as a tool, and especially from a social science such as

Economics, cannot and should not disassociate itself from reality , in spite of the unbounded

complexity and multitude of variables that determine it. In other words, game theory must

be able to re�ect any possible scenario of interaction, integrating the possible variables and

determining factors that can shape and de�ne any game situation in today�s interdependent

environment, (Zhang et al., 2023) made up of complex dynamics that is permanently

changing.

Riker (1992) aptly describes the complexity of human action and the counterproductive

nature of trying to establish normative elements common to all types of interaction instead

of generalizing descriptive aspects, leading to the presentation of a biased interaction that

could hardly o¤er a rigorous analysis and, therefore, could hardly be presented as an ade-

quate tool to identify possible suitable strategies of behavior if it has not previously been

able to contemplate without any type of distortion and as accurately as possible any game

or con�ict scenario.

In 1992, Ray Noorda, former CEO of Novell, broke with the classical theoretical concep-

tion, prevailing since Adam Smith (Dowling, 2020) that only contemplated the competitive

path, and polularized the term "Coopetition" 2 to describe the need to compete and coop-

2Although R. Noorda is credited with having popularised the concept , as Marlon et al (2024) states the

term Coopetition was, decades ago, �rst introduced by Cherington (1913) in his work entitled "Advertising
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erate at the same time as a formula to achieve a return that could not be achieved only

by competing. Five years later, Nalebu¤ and Brandenbruger (1997) consolidated the term

coined by Noorda and took a step forward to propose, from the �eld of game theory, collab-

oration between competitors as a way to maximize pro�ts or minimize costs and improving

from the way in which, until this moment, inter�rms strategic alliances and competitive

dynamics were understood (da Silva and Cardoso, 2024).

The search for utility from rationality, which can be considered as an interactive ra-

tionality (Colombatto et al., 1996), moves each player to act solely interested in obtaining

the best payo¤ or reward, either acting independently or taking into account the actions

of other players. This implies that each player will carry out any behavior that leads to

maximizing the pro�t pursued, which leads us on a wide range of occasions to collaboration

between agents, collaboration that moves agents to adopt "hybrid" or mixed interaction

strategies, in which competitive phases coexist with cooperative phases.

Brandenburger and Stuart, in 2007 modeled, presenting a new class of transferable

utility cooperative games (Biform Games), the way in which competition and cooperation

hybridize each other to conform payo¤s that depend on the previous competitive strategies

of each player.

In this type of strategy, prior to cooperation or coalition building, each agent will "pre-

pare" by competing or negotiating, trying to place himself in an advantageous position that

allows him to obtain the highest utility or payo¤ by using or investing the minimum amount

or value of resources in the collaborative phase.

Objectives, methodology and contributions

The present thesis work is based on three central objectives, objectives that all start

from a single motivation that, from the necessary perseverance and humility, determines and

con�gures as a premise the strong will to provide an added value that contributes to reduce

as a business force", in which he includes the statements of K.S. Pickett de�ning the relations among oyster

dealers.
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or shorten the distance between the theoretical formulation and the practical application

in the modeling and allocation criteria, within the scope of Game Theory, of the con�ict

scenarios of Cooperative Cost Games of transferable utility, where the interaction and cost

reduction occurs bilaterally between pairs of players, such bilaterality being coalitionally

independent.

The �rst objective is focused on the development and extension of the concept of roles

of benefactor (the player who will always reduce the cost of the rest of the players who are

in the same coalition) and bene�ciary (the player who will always see his costs reduced as

a consequence of joining coalitions in which there is a benefactor) studying the possibility

of their performance in a dual manner, that is, studying the e¤ects that happen when the

same agent acts with duality of roles, both as benefactor and bene�ciary. This objective

arises in turn, and inherently to the above, from the analysis of models in which there is a

single bene�ciary or bene�ciaries coexist with benefactors without any player playing both

roles simultaneously, i.e., acting as both benefactor and bene�ciary in any coalition.

Once the e¤ects and nature of role duality in cooperative environments have been de-

termined, the next step is to analyze the duality of cooperative and competitive behaviors

in bilateral cooperation models between pairs of players, which, depending on their degree

of cooperation, can also be identi�ed according to the dual or non-dual performance of the

roles indicated in the �rst chapter.

The second objective is focused by one hand on the analysis and study of the e¤ects,

under the structure of biform games, of a speci�c type of asymmetric cooperation that

takes place bilaterally between pairs of agents with the common objective of reducing their

individual costs between pairs. By other hand is focused on the study and analysis about

the impact of pairwise e¤orts on cost reductions and the result cost structure for this

framework while also considering a family of cost allocation rules with pairwise reduction

wighted separately. A family of cost allocation rules with weighted pairwise reductions

(WPR) is studied, which includes the Shapley value (when all players exert half of the

possible e¤ort) and which is a subset of the core of this type of games. Going deeper into
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the study of the sharing family (WPR), we �nally consider the existence of e¤ort equilibria

in this competitive phase. (PEE)

The third and last objective is focused on �nding, within the WPR family of alloca-

tions, a sub-family where pairwise reductions are not weighted separately but, instead, are

weighted in aggregate. This sub-family is referred to as the WPAR. On the other hand, the

aim is to compare the properties of the two identi�ed allocation families.

The methodology used in general in this thesis is based on the analysis and application

of Transferable Utility Cooperative Cost games, using for this purpose the modeling in the

form of biform-games (Brandenburger and Stuart, 2007), in order to present and de�ne a

new class of games that study the costs and challenges associated with the establishment

of a situation of paired e¤ort.

In addition to the above, the methodology applied is structured on the basis of the use

of the mathematical framework as a vehicle tool that allows us to observe and analyse the

interactions between agents and the results of such cooperation by applying optimal and

accurate sharing rules.

As contributions of the work developed and re�ected in this thesis document, it must

be indicated:

As a �rst contribution, a new class of cooperative cost games is presented, associated

to the coalitional cost models with multiple benefactors, which imply both a less restrictive

de�nition of the concept of bene�ciary and a generalisation of the concept of benefactor

insofar as it does not contemplate a single benefactor but a multiplicity of them as well

as their irreplaceability and the performance of a double role, or what is the same, the

possibility that a benefactor can act simultaneously as such and as a bene�ciary in any

possible coalition in which he/she is integrated.

In addition to this, we formulate a simpli�ed expression of the Shapley value for this

new class of games, once the concavity of the new class of games has been proved, to

demonstrate the validity and suitability of the Shapley Value as a sharing rule capable of

guaranteeing coalitional stability, adequately recognizing the e¤ects of give and take and
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rewarding especially the dual role played by the benefactors, while presenting a remarkably

intuitive and simpli�ed expression of the same that greatly facilitates its calculation.

As second contribution, the introduction of PE-Games (Pairwise E¤ort Games) a new

class of biform games. In PE-Games, a doubly robust cost sharing mechanism is presented.

That mechanism not only has good properties regarding the cooperative game in the second

stage but also creates appropriate incentives in the non-cooperative game in the �rst stage

that enable e¢ ciency to be achieved.

As third contribution, on one hand the �nding of a loss of e¢ ciency when cooperation

is restricted or limited only to an aggregate cost reduction by pairs. On the other hand,

as a culmination of the work done, to identify, within the family of WPR allocations, a

sub-family where pairwise reductions are not weighted separately but instead are weighted

in aggregate. This sub-family is called WPAR. We �nd that this sub-family generates in

the competitive stage the unique e¢ cient e¤ort equilibrium.

It is demonstrated that the solution of the cooperative game determines the incentives

of agents to make an e¤ort in the �rst stage, and consequently the e¢ ciency of the �nal

outcome.
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Thesis Structure

This thesis document is organized in three chapters. As a due presentation and facili-

tating the course of the totality of the content, the present work opens with an introduction

that serves as a guided itinerary through a brief historical approach of the discipline of

Game Theory, to, subsequently, go through the spirit, essence and framework concepts

that, within this discipline, are constituted as the necessary foundation that has allowed,

on the same, to raise and carry out this doctoral thesis.

The �rst chapter, titled as "Corporation Tax Games with dual benefactors", corresponds

to the book chapter "The Shapley Value of corporation tax games with dual bene-

factors" published in Handbook of the Shapley value in 2019 (see Appendix E). It starts

with a brief introduction in Section 1.2. Then, the cost-coalitional problems with multiple

dual and irreplaceable benefactors and some of their properties are described. After that,

in Section 1.3, the class of cooperative cost games associated to cost-coalitional problems

with multiple dual and irreplaceable benefactors, the so called multiple corporation tax

games, is introduced. Section 1.4 presents a simple and easily computable expression for

the Shapley value of multiple corporation tax games. An example illustrating the model

and the role played by dual and irreplaceable benefactors is given in Section 1.5. Finally

some concluding remarks and highlights for further research are collected in Section 1.6.

The second and third chapters correspond to the article "E¢ cient e¤ort equilibrium

in cooperation with pairwise cost reduction" published in Omega in 2023 (see Appen-

dix F) . The second chapter titled "E¢ cient E¤ort Equilibrium in cooperation with pairwise

cost reduction" , after a brief motivation and introduction is organized as follows. Section

2.2 introduces the biformal game and describes in detail the two stages in which the model is

developed. Section 2.3 is devoted to analyze the second stage which is a cooperative game.

In this cooperative game, agents reduce each other�s costs as a result of cooperation, so that

the total cost reduction of each agent in a coalition is the sum of the reductions generated

by the rest of the members of that coalition. Section 2.4 studies the �rst stage, i.e. the

non-cooperative game that precedes the cooperative game of the second stage. Here, agents
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anticipate the cost allocation that results from the cooperative game in the second stage by

incorporating the e¤ect of exerted e¤ort in their cost functions. It is considered a family

of cost allocation rules (in the second state) with separately weighted pairwise reductions

(WPR family) and obtain the corresponding e¤ort equilibria in the �rst state. Then, we

develop a general and complete analysis of the e¢ cient e¤ort equilibria. Finally, in this

section is found the kernel assignment rule in this WPR family that generates the unique

e¢ cient stress equilibria.

Finally, the third chapter is titled "Measuring E¢ ciency for Pairwise Aggregate Re-

duction" and is organized similarly to the previous two chapters. After a brief initial

introduction, Section 3.2 focuses on a subfamily of the WPR family in which the pairwise

reductions are not weighted separately, but are weighted as an aggregate reduction, the

WPAR family. It is found that the level of e¢ ciency is lower than that achieved when the

pairwise reductions are weighted separately for each agent. Next in Section 3.3 the rule is

identi�ed, within this WPAR family, that generates the equilibrium e¤orts closest to the

e¢ cient ones. Finally, Section 3.4 completes the study of our model by comparing the two

families of kernel allocation analyzed.

The thesis structure ends with a general conclusion and future researchs, a bibliography

part and a last part dedicated to the appendices of the previous chapters, which contain

the proofs of the results and summary tables (notation and optimization problems).



Chapter 1

Corporation Tax Games with dual

benefactors

1.1 Introduction

In recent years, as a result of an eminently globalized environment, the debate on the

necessary cooperation among states and �rms has been intensi�ed. The absence of this

cooperation among countries can cause both a race to the bottom tax competition in �scal

policies and opacity or �nancial secrecy. On the part of �rms or individuals, it can cause

underground economy, tax evasion or �scal fraud. All of them are ine¢ cient behaviors.

In particular, the underground economy is a signi�cant problem and di¢ cult to deal

with. The causes and negative e¤ects of the underground economy have been debated

by authors as Feige (2016), Sandmo (2012), Schneider (2000), and Bajada & Schneider

(2018), among other authors. The solutions to be adopted to detect and reduce the un-

derground economy have been studied, for example, by Slemrod & Yitzhaki (2002),Torgler

(2011), Keen & Slemrod (2017),Williams (2017), or Dell�Anno (2009). Three solutions of

particular relevance are the design of optimal tax systems, the increase in transparency and

information, and a greater severity of the punishments. These elements allow to increase

the capability to detect and discourage the infringing behaviors. These e¤orts not only

bene�t the states themselves by allowing an increase in tax collection, but also bene�t all

the �rms that act in accordance with the law, since it eliminates the competitors that acted

in a submerged manner.

17
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However, carry out e¤ective policies focused at combating the underground economy,

requires a high economic cost in human and material resources that must be faced by the

countries governments. Cooperation among countries and �rms could reduce these costs.

For example, cooperation among countries could be based on the desire for transparency

and the transfer of information in order to facilitate the detection of fraudulent behavior,

allowing a reduction of costs. In addition, beyond the mandatory legal requirement, a �rm

can make an e¤ort to improve the transparency of its �nancial practice. The �rm can also

just share any kind of relevant information with the tax authorities. This cooperation could

be rewarded by a tax reduction.

Inspired by the Spanish tax system, Meca & Varela-Peña (2018) introduce a cooperative

model, where the Government is considered the only benefactor, as it keeps costs at the

same level, zero cost, while reduce the costs of those investors who act legally (bene�ciaries).

Investors may decide to cooperate or not cooperate with the Government. If they decide

to cooperate, the Government will provide a framework of legal certainty, which is in their

bene�t. On the contrary, if investors decide not to cooperate with the Government and

try to defraud the system by tax evasion, they can be detected and charged with unlawful

behav-ior. Once this irregular behavior is demonstrated, they will be punished and required

to return all amount defrauded plus a penalty. This means that the costs of not cooperating

with the Government would be higher than cooperate, and so all investors are willing to

pay the lowest taxes under legal protection of the Government. The authors present the

class of corporation tax games as an application of linear cost games to the corporate tax

reduction system.

Linear cost games were introduced by Meca & Sosic (2014) as a particular case of k-

norm cost games with benefactor and bene�ciaries, when k = 1. The authors introduce a

class of cost-coalitional problems, which are based on a priori information about the cost

faced by each agent in each set that it could belong to. Then, they focus on problems with

decreasingly monotonic coalitional costs. In their work they study the e¤ects of giving and

receiving, on cost-coalitional problems, when there exist players whose participation in an
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alliance always contributes to the savings of all alliance members (benefactors), and there

also exist players whose cost decreases in such an alliance (bene�ciaries). Meca & Sosic also

show that when there are multiple benefactors, an agent sees the same individual costs in

any coalition that contains at least one benefactor and is not all-inclusive. Thus, with a

single benefactor all the members of a coalition may see their cost increase if he leaves the

group; they say that he is irreplaceable.

On the other hand, when there are several benefactors, the cost of a member of the

coalition remains the same as long as there is another benefactor in the coalition; they say

then that each benefactor in this case is replaceable. They study separately the two cases,

and use linear and quadratic norm cost games to analyze the role played by benefactors

and bene�ciaries in achieving stability of di¤erent cooperating alliances. Di¤erent notions

of stability, the core and the bargaining set, are considered there and provided conditions

for stability of the grand coalition which leads to minimum value of total cost incurred by

all agents.

In this chapter, it is presented a new model of corporate tax system with several �rms and

countries (multiple dual benefactors). Countries are dual in the sense they are benefactors

(they reduce the cost of both �rms and other countries) and bene�ciaries (the information

provided by others countries reduce its cost). They are also irreplaceable benefactors be-

cause all the members of a coalition may see their cost increase if one of them leaves the

group. It di¤ers from the corporate tax system given by Meca & Varela-Peña (2018) in the

following three points. First, there is a single benefactor there. Moreover, the de�nition

of benefactor given by them is a particular case of the de�nition of dual and irreplaceable

benefactor given here. It is noted that dual benefactors here generalize benefactors there.

Second, the concept of bene�ciary in their paper is less restrictive than the one considered

here. It is also noted that a bene�ciary here is a bene�ciary in the corporate tax system

given there (see Section 1.2 for more details). And third, it is proposed here the Shapley

value (Shapley, 1953) a as stable allocation rule for sharing the reduced total costs. Meca

and Sosic, (2014) and Meca and Varela-Peña (2018) proved that the grand coalition is sta-
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ble in the sense of the core, but they didn�t study the Shapley Value. Here we present a

simple expression for the Shapley value of multiple corporation tax games that bene�ts all

agents and, in particular, compensates the benefactors for their dual role and irreplaceable

character. As a representative and recent survey of this allocation rule, it may be cited

the work done by Moretti & Patrone (2008). More recently, Li et al. (2024) show the

remarkable application and usefulness of this allocation rule with respect to the undeniable

success of Machine Learning.

1.2 Cost-coalitional problems with multiple dual and irre-

placeable benefactors

Let E = f1; 2; ::; eg be a set of �rms, and P = f1; 2; ::; pg be a set of countries, with

Sij � 0 and �Sij � 0 be respectively a tax and a reduced tax that �rm j pays in country

i, with Sij > �Sij . Let N = E [ P denote the set of all agents (�rms and countries), with

jN j = n = e+ p, where e � 1 and p � 2. We de�ne T � N as an arbitrary set of agents in

N . If two given countries are in a coalition T , then they cooperate and share information,

which implies that they can reduce their levels of tax evasion and underground economy.

The size of the reduction depends on how much information a country has and how relevant

it is for the other country. Note that, for a country i, the more countries are in a coalition

with it, the more relevant information this country gathers, and consequently, the smaller

the degree of tax evasion and underground economy it has. Formally, let wTi be a measure

of the underground economy and tax evasion of country i when it is in a coalition T , thus,

given two sets T � T 0 � N , we assume that always wTi > wT
0

i if (T 0nT ) \ P 6= ;, and

wTi = wT
0

i otherwise. Therefore, always wTi � wT
0

i . We denote by wi a countrys�stand alone

measure of tax evasion, i.e., wi = w
fig
i .

Any agent k 2 T incurs certain non-negative cost, which depends on the subset T .

We denote this cost by cTk , and by ck an agents�stand alone cost, i.e., ck = c
fkg
k . For any

coalition T � N , the cost of agents are:
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1. cTj =
P
i2P\T

�Sij +
P
i2Pn(P\T ) S

i
j for all j 2 T \E, where �rm j 2 T must pay a tax

�Sij to country i if i 2 T , and Sij if i =2 T .

2. cTi = gi
�
wTi
�
for all i 2 T \ P , with gi being an increasing function such that for all

i; i0 2 P and for all T � N , where i; i0 2 P \ T it always holds that gi
�
w
Tnfi0g
i

�
�

gi
�
wTi
�
= zii0 , with zii0 > 0 being how much the country i0 reduces the cost of i with

the information i0 shares with i. 1

The function gi measures the cost incurred by country i with a given level of underground

economy. Behind the gi function lies the efectiveness of the resources of country i for a given

level of underground economy.

Next, it is identi�ed two special roles that all the agents can play in the model, being

benefactors and bene�ciaries.

De�nition 1.1 A benefactor is an agent �k 2 N such that for any set T � Nn�k and

for all k 2 T; cTk � c
T[f�kg
k , in addition, for at least one agent k 2 T; cTk > c

T[f�kg
k . The

agents whose cost decreases in an alliance with a benefactor are denoted by bene�ciaries.

The following lemma characterizes the agents of the game as benefactors and bene�cia-

ries.

Lemma 1.1 An agent k is a benefactor if and only if it is a country. However, both

�rms and countries can be bene�ciaries.

There are agents that are dual in the sense that they are benefactors and bene�ciaries,

these are the countries. However, the �rms are exclusively bene�ciaries. The proof of

Lemma 1.1 and all the results of this chapter can be found and consulted in Appendix A.

The following de�nition is a relevant property of a benefactor.

De�nition 1.2 A benefactor �k 2 T � N is irreplaceable if cTk 6= c
Tn�k
k for at least a

k 2 Tn�k.

1We assume zii0 > 0, thus, countries are always benefactors. However, zii0 could be as close to zero as

we want, i.e., the information that a country shares with other country can be negligible. Therefore, in the

limit case in which zii0 = 0, the results should hold. In any case, a wider generalization of this model will

be consider in future research.
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Lemma 1.2 Countries are irreplaceable benefactors.

It is noted the vector of individual agents�costs in all possible subsets by

cN =
�
cTk
�
k2T;;6=T�N .

Thus, the set of agents N and the cost coalitional vector cN de�ne a cost-coalitional

problem with multiple dual and irreplaceable benefactors
�
N; cN

�
.

A desirable property is that cooperation is bene�cial. It can be guaranteed, if the cost

in large subsets do not exceed their cost in smaller ones. The following de�nition formalize

this idea.

De�nition 1.3 A cost-coalitional vector cN satis�es cost monotonicity if cTk � cT
0

k for

all k 2 T , with T � T 0 � N .

The following lemma shows that the cost-coalitional problem with multiple dual bene-

factors has this property.

Lemma 1.3 The cost coalitional problem
�
N; cN

�
has the property of cost monotonicity.

Next step is to de�ne cost games related to the cost-coalitional problem with multiple

dual benefactors and prove the cooperation in bene�cial for all the agents in the model,

benefactors and bene�ciaries.

1.3 Multiple corporation tax games

For a given cost-coalitional problem with multiple dual and irreplaceable benefactors
�
N; cN

�
we de�ne the multiple corporation tax game (N; c), where c(T ) =

P
k2T c

T
k for all T � N ,

and c(;) = 0.

The following issue is considered. Is it pro�table for the agents in N to form the gran

coalition to pay lower taxes and so reduce the degree of tax evasion? Here, it is proved that

the answer to this question is positive because (N; c) is a subadditive game, in the sense that

c (T [ T 0) � c(T )+ c (T 0), for any T; T 0 � N , and T \T 0 = ;. Notice that the subadditivity

condition implies that if N is partitioned into disjoint coalitions (whose integrants reduce

the degree of tax evasion) the corresponding cost will not decrease.

In fact it is demonstrated that (N; c) is not only subadditive but also concave, in the
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sense that for all k 2 N and all T; T 0 � N such that T � T 0 � N with k 2 T , then

c(T )� c(Tnfkg) � c (T 0)� c (T 0nfkg). It is a well-known result in cooperative game theory

that every concave game is subadditive. Moreover, the concavity property provides with

additional information about the game: the marginal contribution of an agent diminishes as

a coalition grows. It is wellknown as the snow ball e¤ect. For more details on cooperative

game theory see, for example, González-Díaz et al. (2023).

First, in the Lemma 1.4, it is found out which are the cost marginal contributions of the

agents (�rms and countries).

Lemma 1.4 Let
�
N; cN

�
be a cost-coalitional problem with multiple dual and irreplace-

able benefactors and (N; c) the associated multiple corporation tax game. Then, for any

T � N ,

1. if j 2 E \ T , c(T )� c(Tnfjg) = cTj ;

2. if i 2 P \ T ,

c(T )� c(Tnfig) = cTi �
X

j2E\T

�
Sij � �Sij

�
�

X
i02P\Tnfig

�
gi0
�
w
Tnfig
i0

�
� gi0

�
wTi0
��
:

In point 1, this proposition states that a �rm j always contributes to a coalition Tnfjg

exactly with its cost in coalition T , which is cTj . As a �rm is always and exclusively a

bene�ciary in this model, it has not e¤ect in the cost of others agents: either countries or

�rms. However, a country is a benefactor to both �rms and others countries, therefore, its

marginal contribution is smaller than its cost in coalition T . If country i is withdrawn from

a coalition T , the individual cost of �rms and others countries in coalition T increases.

The following Theorem states that our class of games are concave.

Theorem 1.1 The multiple corporation tax games (N; c) are concave.

So it is proved that in a cost-coalitional problem with multiple dual and irreplaceable

benefactors
�
N; cN

�
it is e¢ cient that all �rms pay lower taxes and all countries manage to

jointly reduce their degrees of tax evasion. In that case, the reduced total cost is given by

c(N) =
P
i2P c

N
i +

P
j2E c

N
j .
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An allocation rule for multiple corporation tax games is a map  which assigns a vector

 (N; c) 2 RN to every (N; c), satisfying that
P
k2N  k(N; c) = c(N). Each component

 k(N; c) indicates the cost allocated to k 2 N , so an allocation rule for multiple corporation

tax games is a procedure to allocate the reduced total cost among the agents in N when

they cooperate. An allocation rule should have good properties from the following points

of view.

1. Computability. For a particular game the rule should be computable in a

reasonable CPU time, even when the number of agents is large.

2. Coaltional Stability. It is very convenient that the rule proposes an allocation

which belongs to the core of the cost game. This means that, for every multiple corporation

tax game (N; c); � should satisfy the following:P
k2T  k(N; c) � c(T ), for every T � N .

This condition assures that no group of agents T is disappointed with the proposal of

the rule, because the cost allocated to it is less than or equal to the cost it would support

if its members formed a coalition to pay lower taxes, and reduce the levels of tax evasion,

independently of the agents in NnT .

3. Acceptability. The rule must be understandable and acceptable by the agents.

A very natural allocation rule for multiple corporation tax games is  k(N; c) = cNk , for

all k 2 N . It has good properties at least with respect to computability and coalitional

stability. Notice that, for every T � N;
P
k2T  k(N; c) =

P
k2T c

N
k �

P
k2T c

T
k = c(T )

Nevertheless, the benefactors will have serious di¢ culties accepting the above allocation

rule that rewards the bene�ciaries excessively while they do not receive enough compensa-

tion for their dual role of giving and receiving.

Since the multiple corporation tax games are concave, cooperative game theory provides

allocation rules for them with good properties at least with respect to items coalitional

stability and acceptability. It is highlighted the Shapley value and the nucleolus, which

always provide core allocations in this context (see González-Díaz et al., 2010 for details on

them). Both are, in general, hard to compute when the number of agents increases.
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Next, it is presented a simple and easily calculated expression for the Shapley value of

multiple corporation tax games that compensates the benefactors for their dual role and

irreplaceable character.
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1.4 The Shapley value

One of the most important allocation rules for cost games is the Shapley value (see Shapley,

1953). As we already mentioned, the Shapley value is specially convenient for concave

games: it is the barycenter of its core (see Shapley, 1971).

We denote by �(N; c) the shapley value of multiple corporation tax game (N; c), where

for each agent k 2 N;

�k(N; c) =
P
T�N ;k2T 
(T )[c(T )� c(Tnfkg)], with 
(t) =

(n�t)!(t�1)!
n! ; jT j = t.

The following Theorem states that the Shapley value can be easily computed in the class

of multiple corporation tax games. Moreover, it shows that the Shapley value provides

an acceptable allocation for multiple corporation tax games: it increases the cost of a

bene�ciary in a half of the bene�ts it obtains from benefactors, and it decreases the cost of

a benefactor in a half of the bene�ts it provided to the bene�ciaries.

Theorem 1.2 For any multiple corporation tax game (N; c), the Shapley value is

1. For all j 2 E; �j(N; c) = cNj +
1
2

P
i2P

�
Sij � �Sij

�
2. For all i 2 P; �i(N; c) = cNi � 1

2

P
j2E

�
Sij � �Sij

�
+ 1

2

P
i02Pnfig (zii0 � zi0i)

From Theorem 1.2 it can be derived that the Shapley value compensates benefactors.

Note �rst that, the cost of a �rm j in the grand coalition is cNj . This �rm j is bene�ted from

a country i in an amount which is Sij � �Sij . The Shapley value reduces this bene�t exactly

in a half, and consequently this is the amount in which the cost of �rm j is increased, see

point 1 of Theorem. In addition, the country i is compensated exactly in this amount, and

consequently its costs is reduced, see point 2 of Theorem. However, a country in its relation

with others countries is simultaneously benefactor and bene�ciary. Let�s �rst look at the

role as bene�ciary of i, in any coalition, the country i is bene�ted from country i0 in a cost

reduction of zii0 , in this case, country i plays the role of bene�ciary and i0 of benefactor.

Thus, the Shapley value reduces the bene�t zii0 of country i in a half, in others words, it

increases its cost in this amount. Nevertheless, at the same time, the country i bene�ts

country i0 in an amount equal to zi0i. Now, country i is the benefactor and i0 the bene�ciary.
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In this case, the Shapley value works in the same way, it compensates the benefactor and

increasing the cost of the bene�ciary in a half of zi0i. Therefore, in the relation between two

countries both are simultaneously benefactors and bene�ciaries, however, if zii0 � zi0i > 0,

then country i could be seen as a "net" bene�ciary and i0 as a "net" benefactor, on the

contrary if zii0 � zi0i < 0. Thus, country i can be a "net" benefactor with some countries

and a "net" bene�ciary with others.

In conclusion, regarding to the individual cost in the grand coalition, the Shapley values

increases the cost of a bene�ciary in a half of the bene�ts it obtains from benefactors, and

it decreases the cost of a benefactor in a half of the bene�ts it provided to the bene�ciaries.

As in this model there are dual agents (benefactors and bene�ciaries), the �nal e¤ect on

these agents depends on which role is stronger.
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1.5 An example

In this example, a simple situation with two countries " A " and " B ", and two �rms "1"

and "2" with activity in both countries is proposed. These countries are very concerned

about their own levels of underground economy, tax evasion, and fraud. To �ght against this

illegal behavior, these countries must to face a high economic cost in human and material

resources. However, this cost can be reduced if both countries decide to cooperate and, for

example, they share resources and/or information in its �ght.

On the other hand, �rms have to pay in each country a certain amount of taxes. Never-

theless, these �rms can choose to cooperate with a particular country. For example, beyond

the mandatory legal requirement, a �rm can make an e¤ort to improve the transparency of

its �nancial practice. The �rm can also just share any kind of relevant information with the

tax authorities. This cooperation is rewarded by a tax reduction. In particular, country A

will �x a reduction of 10%, and B will do it of 15%. Thus, each �rm must pay either a tax�
Sij

�
or a reduce tax

�
�Sij

�
as it is given in Table 1.1

SA1 = 2 SB1 = 4 SA2 = 5 SB2 = 8

�SA1 = 1; 8
�SB1 = 3; 4

�SA2 = 4; 5
�SB2 = 6; 8

Table 1: Tax and reduced tax of each �rm (in millions of euros)

It is considered that the cost function of any country cTi = gi
�
wTi
�
has two terms. The

�rst term does not depend on the type of coalition the country belongs to. In other words,

it does not depend on the information other countries could provide. This is a kind of

�xed cost. The second term does depend on which coalition the country is. In particular,

gA (wA) = 4 + wTA and gB (wB) = 8 + 2w
T
B. In addition, the level of underground economy

or tax evasion are normalized to 1 in any coalition with only one country, i.e., without the

help of others countries. Thus, wTi = 1 for any i 2 P; T � N such that P \ Tnfig = ;.

However, in any coalition T 0 � N such that A;B 2 T 0; wT 0A = 0:5 and wT
0

B = 0:6.

Table 2 shows the cost-coalitional vector and corresponding cost game (last column);

i.e. for any coalition T � N , the cost of each agent cTk , and the cost of this coalition c(T )
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CoalitionnAgent A B 1 2 c(T )

{A} 5 5

{B} 10 10

{1} 6 6

{2} 13 13

{A,B} 4.5 9.2 13.70

{A,1} 5 5.80 10.80

{A,2} 5 12.50 17.50

{B,1} 10 5.40 15.40

{B,2} 10 11.80 21.80

{1,2} 6 13 19

{A,B,1} 4.50 9.20 5.20 18.90

{A,B,2} 4.5 9.20 11.30 25

{A,1,2} 5 5.80 12.50 23.30

{B,1,2} 10 5.40 11.80 27.20

{A,B,1,2} 4.50 9.20 5.20 11.30 30.20

Table 2: Cost coalitional vector and cost game.

From the previous table, it is straightforward to obtain zii0 , where zii0 = c
Tnfi0g
i � cTi

for all T � N such that i; i0 2 P \ T . Therefore, zAB = 0:5 and zBA = 0:8, i.e., country

B reduces the cost of country A in 0,5 and country A reduces the cost of country B in

0.8. Consequently, country A is a net-benefactor with country B, and country B a net-

bene�ciary with country A.

We can calculate now the Shapley value by using the expressions from Theorem 4. Note

that, in this case, we only need the values of Table 1, the last row of Table 2
�
cNA ; c

N
B ; c

N
1 and

cN2
�
, and both values zAB and zBA. Therefore, Theorem 9 allows to reduces signi�cantly

the amount of information and time to compute Shapley value.

In Table 3, it is shown for any agent its individual cost, the cost in the grand coalition,

the Shapley value, and the di¤erence between the last two values.



30

Agent nV alue c(fkg)  k(N; c) �k(N; c)  k(N; c)� �k(N; c)

A 5 4.5 4 0,5

B 10 9.2 8,5 0,8

1 6 5,2 5,6 �0; 4

2 13 11,3 12,2 �0; 9
Table 3: Comparsison individual costs, cost in the grand coalition and the Shapley value

Notice that costs in the gran coalition reduce the indivudual costs of each player. Re-

garding to the cost in the grand coalition, Shapley value decreases the cost of benefactors

in a half of the bene�ts that it provided to the bene�ciaries. Additionally, it increases

the cost bene�ciaries in a half of the bene�ts that they obtain from benefactors. For ex-

ample, for country A;�A(N; c) = cNA� 1
2

��
SA1 � �SA1

�
+
�
SA2 � �SA2

��
+ 1

2 (zAB � zBA). As

zAB � zBA = �0:3, country A is a net-benefactor. Thus, Shapley value decreases its cost in

a half of this di¤erence. However, for country B, the cost is increased in the same amount

because it is a net-bene�ciary. In this example, there are only two countries, however, if

there was more countries, a given country could be a net benefactor with some countries

and a net bene�ciary with others, this depends on the sign of zii0 � zi0i.
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1.6 Concluding remarks

In this chapter, a new model of Corporate tax games with benefactors and bene�ciaries

as an application of linear cost games to the corporate tax reduction system introducing

the �gure of multiple, dual and irreplaceable benefactors has been presented. It has been

used the Shapley value as a rule of stable allocation to sharing costs reduced. Moreover, its

properties are studied, it has been veri�ed the snowball e¤ect derived from the concavity

of the model proving that the larger the coalition the lower the costs for its members and

we proved that, these games are concave, i.e., the marginal contribution of a �rm and a

country diminishes as a coalition grows (snowball e¤ect). Hence, the grand coalition is

stable in the sense of the core. This means that �rms have strong incentives to cooperate

with the countries instead of being fraudsters. Then, we propose the Shapley value as an

easily computable core-allocation that bene�ts all agents and, in particular, compensates

the benefactors for their dual and irreplaceable role.

The model here, distinguishes two groups of agents: dual benefactors (countries) and

bene�ciaries (�rms), while the original model presented by Meca and Sosic (2014), consid-

ered two disjoint groups of agents, benefactors and bene�ciaries. A natural extension would

be to consider that all agents can be dual (benefactors and bene�ciaries). We believe that

similar results to those obtained here could be achieved.



Chapter 2

E¢ cient E¤ort Equilibrium in

cooperation with pairwise cost

reduction

2.1 Introduction

In real life, the amount of information that a player possesses or knows about the other

players is signi�cantly limited, so that the degree of certainty about the possible behaviors

or strategies of third parties is logically constrained and, therefore, the payo¤ matrices will

depend on the possible strategies aimed at minimizing as far as possible the e¤ects of such

uncertainty with which each player enters a game. Cooperation will be nothing more than

a way of obtaining a pro�t that would otherwise be unattainable, inferior, very costly or

even inaccessible, by making use of the resources or values of third parties while sharing

or o¤ering one�s own resources or values. The greater the bene�t obtained from the other

players and the lower the amount and cost of sharing or o¤ering one�s own resources, the

greater the total pro�t obtained.

Once the knowledge is established that not only competitive models occur under con�ict

scenarios, understanding as such any interaction between players in which each of them

pursues the satisfaction of their own individual interest, but also that any cooperative

model takes place under the premise of the existence of a con�ict and on the basis of a

rationality that will be the feature that guides and determines the behavior and therefore

32



33

the decisions of any player, it becomes absolutely necessary to understand that any agent,

acting from the most absolute rationality, behaves in a sel�sh way, that is, he will seek to

obtain the maximum bene�t by using all the ways and tools available or that he may have

at his disposal.

To conceive, therefore, that in cooperative scenarios the players always participate by

contributing the maximum e¤ort (contributing all the resources at their disposal) would

imply, in the �rst place, erroneously assuming that in cooperative environments the respec-

tive degrees of cooperation are symmetrical and would imply, equally erroneously, in the

second place, admitting that the players prioritize cooperation over the individual interest

that motivates each one of them to interact.

Reality, therefore, is much more complex and dynamic, marked to a large extent by a

rationality that determines and shapes the behavior of each agent, who will do everything

possible to try to obtain the maximum return or bene�t while devoting the least cost to

achieve it. In other words, and increasingly so in a social, economic and business environ-

ment perceived by the agents as deeply competitive, the players will try, whenever there is

an opportunity, to cooperate in positions of advantage that will allow them to redirect the

con�ict of cooperation towards more favorable positions for themselves in order, as far as

possible, to obtain the maximum from the others while giving the minimum in return.

Logically, when faced with the proposal or possibility of cooperation, the positions with

which each player decides to do so will be marked by a previous preparation or strategic

behavior in which, given the assumption that the rest of the players will try to receive the

maximum payment o¤ering the lowest value, individualism will be increased and maximized

(Freeman, 2013), an individualism marked by a sense of emergency that will materialize in

attempts to reach an agreement between pairs of agents with the aim of limiting the maxi-

mum cost or e¤ort involved in cooperating for both, while guaranteeing certain minimums

with respect to the possible returns on these costs. In other words, an attempt will be made

to reach and close a previous or preparatory phase of negotiation under a competitive sce-

nario in which the best possible conditions will be sought bilaterally for each player in order
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to reach the cooperation phase in the most solid way, ensuring the best or most optimal

ratio of expenditure faced and payment received.

Let us look at the above from the operating modes and dynamics applied by essential

economic agents such as companies, entities or corporations. Taking as an example the

behavior of companies or corporations in their continuous search for growth and the pur-

suit of market expansion and reduction of operating costs while maintaining or increasing

competitiveness, we can clearly appreciate the existence of di¤erent forms of cooperation

depending on the degree of integration or interdependence of the partners and the intended

objectives of the agreements. These forms have been widely studied in the economic liter-

ature (see, for example, Todeva and Knoke (2005) for a review). There is a speci�c type of

cooperation in transferable utility models whose properties and characteristics di¤erentiate

it from the rest. It can occur between agents that share, for example, resources, knowledge

or infrastructure. The common purpose is to obtain individual advantages such as the re-

duction of their respective individual costs. The particularity of this form of cooperation

lies in the fact that the cost reduction is based on bilateral interactions.

We consider that form of cooperation here in which, given any pair of cooperating

agents, one agent reduces the cost of the other by a certain amount which is independent of

cooperation with other agents. This means that if there are more agents in the coalition the

amount of the cost reduction does not change. This pairwise cost reduction is independent

of the coalition to which the pair of agents may belong. Therefore, for any agent, the total

cost reduction in any coalition can easily be calculated as the sum of the reductions obtained

from each bilateral interaction with the other members of the coalition.

There are several situations where this kind of cooperation with pairwise cost reduction

occurs and is pro�table, e.g. strategic collaboration agreements between �rms to reduce

logistical operational costs. The need to increase market share requires logistics �rms to

expand their radius of action as far as possible. This means major investments in expensive

infrastructures at new sites, which increase operational costs. Agreements are established

between companies to reduce those costs while maintaining control of their respective mar-
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kets and hindering access by new competitors. They o¤er the resources held by each �rm

in its respective area of in�uence under advantageous conditions. This enables them to

expand their operating ranges with signi�cant cost savings. Interactions occur bilaterally,

with each company using the resources of the other. These cost reductions are independent

of any cost reductions that can also be obtained by interacting with other agents in larger

coalitions.

Among other frequent examples where these modes of cooperation are commonplace, we

can also cite bilateral free trade agreements between countries where free trade agreements

are quite common in a globalized economy such as today�s. They facilitate trade in goods

and services between countries, reducing trade barriers and, consequently, the cost of trade.

These cost reductions are speci�c to each pair of countries, and are independent of any

other agreements that either country may decide to enter into with other countries.

Another example of common scenarios is the exchange of market data. Today, infor-

mation about customers and their buying patterns is of vital importance to companies. It

enables them to maximize the cost-e¤ectiveness of advertising and to focus on their ideal

target markets. Cooperation between companies (usually in complementary industries) con-

sists of sharing information about their respective customers. This reduces costs for each

of the companies involved. The information that a particular �rm provides is speci�c to it,

so the value of the information that it receives from another speci�c �rm is independent

of information from other �rms. Even if two �rms provide information about the same

customer, the information itself is di¤erent because it describes the purchase of a di¤erent

good or service. This can increase the value of that particular customer as a target, which

again boosts the value of this particular kind of cooperation.

The latest example, among an endless number of examples, may well be that of co-

operation agreements between companies to reduce costs by increasing the reach of their

respective telecommunications networks. In highly competitive sectors such as mobile tele-

phony and online services, cooperation between operators has become quite common. For

example, they can share the location of their respective antennas, enabling them to extend
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the reach of their networks. This results in greater bene�ts by o¤ering a broader service,

while avoiding the costs that would be incurred if each company were to install its own

structures. Again, the cost reduction is bilateral when two players decide to share and use

each other�s antennas. These cost savings are independent of any collaboration agreements

that each �rm may have with other agents to share antennas in larger coalitions.

In this kind of cooperation, the cost reduction between agents may be highly asymmetric

when they cooperate in pairs. For example, if two agents A and B decide to cooperate,

agent A could provide a major reduction for agent B, while the reduction provided in the

opposite direction could be more modest. These asymmetries can induce imbalances or

discriminations that could jeopardize cooperation. A fair distribution mechanism for the

costs generated by cooperation is undoubtedly needed to ensure the stability of any strategic

partnership, as Thomson (2010) points out.

In addition, it is quite common for this kind of cooperation to require the agents involved

to make a set level of e¤ort. It is natural to think that the amount by which one agent can

reduce the costs of the other (if they decide to cooperate) could depend on the e¤ort that

the agent exerts. For example, if one country can obtain information relevant to another

(e.g. information on tax evasion and the �ight of capital involving its citizens), the amount

and quality of the speci�c information may depend on the e¤ort exerted by the �rst country

in gathering it. This extends the situation beyond a cooperative model.

The �rst works presenting bilateral cooperation models between pairs of agents when

these, in two di¤erent phases, show di¤erent degrees or levels of cooperation as a result

of a �rst strategic competitive encounter, were carried out in 2007 by Brandenburger and

Stuart, introducing the concept of biform-games, a class of games in which the coalitional

value will be given according to the previous strategies adopted in the negotiation phase

between players.

Although there is currently a gradual growth in the volume of work on this type of

game, unfortunately at present there has been no signi�cant volume of production aimed

at going deeper and opening up new avenues beyond the initial concept. Recently, among
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others, it is fair to highlight the work carried out by Manuel and D. Martin (2020) studying

the interdependence in the formation of coalitions with respect to the di¤erent wills to

cooperate on the part of the players and also studying certain properties and adaptation of

the Shapley value to act as a valid and suitable sharing rule.

In this thesis work, we model the sequence of decisions as a bi-form game (Brandenburger

and Stuart, 2007), a new class of games that allows, as it has been indicated, to model and

analyze this type of widespread and increasingly frequent scenarios where there is a phase of

non-cooperation prior to the cooperative phase while allowing to integrate and incorporate

the di¤erent asymmetries under which the players decide to interact with di¤erent degrees

of cooperation, degrees that are agreed or �xed in a previous non-cooperative or negotiation

phase.

In the model introduced in this thesis work, in the �rst stage of the bi-form game, agents

decide how much (costly) e¤ort they are willing to exert. This has a direct impact on their

pairwise cost reductions. This �rst stage is modeled as a non-cooperative game in which

agents determine the level of pairwise e¤ort to reduce the costs of their partners. In the

second stage, agents engage in bilateral interactions with multiple independent partners

where the cost reduction brought by each agent to another agent is independent of any

possible coalition. We study this bilateral cooperation in the second stage as a cooperative

game in which cooperation leads agents to reduce their respective costs, so that the total

reduction in costs for each agent in a coalition is the sum of the reductions generated by the

rest of the members of that coalition. In the non-cooperative game of the �rst stage, the

agents anticipate the cost allocation that will result from the cooperative game in the second

stage by incorporating the e¤ect of the e¤ort made into their cost functions. Based on this

model, we explore costs, bene�ts, and challenges associated with setting up a pairwise e¤ort

situation.

We investigate the impact of pairwise e¤orts on cost reductions and the resulting cost

structure for this framework. In particular, we explore the design of a cost-allocation mech-

anism that e¢ ciently allocates the gains from pairwise e¤ort to all parties. To that end,
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we �rst compute the optimal level of cost reduction, taking into account the pairwise cost

reductions collectively accrued by all agents. An ideal allocation scheme should encourage

agents to participate in it and, at the same time, establish proper incentives to make e¤orts

prior to cooperation. Speci�cally, we �rst show that it is pro�table for all agents to partic-

ipate in a pairwise e¤ort situation. Then we study how the total reduction in costs should

be allocated to the participants in such a situation. We do this by modeling the pairwise

cost reduction between agents that takes place in the second stage as a cooperative game,

which we refer to as the pairwise e¤ort game or "PE-game".

We prove that the marginal contribution of an agent diminishes as a coalition grows in

PE-games (i.e. they are concave games) and thus all-included cooperation is feasible, in

the sense that there are possible cost reductions that make all agents better o¤ or, at least,

not worse o¤ (i.e. PE-games are balanced, which means that the core is not empty). This

all-included cooperation is also consistent (i.e. PE-games are totally balanced, which means

the core of every subgame is non-empty). We identify various allocation mechanisms that

enable all-included cooperation to be feasible (i.e. allocation mechanisms that belong to

the core of PE-games). In particular, we discuss a family of cost allocations with weighted

pairwise reduction which is always a subset of the core of PE-games. This is a broad family

of core-allocations which includes the Shapley value, which is obtained when all the weights

work out to a half. We provide a highly intuitive, simple expression for the Shapley value,

which matches the Nucleolus in our model. To select one of these core-allocations in the

second stage, we take into account the incentives that it generates in the e¤orts made by

agents, and consequently in the aggregate cost of a coalition. We show that the Shapley

value can induce ine¢ cient e¤ort strategies in equilibrium in the non-cooperative model.

However, it is always possible to �nd core-allocations with weighted pairwise reductions that

create appropriate incentives for agents to make optimal e¤orts that minimize aggregate

costs, i.e. core-allocations that generate an e¢ cient level of e¤ort in equilibrium.

This thesis work contributes to the literature by presenting a doubly robust cost sharing

mechanism. This mechanism not only has good properties in the second-stage cooperative
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game, but also creates suitable incentives in the �rst-stage non-cooperative game that allow

e¢ ciency to be achieved.

Cooperative game theory has developed a substantial mathematical framework for iden-

tifying and providing suitable cost sharing allocations (see, e.g., Fiestras-Janeiro et al. 2011;

Guajardo and Rönnqvist 2016, for a survey). Multiple solutions have been proposed from

a wide range of approaches (see, e.g., Moulin 1987; Slikker and Van den Nouweland 2012;

Lozano et al. 2013). The Shapley Value (Shapley 1953) is considered one of the most

outstanding of them, and a suitable solution concept (see, e.g., Moretti and Patrone 2008;

Serrano 2009 for a survey). As an allocation rule it has very good properties, such as

e¢ ciency, proportionality, and individual and coalitional rationality. However, it has the

disadvantage of posing computational di¢ culties, which increase as the number of players

increases. Nonetheless, there is a large body of literature in which the Shapley value is

proposed as a simple, easy-to-apply solution in di¤erent economic scenarios (see, e.g., Lit-

tlechild and Owen 1973; Bilbao et al. 2008; Li and Zhang 2009; Kimms and Kozeletskyi

2016; Le et al. 2018; Meca et al. 2019). These papers give simpli�ed solutions for di¤erent

classes of games. They take the cost structure as given and do not consider the system

externalities that arise when agents make e¤orts to give and receive cost reductions. Conse-

quently, the present work incorporates both the non-cooperative aspects of making e¢ cient

e¤orts (modeling decisions related to pairwise cost reductions) and the cooperative nature

of giving and receiving cost reductions in pairwise e¤ort situations.

As in principal-agent literature, we refer to action by agents as "e¤ort". In this setting,

the concept of "e¤ort" is widely used in analyzing di¤erent kinds of problem. One of the

�rst was the moral hazard problems: See for example Holmstrom (1982). Other examples

are Holmstrom (1999) and Dewatripont et al. (1999), who identify conditions under which

more information can induce an agent to make less e¤ort. The approach in our model is

quite di¤erent, in that we do not consider any kind of principal. As far as we know, our

model is novel in that it analyzes the incentive for agents to make e¤orts in a bi-form game:

A non-cooperative stage where agents choose how much e¤ort to make and a cooperative
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second stage. As mentioned, we show that the solution of the cooperative game determines

the incentives of agents to make an e¤ort in the �rst stage, and consequently the e¢ ciency

of the �nal outcome.

Bernstein et al. (2015) also use a bi-form model to analyze the role of process improve-

ment in a decentralized assembly system in which an assembler lays in components from

several suppliers. The assembler faces a deterministic demand and suppliers incur variable

inventory costs and �xed production setup costs. In the �rst stage of the game suppliers

invest in process improvement activities to reduce their �xed production costs. Upon es-

tablishing a relationship with suppliers, the assembler sets up a knowledge sharing network

which is modeled as a cooperative game between suppliers in which all suppliers obtain

reductions in their �xed costs. They compare two classes of allocation mechanism: Altruis-

tic allocation enables non-e¢ cient suppliers to keep the full bene�ts of the cost reductions

achieved due to learning from the e¢ cient supplier. The Tute allocation mechanism bene�ts

a supplier by transferring the incremental bene�t generated by including an e¢ cient sup-

plier in the network. They �nd that the system-optimal level of cost reduction is achieved

under the Tute allocation rule.

The hybridization linked to biform-games, integrating both cooperative and competitive

phases and relating the pro�ts obtained with the strategy pro�les of each player, allows a

great versatility to model and adapt to a wide range of situations, which is why the volume of

publications and the increasing breadth in the range of possible �elds or areas of application

of biform-games is showing an obvious and undeniable evolution and exponential growth in

recent years (e.g. Summer�eld and Dror (2013), Ray and Vohra (2015), Fox et al (2021)

for some survey references). Our bi-form game is novel in terms of incentive for e¤orts by

agents and is also richer in results: We �nd the allocation rule that generates the unique

e¢ cient e¤ort in equilibrium in cooperation with pairwise cost reduction.
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2.2 Model

We consider a model with a �nite set of agents N = f1; 2; :::; ng, where each agent has

a good (for example resources, knowledge or infrastructure) and has to perform a certain

activity. The total cost of an agent�s activity can be reduced if it cooperates with another

agent, which means that the two agents share their goods. These cost reductions obtained

by sharing goods in pairs depend on the e¤ort made previously by each agent. Our model

consists of two di¤erent stages. In the �rst stage, agents choose their e¤ort levels as in a non-

cooperative game. In the second stage, agents cooperate to reduce their costs, and allocate

the minimum cost they achieve by pairwise cost reductions as in a cooperative game. The

proposed cost allocation for the cooperative game in the second stage determines the payo¤

function of the non-cooperative game in the �rst stage. Therefore, we model the sequence

of decisions as a bi-form game (Brandenburger and Stuart, 2007). The two stages of the

model are described in detail below.

First Stage (non-cooperative game): Each agent i 2 N chooses in this state an

e¤ort level ei = (ei1; :::; ei(i�1); ei(i+1); :::ein) 2 [0; 1]n�1, where eij 2 [0; 1] stands for the

level of e¤ort by agent i to reduce the cost of agent j if they cooperate in the second stage.

These e¤orts have a cost ci(ei) 2 R+ for any i 2 N . We assume that ci(:) : [0; 1]n�1 ! R+

is a scalar �eld of class C2([0; 1]n�1).1 Moreover, for all eij 2 [0; 1] with j 2 Nnfig, it is

assumed that @ci(ei)
@eij

> 0, @
2ci(ei)
@e2ij

> 0, and @2ci(ei)
@eij@eih

= 0 for all h 6= i; j, which implies that

the marginal cost @ci(ei)@eij
is independent of the e¤ort that i exerts with agents other than j.2

Second Stage (cooperative game): Given the e¤ort made in the �rst stage, agents

cooperate, so for any pair of cooperating agents i; j 2 N and a given e¤ort eij , agent

i reduces the total cost of agent j by an amount rji(eij) 2 R+, and vice versa. These

1A scalar �eld is said to be class C2 at [0; 1]n�1 if its 2-partial derivatives exist at all points of [0; 1]n�1

and are continuous.

2This last assumption implies that the Hessian matrix is a diagonal matrix. In addition, note that, given

our assumptions about ci, w.l.o.g. we could consider that ci(ei) =
P

j2Nnfig cij(eij) where cij(:) : [0; 1] !

R+. We omit it from the paper so as not to introduce more notation into the model.
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particular reductions between agents i; j 2 N are independent of cooperation with other

agents. We also assume for all j 2 Nnfig that function rij(:) : [0; 1] ! R+ is class C2,

increasing and concave3 at [0; 1]. Thus, these agents participate in bilateral interactions

with multiple independent partners whose cost reductions are coalitionally independent,

i.e. the cost reduction given by each agent to another agent is independent of any possible

coalition. This means that the total reduction in cost for each agent in a coalition S � N is

the sum of the pairwise cost reductions given to that agent by the rest of the members of the

coalition, i.e. for agent i, it is
P
j2Snfig rij(eji). We assume perfect information regarding

agents�costs and cost reductions depending on e¤orts.

Given an e¤ort pro�le e = (e1; e2; :::; en) 2 [0; 1]n(n�1) in the �rst stage, the second

stage can be seen as a cooperative game, more speci�cally a transferable utility cost game

(N; e; c), where N is the �nite set of players, and c : 2N ! R is the so-called characteristic

function of the game, which assigns to each subset S � N the cost c(S) that is incurred if

agents in S cooperate. By convention, c(;) = 0. The cost of agent i in coalition S � N is

given by cS(i) := ci(ei)�
P
j2Snfig rij(eji): This cost can be interpreted as the reduced cost

of agent i in coalition S. Note that the larger the coalition, the greater the cost reduction it

achieves, i.e. for all i 2 S � T � N; cT (fig) � cS(fig): The total reduced cost for coalition

S is given by

c(S) :=
X
i2S

cS(fig) =
X
i2S
[ci(ei)�

X
j2Snfig

rij(eji)]. (2.1)

When all agents cooperate, they form what is called the grand coalition, which is denoted

by N . Thus, c(N) is the aggregate cost of the grand coalition. The allocation of the grand

coalition cost achieved through cooperation, in the second stage, assigns a reduced �nal

cost to each agent, that is,  i(e), for all i 2 N , where  i : E ! R with E :=
Q
i2N Ei and

Ei := [0; 1]
n�1. Then, we de�ne the cost allocation rule  : E ! Rn s.t.  (e) = ( i(e))i2N

and
P
i2N  i(e) = c(N).

3@rji(eij)=@eij > 0 (increasing) and @2rji(eij)=@e2ij < 0 (concave).
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The non-cooperative cost game in the �rst stage is de�ned through that cost allocation

rule  by (N; fEigi2N ; f igi2N ), where Ei is the strategy space of agent i 2 N (its e¤ort

level space), and  i is the payo¤ function of agent i, but in this case is a cost function.

Hence, for an e¤ort pro�le e 2 E, the corresponding cost function is  (e). That e¤ort is

made in anticipation of the result of the cooperative cost game that follows in the second

stage. Therefore, we �rst analyze the second stage (see Section 2.3 ), and focus on di¤erent

ways of allocating the grand coalition cost. We determine cost allocation rules with good

computability properties and coalitional stability for this cooperative cost game. Notice that

a given cost allocation rule will generate precise incentives in the �rst state and consequently

particular equilibrium e¤ort strategies 4. In turn, these particular e¤ort strategies will have

an associate cost of the grand coalition. At this point, a question about e¢ ciency arises.

The lower the cost of the grand coalition generated in equilibrium is, the more e¢ cient the

equilibrium e¤ort strategies and the allocation rule considered will be.

Therefore, there are two dimensions to be considered. First, the cost allocation rule for

the cooperative game should have good properties (computability and coalitional stability).

Second, the allocation rule must induce the right incentives in the non-cooperative game to

obtain the lowest cost of the grand coalition. This interesting, relevant question is analyzed

in the section dedicated to analyze e¤orts and optimal rules.

Therefore, we consider the following assumptions:

(CA) Cost assumptions: ci 2 C2, and @ci(ei)
@eij

> 0 (increasing), @
2ci(ei)
@e2ij

> 0 (convex),

and @2ci(ei)
@eij@eiK

= 0, if k 6= j (additively separable).

(RA) Reduction assumptions: rji 2 C2, and @rji(eij)=@eij > 0 (increasing), @2rji(eij)=@e2ij <

0 (concave).

A summary of the notation and the main optimization problems (Table 1 and 2) can be

found in Appendix D.

4An e¤ort strategy pro�le is said to be in equilibrium when each agent has nothing to gain by changing

only their own e¤ort strategy given the strategies of all the other agents (Nash equilibrium).
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2.3 Cooperation with Pairwise Cost Reduction

This section presents the analysis of cooperation with pairwise cost reduction in the second

stage. Agents make their e¤orts in pairwise sharing in the �rst stage, and initiate coop-

eration with e¤orts e = (e1; :::; ei; :::; en). We model a Pairwise E¤ort Game (henceforth,

PE-game) as a multiple-agent cooperative game where each agent i incurs an initial cost of

ci(ei). All agents in a pairwise e¤ort group (coalition) give cost reductions to and receive

such reductions from other agents. As a result, all agents in the coalition reduce their initial

costs to levels that depend on the e¤orts made in the �rst stage by the others. No agent

outside the pairwise e¤ort situation bene�ts from this pairwise cost reduction opportunity.

We introduce all the game-theoretic concepts used in this paper, but readers are referred

to González-Díaz et al. (2010) for more details on cooperative and non-cooperative games.

We refer to the pairwise e¤ort situation as a PE-situation and denote it by the tu-

ple (N; e; fci(ei); frji(eij)gj2Nnfiggi2N ). We associate a cost game (N; e; c) with each PE-

situation as de�ned by (2.1).

The class of PE-games has some similarities with the class of linear cost games introduced

in Meca and Sosic (2014). They de�ne the concept of cost-coalitional vectors as a collection

of certain a priori information, available in the cooperative model, represented by the costs

of the agents in all possible coalitions to which they could belong. The cost of a coalition

in their study is thus the sum of the costs of all agents in that coalition. However, the PE-

games considered here are signi�cantly di¤erent from their linear cost games. Linear cost

games focus on the role played by benefactors (giving) and bene�ciaries (receiving) as two

groups of disjoint agents, but PE-games consider that all agents could be dual benefactors,

in the sense that they be benefactors and bene�ciaries at the same time. In addition, PE-

games are based on a bilateral cooperation between agents that enables both to reduce their

costs but is coalitionally independent.

We now consider a PE-situation (N; e; fci(ei); frij(eij)gj2Nnfiggi2N ) and consider whether

it is pro�table for the agents in N to form the grand coalition to obtain a signi�cant re-

duction in costs. We �nd that the answer is yes, and show that the associated PE-game
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(N; e; c) is concave, in the sense that for all i 2 N and all S; T � N such that S � T � N

with i 2 S, so c(S) � c(S n fig) � c(T ) � c(T n fig). This concavity property provides

additional information about the game: the marginal contribution of an agent diminishes

as a coalition grows. This is well-known and is called the "snowball e¤ect".

The �rst result in this section shows that PE-games are always concave. This means

that the grand coalition can obtain a signi�cant reduction in costs. In that case, the reduced

total cost is given by c(N) =
P
i2N

ci(ei) � R(N), where R(N) =
P
i2N

P
j2Nnfig

rij(eji) is the

total reduction produced by bilateral reductions between all agents in the situation, which

turns out to be the total cost savings for all agents. The proof of next Proposition , together

with all our other proofs for this chapter, is shown in Appendix B.

Proposition 2.1 Every PE-game is concave.

An allocation rule for PE-games is a map  which assigns a vector  (e) 2 Rn to every

(N; e; c), satisfying e¢ ciency, that is,
P
i2N

 i (e) = c(N): Each component  i (e) indicates

the cost allocated to i 2 N , so an allocation rule for PE-games is a procedure for allocating

the reduced total to all the agents in N when they cooperate. It is a well-known result in

cooperative game theory that concave games are totally balanced: The core of a concave

game is non-empty, and since any subgame of a concave game is concave, the core of

any subgame is also non-empty. That means that coalitionally stable allocation rules can

always be found for PE-games. We interpret a non-empty core for PE-games as indicating

a setting where all included cooperation is feasible, in the sense that there are possible cost

reductions that make all agents better o¤ (or, at least, not worse o¤). The totally balanced

property suggests that this all-included cooperation is consistent, i.e. for every group of

agents whole-group cooperation is also feasible.

A highly natural allocation rule for PE-games is 'i (e) = cN (fig) = ci(ei) � Ri(N);

for all i 2 N , with Ri(N) =
P

j2Nnfig
rij(eji) being the total reduction received by agent

i 2 N from the rest of the agents j 2 Nnfig. It has good properties at least with respect

to computability and coalitional stability in the sense of the core. Formally, the core of a

PE-game (N; c) is de�ned as follows
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Core (N; c) = fx 2 Rn=
X
i2N

xi = c(N);
X
i2S

xi � c(S)8S � Ng. (2.2)

Notice that ' (e) 2 Core (N; c). Indeed,
P
i2N

'i (e) = c(N) and for every S � N;
P
i2S

'i (e) =P
i2S

cN (i) �
P
i2S

cS(i) = c(S). Nevertheless, the agents could argue that this allocation does

not provide su¢ cient compensation for their dual role of giving and receiving. Note that

the allocation only considers their role as receivers.

PE-games are concave, so cooperative game theory provides allocation rules for them

with good properties, at least with respect to coalitional stability and acceptability of items.

We highlight the Shapley value (see Shapley 1953), which assigns a unique allocation (among

the agents) of a total surplus generated by the grand coalition. It measures how important

each agent is to the overall cooperation, and what cost can it reasonably expect. The

Shapley value of a concave game is the center of gravity of its core (see Shapley 1971). In

general, this allocation becomes harder to compute as the number of agents increases. We

present a simple expression here for the Shapley value of PE-games that takes into account

all bilateral relations between agents and compensates them for their dual role of giving

and receiving.

Given a general cost game (N; c), we denote the Shapley value by �(c), where the

corresponding cost allocation for each agent i 2 N; is

�i(c) =
X

i2T�N

(n� t)!(t� 1)!
n!

[(c(T )� c(Tnfig)] ; with j T j= t: (2.3)

The Shapley value has many desirable properties, and it is also the only allocation rule

that satis�es a certain subset of those properties (see Moulin, 2004). For example, it is

the only allocation rule that satis�es the four properties of E¢ ciency, Equal treatment of

equals, Linearity and Null player (Shapley, 1953).

Given a PE-game (N; e; c), we denote by �(e) the Shapley value of the cost game.

The following Theorem shows that the Shapley value provides an acceptable allocation for
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PE-games. Indeed, it reduces the individual cost of an agent by the average of the total

reduction that it obtains from the others (Ri(N)) plus half of the total reduction that it

provides to the rest of the agents, i.e. Gi(N) =
P
j2Nnfig rji(eij).

Theorem 2.1 Let (N; e; c) be a PE-game. For each agent k 2 N;�k(e) = ck(ek) �
1
2 [Rk(N) +Gk(N)].

From Theorem 2.1 it can be derived that the Shapley value, �(e), considers the dual

role of giving and receiving of all agents, and the �nal e¤ect on those agents depends on

which role is stronger. As mentioned above, if an allocation does not compensate them for

their dual role of giving and receiving, and it only considers their role as receivers, as the

individual cost in the grand coalition, '(e), does, the cooperation would not be desirable

for those dual agents. This non-acceptability can be avoided by using the Shapley value,

which also coincides with the Nucleolus (Schmeiler 1989) for PE-games.

The nucleolus selects the allocation in which the coalition with the smallest excess (the

worst treated) has the highest possible excess. The nucleolus maximizes the "welfare" of

the worst treated coalitions. Denote by �(e) 2 Rn the Nucleolus of the PE-game (N; e; c),

associated with a PE-situation (N; e; fci(ei); frij(eij)gj2Nnfiggi2N ). First, we de�ne the

excess of coalition S in (N; e; c) with respect to allocation x as d (S; x) = c(S) �
P
i2S xi.

This excess can be considered as an index of the "welfare" of coalition S at x: The greater

d (S; x), the better coalition S is at x. Let d�(x) be the vector of the 2n excesses arranged

in (weakly) increasing order, i.e., d�i (x) � d�j (x) for all i < j. Second, we de�ne the

lexicographical order �l. For any x; y 2 Rn, x �l y if and only if there is an index k such

that for any i < k, xi = yi and xk > yk. The nucleolus of the PE-game (N; e; c) is the set

�(e) = fx 2 X : d�(x) �l d�(y) for all y 2 Xg (2.4)

with X = fx 2 Rn :
P
i2N xi = c(N); xi � c(fig) for all i 2 Ng.

It is well known that the Nucleolus is a singleton for balanced games and that it is

always a core-allocation.

The Proposition proves that for PE-games the Shapley value matches the Nucleolus.
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This is a very good property that few cost games satisfy.

Proposition 2.2 Let (N; e; c) be a PE-game. For each agent k 2 N , �k(e) = �k(e):

Therefore, given an e¤ort pro�le, the Shapley value is a very suitable way of allocating

the reduced cost due to cooperation. Note that, the cost reduction as a result of cooperation

between any pair of agents i; j 2 N is rij(eji) + rji(eij), and the Shapley value assigns one

half of this amount to i and the other half to j. This seems a reasonable way to split this

aggregate cost reduction. However, if agents knew before choosing their levels of e¤orts

that the cost reductions resulting from their e¤orts were going to be allocated according to

the Shapley value, the incentives created could generate ine¢ ciencies. Some agents could

�nd it optimal to exert too little e¤ort and in some situations this could be ine¢ cient.

For example, consider a PE-situation in which one agent has the ability to produce a

substantial reduction in costs for other agents with a low e¤ort cost and the rest of the

agents have almost no ability to reduce costs for others even with a high e¤ort cost. If the

Shapley value is used as the allocation rule for this game, agents may not have incentives

to make any level of e¤ort. Note that in the �rst step agents have to decide how much

e¤ort to make. However, if the Shapley value is modi�ed to give a greater portion of the

pairwise cost reduction to the especially productive agent, it might make more e¤ort and

thus produce a greater reduction in cost for other agents. This change in the Shapley value

generates new allocation rules, which can reduce the cost of the grand coalition regarding

the Shapley allocation. The following example with three agents illustrates these ideas.
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Example 2.1 Consider a pairwise inter-organizational situation with three �rms, i.e.

N = f1; 2; 3g. For any e¤ort pro�le e 2 [0; 1]6; the PE-situation is given by the following

initial costs,

c1(e12;e13) = 100 + 100e12 + 4e
2
12 + 100e13 + 4e

2
13

c2(e21;e23) = 100 + 100e21 + 4e
2
21 + 100e23 + 4e

2
23

c3(e31;e32) = 100 + 100e31 + 4e
2
31 + 100e32 + 4e

2
32

and the following pairwise reduced costs, all of them in thousands of Euros,

ri1(e1i) = 2 + 200e1i � 3e21i with i = 2; 3

ri2(e2i) = 2 + 3e2i � e22i with i = 1; 3

ri3(e3i) = 2 + 3e3i � e23i with i = 1; 2

If the allocation rule in the second stage is the Shapley value, the �rms choose their

levels of e¤ort according to this cost allocation function. It is straight forward to show that

in this case the unique e¤ort equilibrium e�, is one in which the three �rms make no e¤ort,

i.e. e�ij = 0 for i; j 2 N .5 Thus, the Shapley value distributes the cost of the grand coalition

c�(N) = 288 equally, i.e. for each �rm i = 1; 2; 3, �i(e
�) = ci(e

�
i ) � 1

2

P
j2Nnfig[rij(e

�
ji) +

rji(e
�
ij)] = 100� 1

2((2 + 2) + (2 + 2)) = 96:

Note that, for example, in the relationship between �rm 1 and 2, the pairwise cost

reduction is r12(e21) + r21(e12), and the Shapley value gives 12 of this amount to �rm 1 and

the other 12 to �rm 2. However, if the proportion that �rm 1 obtains is increased, e.g. from

1
2 to

3
4 , and the part for �rm 2 is thus reduced to

1
4 , the incentive of �rm 1 to make an e¤ort

can be increased. The same goes for �rms 1 and 3 so that the incentive of �rm 1 to make an

e¤ort for �rm 3 is also increased. These changes in the Shapley value lead to a new allocation

rule which we denote by 
(e) = (
1(e);
2(e);
3(e)) for any e¤ort pro�le e 2 [0; 1]6: With

this new allocation rule, the equilibrium e¤orts are zero for �rms 2 and 3, and one for �rm

1. That is, e��1j = 1, for j = 2; 3, e
��
2j = 0, for j = 1; 3, and e

��
3j = 0, for j = 1; 2. In this case,

5Theorem 2.3 in Section 2.4 shows the e¤orts of equilibrium in the non-cooperative game in the general

case.
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the grand coalition cost c��(N) = 102 is allocated equally between �rms 2 and 3, and the

rest to �rm 1. That is, 
i(e��) = 100� 1
4 [(2 + 200� 3) + 2]�

1
2(2 + 2) = 47; 75 for i = 2; 3;

and 
1(e��) = 100 + 100 + 4 + 100 + 4� 3
4 [(2 + (2 + 200� 3)) + (2 + (2 + 200� 3))] = 6; 5.

Hence, the new allocation rule 
(e��) greatly reduces the grand coalition cost (by 136:000

Euros) as well as the costs of each �rm; i.e. a reduction of 89:500 Euros for �rm 1 and 23:250

Euros for �rms 2 and 3. In relative terms, with the Shapley value each company pays 33.33%

of the total cost. However, with the modi�ed Shapley value agent 1 only pays 4.4% of the

total cost, while agents 2 and 3 pay 47.8% each. Therefore, the modi�ed Shapley value

generates a more e¢ cient outcome in the sense that it creates more appropriate incentives

for �rms.

To reach e¢ cient e¤ort strategies in equilibrium (henceforth EEE) in the �rst stage,

we consider a new family of allocation rules, for PE-games (second stage), based on the

Shapley value. This family consists of the rules 
(e) 2 Rn, where for all i 2 N ,


i(e) = ci(ei)�
X

j2Nnfig
[!iijrij(eji) + !

i
jirji(eij)];

with !iij ; !
i
ji 2 [0; 1], for all j 2 Nnfig, such that !iij = 1 � !jij and !

i
ji = 1 � !jji. The

Shapley value is a particular case of this family of rules in which !iij = !iji =
1
2 , for all

i 2 N and all j 2 Nnfig. This family of cost allocation for PE-games is referred to as cost

allocation with weighted pairwise reduction.

The Theorem below shows that the family of cost allocations with weighted pairwise

reduction is always a subset of the core of PE-games. This property identi�es a wide subset

of the large core of PE-games, including the Shapley value (and thus the Nucleolus).

Theorem 2.2 Let (N; e; c) be a PE-game. For every family of weights !iij ; !
i
ji 2 [0; 1],

i, j 2 N; i 6= j, such that !iij = 1 � !jij and !iji = 1 � !jji, 
(e) belongs to the core of

(N; e; c).

Now a complete analysis of the EEE for cooperation in pairwise cost reduction can be

conducted.
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2.4 E¢ ciency, Equilibrium Strategies, and Optimal Rule

We �rst de�ne an e¢ cient e¤ort pro�le as the e¤ort pro�le that minimizes the cost of the

grand coalition, c(N) =
P
i2N [ci(ei)�

P
j2Nnfig rij(eji)].

De�nition 2.1 An e¤ort pro�le ~e = (~e1; :::; ~ei; :::; ~en) with ~ei = (~ei1; :::; ~ei(i�1); ~ei(i+1); :::~ein) 2

[0; 1]n�1 is e¢ cient if ~e = arg min
e2[0;1]n(n�1)

P
i2N [ci(ei)�

P
j2Nnfig rij(eji)]

An e¢ cient e¤ort pro�le ~e is well de�ned because c(N) as a function of e is strictly

convex in eij for all i, j 2 N; i 6= j. 6

The following proposition shows that the e¤ort eij is e¢ cient if the marginal cost of

that e¤ort equals the marginal reduction that this e¤ort generates; otherwise, the e¤ort is

zero or one. The proof of Proposition appears in Appendix B, together, as indicated, with

those of all the other proofs in this section.

Proposition 2.3 There exists a unique e¢ cient e¤ort pro�le ~e = (~e1; :::; ~ei; :::; ~en)

with ~ei = (~ei1; :::; ~ei(i�1); ~ei(i+1); :::~ein) 2 [0; 1]n�1, such that

� ~eij = 0 if @ci(ei)@eij
>

@rji(eij)
@eij

for all eij 2 [0; 1],

� ~eij = 1 if @ci(ei)@eij
<

@rji(eij)
@eij

for all eij 2 [0; 1],

� ~eij 2 (0; 1) is the unique solution of @ci(ei)@eij

���
eij=~eij

=
@rji(eij)
@eij

���
eij=~eij

, otherwise.

We now focus on the non-cooperative e¤ort game that arises under the family of cost

allocation with weighted pairwise reduction (henceforth, WPR family). Then we analyze

e¢ ciency in equilibrium.

Consider the WPR family, i.e., 
i(e) = ci(ei)�
P
j2Nnfig[!

i
ijrij(eji)+!

i
jirji(eij)] for all

i 2 N with !iij ; !
i
ji 2 [0; 1], i, j 2 N; i 6= j, such that !iij = 1�!

j
ij and !

i
ji = 1�!

j
ji. For each

speci�cation of these weights, a particular allocation rule can be obtained that induces a

certain equilibrium e¤ort strategy in the �rst stage, which in turn generates the associated

6Note that the second derivative in eij is equal to
@2ci(ei)

@e2ij
� @2rji(eij)

@e2ij
, which is always positive because

@2ci(ei)

@e2ij
> 0 and @2rji(eij)

@e2ij
< 0.
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cost allocation in equilibrium. The aim of this section is twofold. First, we identify the

e¢ cient allocation rule within the WPR family, i.e., that which results in the lowest cost of

the grand coalition. Second, we show that the e¤ort pro�le induced in equilibrium by this

allocation rule coincides with the e¢ cient e¤ort pro�le of Proposition 2.3.

The non-cooperative cost game associated with 
 = (
i)i2N in the �rst stage is de�ned

by (N; fEigi2N ; f
igi2N ), where for every agent i 2 N , Ei := [0; 1]n�1 is the players� i

strategy set, and for all e¤ort pro�les e 2 E :=
Q
i2N Ei, and 
i is the cost function for

agent i 2 N . We call this an e¤ort game.

In this game, we use the following de�nition of equilibrium.

De�nition 2.2 The e¤ort pro�le e� = (e�1; :::; e
�
n) 2 E is an equilibrium for the game

(N; fEigi2N ; f
igi2N ) if e�i is the optimal e¤ort for agent i 2 N given the strategies of all

the other agents j 2 Nnfig.

First, note that the optimal e¤ort for agent i 2 N given the strategies of all the other

agents j 2 Nnfig is the e¤ort ei that minimizes 
i(ei; e�i). Note that the function 
i(ei; e�i)

is strictly convex in the e¤ort eij that agent i exerts for any j 2 Nnfig.7 This means that

for agent i there is a unique optimal level of e¤ort êij for each j 2 Nnfig. That optimal level

êij depends on the parameter !iji, on the marginal cost of agent i in regard to e¤ort êij (i.e.

@ci(ei)
@eij

), and on the marginal cost-reduction for agent j in regard to e¤ort êij , (i.e.
@rji(eij)
@eij

).

Consequently, although the cost function of agent i depends on other agents�e¤orts (eji for

all j 2 Nnfig), the optimal e¤ort does not.

To obtain the optimal e¤ort, we analyze the derivative of the convex function 
i(e) with

respect to eij , for any j 2 Nnfig: It must be noted that @
ii(e)@eij
� 0 () @ci(ei)

@eij
� !iji

@rji(eij)
@eij

for all eij 2 [0; 1]. The following result characterizes the optimal e¤ort level for agent i 2 N

in the �rst stage of the game.

7Note that @
i(e)
@eij

= @ci(ei)
@eij

� !iji
@rji(eij)

@eij
and @2i 
(e)

@e2ij
= @2ci(ei)

@e2ij
� !iji

@2rji(eij)

@e2ij
> 0 because, as assumed

above, @
2ci(ei)

@e2ij
> 0 and @2rji(eij)

@e2ij
< 0
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Lemma 2.1 Let (N; fEigi2N ; f
igi2N ) be an e¤ort game and êij be the optimal level

of e¤ort that agent i exerts to reduce the costs of agent j. Thus,

� êij = 0 if and only if @ci(ei)@eij
> !iji

@rji(eij)
@eij

, for all eij 2 [0; 1],

� êij = 1 if and only if @ci(ei)@eij
< !iji

@rji(eij)
@eij

, for all eij 2 [0; 1],

� êij 2 (0; 1) that holds @ci(ei)
@eij

���
eij=êij

= !iji
@rji(eij)
@eij

���
eij=êij

, otherwise.

The following theorem shows the unique allocation rule of the WPR family that induces

an e¢ cient e¤ort pro�le in equilibrium. This allocation rule gives all the reductions to the

agent that generates them. Formally, let H(e) := (Hi(e))i2N be the allocation rule in the

WPR family with !iji = 1 for i, j 2 N; i 6= j, that is Hi(e) = ci(ei) �
P
j2Nnfig rji(eij) for

i 2 N . We consider an allocation rule as e¢ cient if it induces an e¢ cient e¤ort pro�le in

equilibrium.

Theorem 2.3 Consider the e¤ort game (N; fEigi2N ; fHigi2N ): Let e�ij be the level of

e¤ort that an agent i exerts to reduce the costs of agent j in the unique equilibrium with i,

j 2 N; i 6= j. Thus,

� e�ij = 0 if and only if
@ci(ei)
@eij

���
eij=0

>
@rji(eij)
@eij

���
eij=0

� e�ij = 1 if and only if
@ci(ei)
@eij

���
eij=1

<
@rji(eij)
@eij

���
eij=1

� e�ij 2 (0; 1) that holds
@ci(ei)
@eij

���
eij=e�ij

=
@rji(eij)
@eij

���
eij=e�ij

, otherwise.

In addition, e�ij = ~eij for i, j 2 N; i 6= j and Hi(e) is the only allocation rule of the WPR

family that always induces an e¢ cient e¤ort pro�le in equilibrium.

Corollary 2.1 Let � be the set of all allocation rules for PE-games. There is

no  2 � such that the e¤ort equilibrium pro�le induced in the non-cooperative game

(N; fEigi2N ; f igi2N ) generates a lower cost of the grand coalition than allocation rule H.

As mentioned, the e¤ort eij is e¢ cient when its marginal cost matches the marginal

reduction that it generates; otherwise, the e¤ort is zero or one. Allocation rule H(e) aligns

the incentives of agents in the �rst stage game with this idea. It gives all the reduction
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to the agent that generates it. In that case, the best response of any agent is to make its

marginal cost equal to the marginal reduction that its e¤ort generates; otherwise, this agent

exerts the minimal or maximal e¤ort depending on which is higher: the marginal cost or

the marginal reduction.

We illustrate this analysis with the 3-�rm case given in the Example 1 in Section 3.4

In this section we work out the allocation rule (in the second stage) within the WPR

family that generates the unique e¢ cient e¤ort equilibrium (in the �rst stage). However,

there are situations in which pairwise reductions cannot be weighted separately, i.e. it is not

possible to assign di¤erent weights to what an agent gives and what the same agent receives

in a pairwise interaction. For example, there may be situations in which there is a unique

cost reduction for any pair of agents that depends on the e¤ort exerted by both agents,

i.e. an aggregate reduction. In that case they have to decide how to split the whole cost

reduction. Such cases require a weight to be assigned to the pairwise aggregate reduction.

The question that arises in this new scenario is whether the level of e¢ ciency maintained

is the same as that attained when the pairwise reductions are weighted separately for each

agent. Unfortunately, the answer is no: the level of e¢ ciency decreases in this new scenario

as shown in next chapter.
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2.5 Concluding remarks

In this second chapter, we analyze and study under the form of bi-form games, structured

in a �rst competitive phase and a second cooperative phase, a mode or form of bilateral

cooperation that, from the scope of the Transferable Utility Cooperative Cost Games, allows

the reduction of costs between pairs of agents being this reduction independent of the

behavior or cooperation of each agent of the pair outside the pair. In other words, the cost

reduction will remain invariant regardless of the size of the coalition in which each pair of

players is integrated.

As a consequence of the study of the costs, bene�ts and challenges associated with

this pairwise e¤ort environment, it is found that in the �rst competitive phase the agents

anticipate to determine the individual level of e¤ort that will shape their cost function in

the cooperative game of the second phase. As a result of the modeling of the pairwise cost

reduction in the cooperative phase, a new class of PE-Games (Pairwise E¤ort Games) is

introduced where both its concavity and the stability of a large coalition allowing a cost

reduction for all players are found. A cost sharing mechanism is presented that generates

su¢ cient incentives to generate the optimal e¤orts by the players to minimize the aggregate

costs through the contribution of optimal e¤orts. The allocation rule (WPR) that generates

the indicated unique e¢ cient e¤ort equilibria is found and presented.

Based on the evidence and certainties observed, there is inevitably a question that makes

it necessary to examine whether the same level of e¢ ciency is achieved both by weighting the

reductions individually and by weighting them in aggregate. This scenario is developed and

analyzed in the next chapter. It is shown that the same level of e¢ ciency is not achieved,

and that it is signi¢ cantly lower if the weighting is done on an aggregate basis.



Chapter 3

Measuring E¢ ciency for Pairwise

Aggregate Reduction

3.1 Introduction

The impact and importance that the introduction of the notion of transferable utility (TU)

had on the �eld of game theory is undeniable. This has been so to the extent that it presented

a new class of games whose allocations depended on the previous strategic behavior of

the players, modifying an initial theoretical rigidity that presupposed full willingness to

cooperate for all players, modeling eminently symmetrical scenarios that are not, in reality,

at all frequent.

Analyzing the prior strategic element of the players in cooperative environments or

scenarios therefore implies analyzing the fact that the coalitional value inevitably depends

on the strategic behaviors adopted by each player, so that the greater the competitiveness,

the lower the coalitional values and therefore the lower the incentive to cooperate.

Given that, when a scenario of cooperation arises, the agents will act rationally in their

decisions, this rationality will move each agent to maximize his reward in terms of cost-

bene�t through the strategic management of his involvement or degree of cooperation, since

this will be the only aspect that he will be able to manage in order to try to maximize the

payments resulting from the coalitions formed in the cooperative phase.

The modeling of this type of situation in the form of the biform-games introduced by

Brandenburger and Stuart (2007) contemplates the existence of competitive and cooper-

56
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ative behaviors when reaching agreements between players. Not surprisingly, the concept

and proposal of coexistence between both a priori opposite terms, is promoted and nor-

malized towards the business environment reaching a great di¤usion and notoriety with the

publication by the same author ten years earlier of the book Coopetition (Brandenburger,

1997), where it begins to penetrate and popularize the attempt to take the most bene�cial

of both behaviors to obtain the greatest possible gain or advantage.

The description or applied development of the coexistence of two strategies was even

earlier developed by Zhou in 1994 with the so-called investment and cooperation strategies

where, in a given situation, although the agents had to cooperate jointly to increase the

level of innovation, on the other hand they tried individually to agree on the optimum level

of investment e¤ort that would allow a certain degree of innovation but incurring costs that

would optimize the pro�ts derived from it.

One of the most signi�cant contributions of the so-called Biform-Games has undoubtedly

been the progress made in bridging the lines separating Game Theory as a theoretical body

and the reality to which it is applied, in an attempt to become an e¤ective tool capable of

providing or proposing optimal solution proposals.

At this point, it is necessary to stress the fact that, in any cooperation scenario, any

asymmetry, understanding as such the di¤erent degrees of cooperation with which each

player decides to join the game, necessarily causes a loss or reduction of the possible total

joint gain that could have occurred if such asymmetry had not existed.

Consequently, when one or more players decide to negotiate or compete in order to set

levels or degrees of cooperation lower than the maximum degree or full cooperation, the

future distributions or allocations obtained as a result of such cooperation will imply a

greater loss the lower the degree of cooperation established.

As pointed out in the work of Liu and Xiang (2023) and even earlier in his time also by

Stuart (2001), biform-games are a class of games that tends to be competitive, insofar as it

is the vector of strategies de�ned in the non-cooperative phase that de�nes the subsequent

cooperative phase where the distribution of the pro�ts generated on the basis of the di¤erent
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individual strategies that each agent previously adopts is analyzed, and all this taking into

account that the pro�ts or distributions generated by biform-games are not generated for

the individual players but for the totality of coalitions in the game.

Taking into account the above, the core or main axis of this third and last part of this

thesis work, focuses on measuring the level of e¢ ciency of e¤orts in equilibrium for a par-

ticular family of weighted pairwise aggregate reduction. For this purpose, it is necessary,

once the non-existence of an empty core has been identi�ed, as well as the family (WPR)

and subfamily (WPAR) of allocation or distribution, and Shapley�s proposal of distribu-

tion within the latter, to determine the e¢ ciencies and scope of the e¤orts in equilibrium,

determine the e¢ ciencies and scope of a competitive or bargaining phase that leads to the

identi�cation of a sharing rule in a cooperative phase di¤erent from the one proposed ac-

cording to Shapley�s value, demonstrating the existence of a unique sharing vector within

the WPAR subfamily that coincides with the optimal vector of e¢ cient e¤ort determined

in the �rst bargaining phase or absence of cooperation and that in turn coincides with the

vector of e¤ort values corresponding to the e¢ cient Nash equilibrium.

3.2 E¢ ciency of Pairwise Aggregate Reduction

Consider the family of cost allocation with weighted pairwise aggregate reduction A(e) 2 Rn

de�ned as follows:

Ai(e) = ci(ei)�
X

j2Nnfig
�ij [rij(eji) + rji(eij)]; (3.1)

with �ij 2 [0; 1]. The interaction between agents i and j generates an aggregate cost re-

duction which is rij(eji) + rji(eij). The parameter �ij measures the proportions in which

this reduction is shared between agents i and j, i.e. �ij is the proportion for agent i and

�ji = 1� �ij for agent j.

Note that A(e) is a subfamily of the WPR family 
(e), where now !iij = !jij = �ij ; for

all i; j 2 N . From now on we refer to this subfamily as the WPAR family. It is important
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to note that the Shapley value and the Nucleolus belong to the WPAR family with �ij = 1
2

for all i, j 2 N , i 6= j. We consider whether the allocation rule H(e), which generates the

e¢ cient e¤ort in equilibrium, is applicable in this situation. Unfortunately, H(e) does not

�t the scheme of pairwise aggregate reduction.

This section analyzes the non-cooperative e¤ort game that arises in the �rst stage when

cost allocations in the WPAR family are considered.

Our goal is to �nd out, within the WPAR family, a core-allocation in the cooperative

game of the second stage that induce the e¤ort equilibrium level in the �rst stage closest

to the e¢ cient one. We consider that an e¤ort pro�le e
0 2 E is more e¢ cient than a pro�le

e
00 2 E if the aggregate cost generated in the second stage by e0 is lower than that generated

by e
00
.

We therefore �rst study the non-cooperative e¤ort game that arises under this new cost

allocation A(e), that is (N; fEigi2N ; fAigi2N ).

To simplify notation and analysis, we consider that for all i 2 N and j 2 Nnfig,

c0i(eij) :=
@ci(ei)
@eij

, c00i (eij) :=
@2ci(ei)
@e2ij

, r0ji(eij) :=
@rji(eij)
@eij

and r00ji(eij) :=
@2rji(eij)

@e2ij
. Note that,

as the WPAR family is a subfamily of WPR, the properties of the latter apply to the former.

Before analyzing the EEE of the above non-cooperative e¤ort game, we de�ne thresholds

of alpha parameters that enable them to be reached.

De�nition 3.1 Given an e¤ort game (N; fEigi2N ; fAigi2N ), we de�ne the following

lower and upper thresholds for each pair of agents i and j,

�ij :=
c0i(0)
r0ji(0)

, ��ij :=
c0i(1)
r0ji(1)

, �ji :=
c0j(0)

r0ij(0)
, and ��ji :=

c0j(1)

r0ij(1)
:

It is clear that 0 < �ij < ��ij because c0i is an increasing function and r
0
ji decreasing one.

Analogously, 0 < �ji < ��ji.

The �rst Theorem in this chapter characterizes all possible types of e¤ort equilibrium

according to the value of the parameter �ij , for all i; j 2 N; i 6= j. The proof of Theorem

appears in Appendix C, together with all the other proofs in this chapter.

Theorem 3.1 Let (N; fEigi2N ; fAigi2N ) be an e¤ort game. The pairwise e¤orts in

any unique equilibrium (e�ij ; e
�
ji) are given by
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e�ij =

8>>>><>>>>:
0 if and only if �ij � �ij

eI if and only if �ij < �ij < ��ij

1 if and only if �ij � ��ij

e�ji =

8>>>><>>>>:
0 if and only if �ij � 1� �ji

eJ if and only if 1� ��ji < �ij < 1� �ji

1 if and only if �ij � 1� �ji

where eI 2 (0; 1) is the unique solution of c0i(ei) � �ijr
0
ji(eij) = 0 and e

J 2 (0; 1) is the

unique solution of c0j(ej)� (1� �ij)r0ij(eji) = 0.

The next corollary shows how the pairwise equilibrium e¤orts e�ij depend on �ij ; for all

i; j 2 N; i 6= j: As expected, as the proportion of aggregate cost reduction obtained by an

agent increases, the e¤ort that agent exerts also increases (or at least stays the same).

Corollary 3.1 Let (N; fEigi2N ; fAigi2N ) be the e¤ort game and (e�ij ; e�ji) the pairwise

e¤orts equilibrium. Thus,

� @e�ij
@�ij

> 0; if �ij 2 (�ij ; ��ij);
@e�ij
@�ij

= 0, otherwise.

� @e�ji
@�ij

< 0, if �ij 2 (1� ��ji; 1� �ji);
@e�ji
@�ij

= 0, otherwise.

The results above are very useful when the goal is to incentivize agents i; j 2 N to

make more pairwise e¤ort eij by means of parameter �ij . However, we wish to go further,

speci�cally to achieve the highest level of e¢ ciency within the WPAR family. In other

words we wish to �nd the ��ij , for all i; j 2 N that minimizes the aggregate cost functionP
i2N Ai(e

�) in equilibrium, where both Ai (e) and the e¤ort equilibrium e� depend on �ij .

3.3 A procedure for �nding an E¢ cient E¤ort Equilibrium

induced by WPAR

The search for alpha parameters which will lead to the EEE can be simpli�ed by taking

into account the bilateral independent interactions of agents. Note �rst that any pair of
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agents have a particular �ij , and second that the optimal e¤ort made by any agent i 2 N

in regard to any agent j 2 Nnfig is independent of the optimal e¤ort that agent i exerts

in regard to any other agent h 2 Nnfi; jg. Thus, minimizing
P
i2N Ai(e

�) in terms of

�ij is equivalent to minimizing Ai(e�) + Aj(e
�); since each particular �ij only appears in

Ai(e
�) and Aj(e�). Fortunately, the problem can be further simpli�ed: Note that, Ai(e�)

and Aj(e�) are the sums of di¤erent terms, but �ij only appears in those terms related to

the interaction between i and j (see (3.1)). These terms are ci(e�i )� �ij(rij(e
�
ji) + rji(e

�
ij))

from Ai(e
�), and cj(e�j ) � (1 � �ij)(rji(e

�
ij) + rij(e

�
ji)) from Aj(e

�). Thus, a new function

A�i (�ij) := ci(e
�
i ) � �ij(rij(e

�
ji) + rji(e

�
ij)) can be considered, and analogously A

�
j (1 � �ij).

Note that @x(Ai(e
�))

@�xij
=

@x(A�i (�ij))
@�xij

and @x(Aj(e
�))

@�xij
=

@x(A�j (1��ij))
@�xij

for x = 1; 2; :::. Therefore,

for each pair i and j, it is possible to de�ne the function L�ij(�ij) := A�i (�ij) +A
�
j (1� �ij).

Hence, minimizing
P
i2N Ai(e

�) is equivalent to minimizing L�ij(�ij), with

L�ij(�ij) = ci(e
�
i ) + cj(e

�
j )�

�
�ij(rij(e

�
ji) + rji(e

�
ij)) + (1� �ij)(rji(e�ij) + rij(e�ji))

�
= ci(e

�
i ) + cj(e

�
j )� (rij(e�ji) + rji(e�ij)) (3.2)

The function L�ij(�ij) depends on �ij through the equilibrium e¤orts e
�
ij and e

�
ji because

they depend on �ij . We now focus on �nding the �ij that minimizes function L�ij(�ij), and

provide a procedure for �nding the EEE for pairwise aggregate reduction.

We can summarize this reasoning as follows. Let � = (�i)i2N and �i = (�ij)j2Nnfig,

�� = arg min
�2[0;1]n(n�1)

P
i2N Ai(e

�) () ��ij = arg min
�ij2[0;1]

Ai(e
�)+Aj(e�) for all i 2 N ()

��ij = arg min
�ij2[0;1]

ci(e
�
i ) � �ij(rij(e

�
ji) + rji(e

�
ij)) + cj(e

�
j ) � (1 � �ij)(rji(e

�
ij) + rij(e

�
ji)) for

all i; j 2 N; i 6= j () ��ij = arg min
�ij2[0;1]

ci(e
�
i ) + cj(e

�
j ) � (rji(e�ij) + rij(e

�
ji)) for all i,

j 2 N; i 6= j. As L�ij(�ij) = ci(e
�
i ) + cj(e

�
j ) � (rij(e�ji) + rji(e

�
ij)), then �

�
ij = arg min

�ij2[0;1]

L�ij(�ij) for all i, j 2 N; i 6= j.

For any e¤ort game considered here, there are only six possible distributions of the lower
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and upper thresholds of the alpha parameter.1 These cases are

Case A �ij < ��ij < 1� ��ji < 1� �ji

Case B �ij < 1� ��ji < ��ij < 1� �ji

Case C �ij < 1� ��ji < 1� �ji < ��ij

Case D 1� ��ji < �ij < ��ij < 1� �ji

Case E 1� ��ji < �ij < 1� �ji < ��ij

Case F 1� ��ji < 1� �ji < �ij < ��ij

(3.3)

The last theorem characterizes the optimal ��ij in cases A-F. Thus, Theorem 3.2 provides

the ��ij that incentivizes an e¢ cient e¤ort equilibrium for WPAR 2. In Theorem 3.2 we use

the following notation:

1. ��[a;b]ij 2 [a; b] with 0 � a < b � 1 is:

��
[a;b]
ij =

8>>>><>>>>:
a if

@(L�ij(�ij))

@�ij
> 0 for all �ij 2 [a; b]

b if
@(L�ij(�ij))

@�ij
< 0 for all �ij 2 [a; b]

Solution of
@(L�ij(�ij))

@�ij
= 0 otherwise

.

2. �(�) =

8>>>><>>>>:
0 if � < 0

� if � 2 (0; 1)

1 if � > 1

Theorem 3.2 Let (N; fEigi2N ; fAigi2N ) be an e¤ort game, and L�ij(�ij) = ci(e
�
i ) +

1Note that �ji < ��ji and �ij < ��ij .

2The function L�ij is a piecewise function, and although it is continuous in �ij 2 [0; 1] it is not di¤erentiable

at all points in its domain. Since it is de�ned over intervals, it is generally non-di¤erentiable at the endpoints

of these intervals. Therefore, to compute the minimum, it is also necessary to evaluate the function at the

interval endpoints. In addition, due to its convexity, the minimum can also be an interior point within any

of the intervals. However, each interval entails a distinct derivative function, thereby contributing to the

complexity of the computation process.

The introduction of Theorem 5 streamlines the evaluation procedure by reducing the number of points to

be assessed, presenting them in a case-by-case framework.
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cj(e
�
j ) � (rij(e�ji) + rji(e

�
ij)). The optimal solution ��ij = arg min

�ij2[0;1]
L�ij(�ij) is in each

case,

Case A ��ij is any element of [��ij ; 1� ��ji]

Case B ��ij = ��
[1���ji;��ij ]
ij

Case C ��ij =

8><>: any element of [��ij ; 1] if �C = �(��ij) and �(��ij) < 1

�C otherwise
,

where �C = argminfL�ij(��
[1���ji;1��ji]
ij ); L�ij(�(��ij))g:

Case D ��ij =

8><>: any element of [0; 1� ��ji] if �D = �(1� ��ji) and �(1� ��ji) > 0

�D otherwise
,

where �D = argminfL�ij(�(1� ��ji)); L�ij(��
[�ij ;��ij]
ij )g.

Case E ��ij =

8>>>><>>>>:
any element of [0; 1� ��ji] if �E = �(1� ��ji) and �(1� ��ji) > 0

any element of [��ij ; 1] if �E = �(��ij) and �(��ij) < 1

�E otherwise

,

where �E = argminfL�ij(�(1� ��ji)); ��
[�ij ;1��ji]
ij ; L�ij(�(��ij))g.

Case F ��ij =

8>>>><>>>>:
any element of [0; 1� ��ji] if �F = �(1� ��ji) and �(1� ��ji) > 0

any element of [��ij ; 1] if �F = �(��ij) and �(��ij) < 1

�F otherwise

where �F = argminfL�ij(�(1� ��ji)); L�ij(�(��ij))g.

To conclude the section, we describe a procedure for �nding an e¢ cient e¤ort in equi-

librium induced by the WPAR family.

EEE Procedure

Given an e¤ort game (N; fEigi2N ; fAigi2N ),

1. we �rst calculate the lower and upper thresholds of the bilateral interaction between

any pair of agents by using Thresholds De�nition ;
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2. we then focus on the list (3.3) and determine which case (A-F) applies;

3. Theorem 3.2 provides an optimal ��ij for all i; j 2 N , to minimize the centralized

(aggregate) cost allocation
P
i2N Ai(e

�);

4. with this ��ij , Theorem 3.1 gives the associated e¢ cient e¤ort equilibrium (e�ij ; e
�
ji) for

every pair of agents, and thus an e¢ cient e¤ort equilibrium e� for the game;

5. at this point the optimal cost allocation that incentivizes agents i; j 2 N to make an

e¢ cient e¤ort equilibrium e�ij and e
�
ji is known, i.e.

A�i (e
�) = ci(e

�
i )�

X
j2Nnfig

��ij [rij(e
�
ji) + rji(e

�
ij)];

We illustrate this procedure with the 3-�rm case given in Example 3.1 in section 3.4
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3.4 Comparison of WPR and WPAR families

We complete the study of our model of cooperation with pairwise cost reduction by com-

paring the two families of core-allocations analyzed. We �nd that there is a loss of e¢ ciency

when cooperation is restricted to a pairwise aggregate cost reduction. That loss of e¢ ciency

can be measured. In addition, we show that those agents who receive less than the total

reduction generated and bear the total cost of this e¤ort always exert less e¤ort than the

e¢ cient agent.

As mentioned above, the allocation rule H(e) induces an equilibrium e¤ort e�H that

matches the e¢ cient e¤ort of Proposition, i.e. e�H = ~e. This means that there is no rule

that generates a lower cost of the grand coalition, see Corollary. However, as also mentioned

above, WPAR is a subfamily of WPR, but H(e) is not in WPAR, so e�A is not always equal

to e�H .

Let A�(e) be the allocation rule in WPAR that induces the e¤ort pro�le e�A
�
that

minimizes the cost of the grand coalition, i.e. the e¢ cient allocation in this subfamily. The

di¤erence, in terms of e¢ ciency, between the cost of the grand coalition with e�A
�
and ~e can

be measured. Note that for any particular functions ci(ei) and rij(eji) for i, j 2 N , i 6= j,

the associated e�A
�
and ~e can be obtained. Let � be this di¤erence or loss of e¢ ciency,

where

� =
X
i2N
[ci(e

�A�
i )�

X
j2Nnfig

rij(e
�A�
ji )]�

X
i2N
[ci(~ei)�

X
j2Nnfig

rij(~eji)]: (3.4)

The following proposition shows the relation between e¤orts e�A
�
and ~e.

Proposition 3.1 Let e�A
�

ij for i, j 2 N , i 6= j be the equilibrium e¤orts of A�(e), that

minimize the cost of the grand coalition in the family WPAR. Thus, the e¢ cient e¤ort

~eij � e�A
�

ij for all i, j 2 N , i 6= j.

As mentioned above, when an agent receives less than the total reduction that it gen-

erates and bears the total cost of that e¤ort, then that agent always exerts less e¤ort than

the e¢ cient one
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Finally, readers may think that the rationale behind the e¢ cient rule, H(e), in the WPR

family, could also apply to the WPAR family. However, this is not the case. To reach an

e¢ cient e¤ort equilibrium in the WPR family, for each pair of agents i; j 2 N; i 6= j, the

weight !iji must be 1, because
@
i(e)
@eij

= @ci(ei)
@eij

�!iji
@rji(eij)
@eij

, and !jij must also be 1, because

@
j(e)
@eji

=
@cj(ej)
@eji

� !jij
@rij(eji)
@eji

. However, this is no longer true for the WPAR family.3

The following example with three agents illustrates the comparison of the two core

allocation families and completes the demonstration.

Example 3.1 Consider a pairwise inter-organizational situation with three �rms, i.e.

N = f1; 2; 3g. For any e¤ort pro�le e 2 [0; 1]6; the PE-situation is given by the following

initial costs,

c1(e12;e13) = 100 + 100e12 + 4e
2
12 + 100e13 + 4e

2
13

c2(e21;e23) = 100 + 100e21 + 4e
2
21 + 100e23 + 4e

2
23

c3(e31;e32) = 100 + 100e31 + 4e
2
31 + 100e32 + 4e

2
32

and the following pairwise reduced costs, all of them in thousands of Euros,

ri1(e1i) = 2 + 110e1i � 2e21i with i = 2; 3

ri2(e2i) = 2 + 105e2i � 3e22i with i = 1; 3

ri3(e3i) = 2 + 105e3i � 3e23i with i = 1; 2

by De�nition, the pair of �rms f1; 2g has the thresholds �12 = 0:91, ��12 = 1:02, �21 =

0:95, and ��21 = 1:09, which correspond to Case F in the Table 3.3. By using Theorem

3.2, it can easily be checked that �F = �(��12) < 1 and ��12 = 1. Thus, by Theorem 3.1,

3 In WPAR, for each pair of agents i; j 2 N; i 6= j, the weight �ij is not always 1, because
@Ai(e)
@eij

=

@ci(ei)
@eij

� �ij @rji(eij)@eij
and @Aj(e)

@eji
=

@cj(ej)

@eji
� �ji @rij(eji)@eji

but �ij = 1 � �ji. Note that if �ij = 1, then

�ji = 0 and the derivative conditions for e¢ ciency in Proposition ?? would be violated. Bear in mind that

the weights !iji that appear in each derivative
@
i(e)
@eij

for i; j 2 N; i 6= j are independent of one another.

However, the weights �ij that appear in the each derivative
@Ai(e)
@eij

for i; j 2 N; i 6= j are not, because

�ij = 1 � �ji. In addition, it is known that !iij = !iji = �ij in WPAR for all i; j 2 N; i 6= j, where

!iij = 1�!jij and !iji = 1�!
j
ji. The fact that pairwise cost reduction is aggregated by �ij in the subfamily

WPAR means that it is not possible to apply the e¢ cient argument used for the WPR family.
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e�12 = 0:833, e�21 = 0. As �rms 2 and 3 are identical, ��13 = 1, e�13 = 0:833 and e�31 = 0.

Finally, for the pair f2; 3g, �23 = 0:95, ��23 = 1:09, �32 = 0:95, and ��32 = 1:09. This is again

Case F. Note that in case F, �F = argminfL�23(�(1 � ��32)); L�23(�(��23))g, where in this

particular case L�23(�(1 � ��32)) = L�23(�(��23)) with �(1 � ��32) = 0 and �(��23) = 1 Thus,

two solutions emerge: (i) e�23 = 0:357, e
�
32 = 0, and �

�
23 = 1, and (ii) e

�
23 = 0, e

�
32 = 0:357,

and ��23 = 0.

Therefore, there are two EEE in WPAR.

(i) e�12 = e�13 = 0:833, e
�
21 = 0, e

�
23 = 0:357, e

�
31 = e�32 = 0

(ii) e�12 = e�13 = 0:833, e
�
21 = e�23 = 0; e

�
31 = 0, e

�
32 = 0:357

We now calculate the e¢ cient e¤orts in this example by Proposition 3.3. They are the

solutions of c0i(eij)�r0ji(eij) = 0, thus, ~e12 = ~e13 = 0:833, and ~e21 = ~e23 = ~e31 = ~e32 = 0:357.

Note that by Theorem 3.3 these e¤orts are also the e¤ort equilibrium obtained by the

allocation rule H(e).

Example 1 This example is a particular subcase of Case F. This implies that ��ij is zero

or one, which in turn implies that one of the agents makes no e¤ort and the other makes

the e¢ cient value. However, they are never able to make the e¢ cient e¤ort simultaneously

under WPAR. The loss of e¢ ciency in WPAR with regard to WPR can be calculated with

the help of (3.4).

� =
P
i2N [ci(e

�A�
i )�

P
j2Nnfig rij(e

�A�
ji )]�

P
i2N [ci(~ei)�

P
j2Nnfig rij(~eji)] = 278:776�

276:104 = 2:67:
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3.5 Concluding remarks

In this chapter, the analysis focuses on a sub-family (WPAR) within the WPR family, where

it is found that bilateral reductions between pairs of players are not weighted separately,

and that the weighting occurs as the sum of all the reductions obtained, i.e. as an aggregate

reduction.

Consequently, in this third and last chapter, we have focused �rstly on the analysis

of the non-cooperative phase in which the non -cooperative e¤ort game takes place when

considering the cost allocations belonging to the WPAR family.

The relationship between equilibrium e¤orts and weights is studied. It is found that

the pairwise equilibrium e¤orts depend on the parameter alpha , that is, on the weight

or measure of the proportion in which the cost reduction is shared between each pair of

players. The totality of possible equilibria are characterized.

Consequently, it is shown that the increase in the proportion of aggregate cost reduction

achieved by each agent leads in turn to that agent�s willingness to exert more e¤ort or, in

the worst case, to maintain the level of e¤ort unchanged, but never to be able to exert a

lower level of e¤ort.

A procedure to calculate and �nd an e¢ cient e¤ort in equilibrium induced by the WPAR

allocation family is identi�ed and presented.

Finally, both allocation families ,WPR and WPAR, are compared by analyzing the

behavior when cooperation is limited to a cost reduction in an aggregated pairwise basis as

well as when cooperation is individually weighted.

After analyzing the results obtained, on the one hand, the loss of e¢ ciency is proven

when cooperation is limited to aggregate cost reductions by pairs and, on the other hand, it

is con�rmed that this loss or variation in e¢ ciency can be e¤ectively measured, con�rming

the stability of the grand coalition and demonstrating that those players who see their costs

reduced to a lesser extent with respect to the cost reduction they have caused to the rest

will always cooperate with a lower level of e¤ort than the e¢ cient one.



Conclusions and future research

In the �rst chapter it has been presented a new model of Corporate tax games with benefac-

tors and bene�ciaries as an application of linear cost games to the corporate tax reduction 

system introducing the �gure of multiple, dual and irreplaceable benefactors. It has been 

used the Shapley value as a rule of stable allocation to sharing costs reduced. Moreover, its 

properties are studied, it has been veri�ed the snowball e¤ect derived from the concavity 

of the model proving that the larger the coalition the lower the costs for its members and 

it has been proved that, these games are concave, i.e., the marginal contribution of a �rm 

and a country diminishes as a coalition grows (snowball e¤ect). Hence, the grand coalition 

is stable in the sense of the core. This means that �rms have strong incentives to cooperate 

with the countries instead of being fraudsters. Then, it is proposed the Shapley value as an 

easily computable core-allocation that bene�ts all agents and, in particular, compensates 

the benefactors for their dual and irreplaceable role.

The model presented, distinguishes two groups of agents: dual benefactors (countries) 

and bene�ciaries (�rms), while the original model presented by [6], considered two disjoint 

groups of agents, benefactors and bene�ciaries. A natural extension would be to consider 

that all agents can be dual (benefactors and bene�ciaries). Consequently, it is certain that 

similar results to those obtained here could be achieved.

The second and third chapter, that are directly interrelated, presents a model of cooper-

ation with pairwise cost reduction. The direct impact of pairwise e¤ort on cost reductions 

is investigated by means of a bi-form game. First, the agents determine the level of pair-

wise e¤ort to be made to reduce the costs of their partners. Second, they participate in

69
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a bilateral interaction with multiple independent partners where the cost reduction that

each agent gives to another agent is independent of any possible coalition. As a result of

cooperation, agents reduce each other�s costs. In the non-cooperative game that precedes

cooperation, the agents anticipate the cost allocation that will result from the cooperative

game by incorporating the e¤ect of the e¤ort made into their cost functions. It is noted

that all-included cooperation is feasible, in the sense that there are possible cost reductions

that make all agents better o¤ (or, at least, not worse o¤), and consistent. It then identi�es

a family of feasible cost allocations with weighted pairwise reduction. One of these cost

allocations is selected by taking into account the incentives generated in the e¤orts that

agents make, and consequently in the total cost of coalitions. Surprisingly, it is found that

the Shapley value, which coincides with the Nucleolus in this model, can induce ine¢ cient

e¤ort strategies in equilibrium in the non-cooperative model. However, it is always possible

to select a core-allocation with appropriate pairwise weights that can generate an e¢ cient

e¤ort.

Future research could take any of several directions. First, this thesis assumes that the

individual e¤ort cost function ci(ei) is independent of the e¤ort of other agents, and that the

marginal cost @ci(ei)@eij
is independent of the e¤ort that i makes in regard to agents other than

j, i.e. @c2i (ei)
@eij@eih

= 0. A similar assumption is made with the cost reduction function rij(e�ji).

There is some degree of independence between e¤orts. This is a reasonable assumption in

many contexts, but in some settings di¤erent assumptions might be needed. For example,

there are situations with strategic complementarity in which the e¤orts of agents reinforce

each other. In such cases the cost function is supermodular. In other cases there is strategic

substitutability, so that e¤orts o¤set each other and the function is submodular. Focusing on

the e¤ort cost function of one agent, if @c2i (ei)
@eij@eih

> 0 then there is complementarity between

the e¤orts, and if @c2i (ei)
@eij@eih

< 0, then there is substitutability. This is a very interesting

future extension. It could also be worth considering this complementarity/substitutability

not only between the di¤erent e¤orts that one agent makes in regard to other agents but

also between the e¤orts made by di¤erent agents. This assumption can be made on both
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the e¤ort cost functions and the cost reduction function. Obviously, complementarity on

the e¤ort cost function has the opposite e¤ect to that on the cost reduction function.

The second direction is close to the �rst. The pairwise total cost reduction could be con-

sidered as a general function which is increasing in the e¤orts eij and eji, that is Rij(eij ; eji).

In our model, this function is additively separable, i.e. Rij(eij ; eji) = rij(eji) + rji(eij).

However, as mentioned above, there could be situations with strategic complementarity or

substitutability in which the e¤orts of agents reinforce or o¤set each other. In that case,

the function Rij(eij ; eji) would not be separable. This is also an interesting question for

analysis.

Another direction is related to the assumption of bilateral interaction between agents.

This has the advantage of being analytically more tractable and is widely applied in practice

(e.g., Fang and Wang 2019; Amin et al. 2020, Park et al. 2010), but overall interaction

between agents, dependent on groups, is an important factor that we believe does not

a¤ect the success of cooperation. One possible future extension would be to investigate the

cooperative model with multiple cost reduction and the impact of the e¤orts made on those

cost reductions.

Finally, we identify a large family of core-allocations with weighted pairwise reduction

which contains the Shapley value and the Nucleolus and always provides a level of e¢ cient

e¤ort in equilibrium. This family is very rich in itself, as a set solution concept for our

cooperative model. Research into this core-allocation family can be furthered through an

in-depth analysis of its structure and its geometric relationship to the core.



Conclusiones y vias futuras de investigación

En el primer capítulo se ha presentado un nuevo modelo de Corporate Tax Games con 

benefactores y bene�ciarios como aplicación de los juegos de costes lineales al sistema de 

reducción del impuesto de sociedades introduciendo la �gura de benefactores múltiples, 

duales e insustituibles. Se ha utilizado el valor de Shapley como regla de asignación estable 

al reparto de costes reducidos. Además, se estudian sus propiedades, se ha comprobado el 

efecto bola de nieve derivado de la concavidad del modelo demostrando que cuanto mayor 

es la coalición menores son los costes para sus miembros y se ha comprobado que, estos 

juegos son cóncavos, es decir, la contribución marginal de una empresa y un país disminuye 

a medida que crece una coalición (efecto bola de nieve). Por lo tanto, la gran coalición es 

estable en el sentido del núcleo. Esto signi�ca que las empresas tienen fuertes incentivos 

para cooperar con los países en lugar de ser defraudadores. A continuación, se propone 

el valor de Shapley como una asignación del núcleo fácilmente computable que bene�cia a 

todos los agentes y, en particular, compensa a los benefactores por su doble e insustituible 

papel.

El modelo presentado, distingue dos grupos de agentes: benefactores duales (países) 

y bene�ciarios (empresas), mientras que el modelo original presentado por [6], consider-

aba dos grupos disjuntos de agentes, benefactores y bene�ciarios. Una extensión natural 

sería considerar que todos los agentes pueden ser duales (benefactores y bene�ciarios). En 

consecuencia, es seguro que podrían alcanzarse resultados similares a los aquí obtenidos.

Los capítulos segundo y tercero, que están directamente interrelacionados, presentan 

un modelo de cooperación con reducción de costes por parejas. El impacto directo del
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esfuerzo por parejas en la reducción de costes se investiga mediante un juego biforme. En

primer lugar, los agentes determinan el nivel de esfuerzo por parejas que deben realizar para

reducir los costes de sus socios. En segundo lugar, participan en una interacción bilateral

con múltiples socios independientes en la que la reducción de costes que cada agente ofrece

a otro es independiente de cualquier posible coalición. Como resultado de la cooperación,

los agentes reducen los costes de los demás. En el juego no cooperativo que precede a la

cooperación, los agentes anticipan la asignación de costes que resultará del juego cooperativo

incorporando a sus funciones de costes el efecto del esfuerzo realizado. Se observa que la

cooperación todo incluido es factible, en el sentido de que existen posibles reducciones de

costes que hacen que todos los agentes estén mejor (o, al menos, no peor), y consistente.

A continuación, se identi�ca una familia de asignaciones de costes factibles con reducción

ponderada por pares. Se selecciona una de estas asignaciones de costes teniendo en cuenta

los incentivos generados en los esfuerzos que realizan los agentes y, en consecuencia, en el

coste total de las coaliciones. Sorprendentemente, se encuentra que el valor de Shapley, que

coincide con el Núcleo en este modelo, puede inducir estrategias de esfuerzo ine�cientes en

equilibrio en el modelo no cooperativo.

Siempre será posible, sin embargo, seleccionar una asignación de núcleos con pondera-

ciones por pares adecuadas que puedan generar un esfuerzo e�ciente.

La investigación futura podría tomar varias direcciones. En primer lugar, en esta tesis

se asume que la función de coste del esfuerzo individual ci(ei) es independiente del esfuerzo

de otros agentes, y que el coste marginal @ci(ei)@eij
es independiente del esfuerzo que i realiza

respecto a otros agentes distintos de j, i:e: @c2i (ei)
@eij@eih

= 0. Se hace una suposición similar

con la función de reducción de costes rij(e�ji). Existe cierto grado de independencia entre

los esfuerzos. Se trata de una suposición razonable en muchos contextos, pero para otros

contextos, no obstante, será necesario partir de supuestos diferentes. Por ejemplo, hay

situaciones con complementariedad estratégica en las que los esfuerzos de los agentes se

refuerzan mutuamente. En estos casos, la función de costes es supermodular. En otros

casos hay sustituibilidad estratégica, de modo que los esfuerzos se compensan entre sí y la
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función es submodular. Centrándonos en la función de coste del esfuerzo de un agente, si

@c2i (ei)
@eij@eih

> 0 entonces hay complementariedad entre los esfuerzos, y si @c2i (ei)
@eij@eih

< 0, entonces

hay sustituibilidad.

Se trata de una ampliación futura muy interesante. También podría ser interesante

considerar esta complementariedad/sustituibilidad no sólo entre los diferentes esfuerzos que

realiza un agente respecto a otros agentes, sino también entre los esfuerzos realizados por

diferentes agentes. Ello puede hacerse tanto sobre las funciones de coste del esfuerzo como

sobre la función de reducción de costes. Obviamente, la complementariedad en la función

de coste del esfuerzo tiene el efecto contrario al efecto que tiene lugar respecto a la función

de reducción de costes.

La segunda dirección se aproxima en parte a la primera. La reducción del coste total

por pares podría considerarse una función general que es creciente en los esfuerzos eij y eji,

es decir, Rij(eij ; eji). En nuestro modelo, esta función es separable aditivamente, es decir,

Rij(eij ; eji) = rij(eji) + rji(eij). Sin embargo, como ya se ha mencionado, pueden darse

situaciones de complementariedad o sustituibilidad estratégica en las que los esfuerzos de

los agentes se refuercen o compensen mutuamente. En ese caso, la función Rij(eij ; eji) no

sería separable. Esta es también una cuestión interesante para el análisis.

Otra dirección está relacionada con el supuesto de interacción bilateral entre agentes.

Esto tiene la ventaja de ser analíticamente más manejable y se aplica ampliamente en la

práctica (por ejemplo, Fang y Wang 2019; Amin et al. 2020, Park et al. 2010), pero

la interacción global entre agentes, dependiente de los grupos, es un factor importante

que creemos que no afecta al éxito de la cooperación. Una posible extensión futura sería

investigar el modelo cooperativo con reducción de costes múltiples y el impacto de los

esfuerzos realizados en esas reducciones de costes.

Por último, identi�camos una gran familia de asignaciones centrales con reducción pon-

derada por pares que contiene el valor de Shapley y el Nucleolo y que siempre proporciona

un nivel de esfuerzo e�ciente en equilibrio. Esta familia es muy rica en sí misma, como con-
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cepto de solución de conjunto para nuestro modelo cooperativo. La investigación sobre esta

familia de asignación de núcleos puede profundizarse mediante un análisis en profundidad

de su estructura y su relación geométrica con el núcleo.
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APPENDIX A

Proof of Lemma 1.1

Consider agent k0 2 N and any set T � Nnfk0g. To prove Lemma 1.1, we �rst consider

that agent k0 is a country and compare the cost of agents in T and in T [ fk�g, and second

we consider that agent k0 is a �rm, and we do the same analysis. Note that agents in T

could be either countries or �rms:

1. Consider that agent k0 is a country i0, then

(a) For all i 2 T \ P , cTi = gi(w
T
i ) and c

T[fi0g
i = gi(w

T[fi0g
i ), where wTi = w

T[fi0g
i

because T � T [ fi0g and i0 2 P . Consequently, as gi is increasing, cTi > c
T[fi0g
i

(b) For all j 2 T \ E,

cTj =
P

i2P\T
�Sij +

P
i2Pn(P\T )

Sij =
P

i2P\T
�Sij + S

i0
j +

P
i2Pn(P\(T[fi0g))

Sij ,

and

c
T[fi0g
j =

P
i2P\(T[fi0g)

�Sij +
P

i2Pn(P\(T[fi0g))
Sij =

P
i2P\T

�Sij +
�Si
0
j +

P
i2Pn(P\(T[fi0g))

Sij .

Consequently,

cTj > c
T[fi0g
j because Si

0
j >

�Si
0
j .

2. Consider that agent k0 is a �rm j0, then

(a) For all i 2 T \ P , gi(wTi ) and cTi = gi(w
T
i ) and c

T[fj0g
i = gi(w

T[fj0g
i ) where wTi =

w
T[fj0g
i because T � T [ fj0g and j0 2 E. Consequently, cTi = c

T[fj0g
i
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(b) For all j 2 T \ E

cTj =
P

i2P\T
�Sij +

P
i2Pn(P\T )

Sij , and

c
T[fj0g
j =

P
i2P\(T[fj0g)

�Sij +
P

i2Pn(P\(T[fj0g))
Sij =

P
i2P\T

�Sij +
P

i2Pn(P\T )
Sij . Therefore, c

T
j =

c
T[fi0g
j

Point 1 implies that countries are benefactors, and point 2 implies that �rms are not

benefactor. Point 1 and 2 imply that countries and �rms can be ben-e�ciaries and an agent

k 2 N is a benefactor if and only if it is a country. �

There are agents that are dual in the sense that they are benefactors and bene�ciaries,

these are the countries. However, the �rms are exclusively bene�ciaries.

Proof of Lemma 1.2

Note that by Lemma 1.1 only countries can be benefactors, then consider any T � N

such that T \P 6= ; where i0 2 T \P . To prove Lemma 1.2, we compare the costs in set T

and in set Tnfi0g. Agents in Tnfi0g can be either countries or �rms.

First, if the agent is a country, i 2 (Tnfi0g) \ P ,

then cTi = gi(w
T
i ) < c

Tnfi0g
i = gi(w

Tnfi0g
i )because gi is is increasing,

and wTi < w
Tnfi0g
i because �Si

0
j < Si

0
j .

Second, if the agent in Tnfi0g is a �rm, j 2 (Tnfi0g) \ E;

then cTj =
P

i2P\T
�Sij +

P
i2Pn(P\T )

Sij =
P

i2P\Tnfi0g
�Sij +

�Si
0
j +

P
i2Pn(P\T )

Sij ; and

c
Tnfi0g
j =

P
i2P\(Tnfi0g)

�Sij +
P

i2PnP\(Tnfi0g)
Sij =

P
i2P\(Tnfi0g)

�Sij + S
i0
j +

P
i2Pn(P\T )

Sij :

Consequently, cTj < c
Tnfi0g
j because �Si

0
j < Si

0
j :�
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Proof of Lemma 1.3

Consider two sets such that S � T � N . Any agent in S has to be either a country or

a �rm.

First, if the agent is a country i 2 S\P , then always cSi = gi(w
S
i ) and c

T
i = gi(w

T
i ),which

implies that cSi � cTi . Note that, gi is an increasing

function, and wSi � wTi because S � T .

Second, if the agent in S is a �rm j 2 S \ E, then

cSj =
P

i2P\S
�Sij +

P
i2Pn(P\S)

Sij =
P

i2P\S
�Sij +

P
i2P\(TnS)

Sij +
P

i2Pn(P\T )
Sij ,

and

cTj =
P

i2P\T
�Sij +

P
i2Pn(P\T )

Sij =
P

i2P\S
�Sij +

P
i2P\(TnS)

�Sij +
P

i2Pn(P\T )
Sij

Note that, if in TnS there is at least a country, then cSj > cTj because S
i
j >

�Sij , otherwise

cSj = cTj

�



89

Proof of Lemma 1.4

First, we prove (1). Take a coalition T � N , and a �rm j 2 E \ T .

Then,

c(T )� c(Tnfjg) =
P
k2T

cTk �
P

k2Tnfjg
c
Tnfjg
k = cTj +

P
k2Tnfjg

(cTk � c
Tnfjg
k ).

Now we prove thatP
k2Tnfjg

(cTk � c
Tnfjg
k ) = 0, and so c(T )� c(Tnfjg) = cTj .

Indeed,P
k2Tnfjg

(cTk � c
Tnfjg
k ) =

P
i2P\(Tnfjg)

(cTi � c
Tnfjg
i ) +

P
j02E\(Tnfjg)

(cTj0 � c
Tnfjg
j0 ).

We know that

cTi � c
Tnfjg
i = gi(w

T
i )� gi(w

Tnfjg
i ) = 0, since wTnfjgi = wTi .

Moreover,

cTj0 � c
Tnfjg
j0 =

P
i2P\T

�Sij0 +
P

i2Pn(P\T )
Sij0 �

P
i2P\(Tnfjg)

�Sij0 �
P

i2Pn(P\Tnfjg)
�Sij0 = 0.

Then,P
i2P\(Tnfjg)

(cTi � c
Tnfjg
i ) = 0, and

P
j02E\(Tnfjg)

(cTj0 � c
Tnfjg
j0 ) = 0.

Hence, we conclude that
P

k2Tnfjg
(cTk � c

Tnfjg
k ) = 0.

Second,we prove (2). Take a coalition T � N , and a country i 2 P \ T

Then,

c(T )� c(Tnfig) =
P
k2T

cTk �
P

k2Tnfig
c
Tnfig
k = cTi �

P
k2Tnfig

(c
Tnfjg
k � cTk ).

We know thatP
k2Tnfig

(c
Tnfig
k � cTk ) =

P
i02P\(Tnfig)

(c
Tnfig
i0 � cTi0 ) +

P
j2E\(Tnfig)

(c
Tnfig
j � cTj ).

We prove now that

c
Tnfig
j � cTj = 
Sij +

P
i02P\(Tnfig)

�Si
0
j +

P
i02PnP\(Tnfig)

Si
0
j

!
� �Sij +

P
i02P\(Tnfig)

�Si
0
j +

P
i02PnP\(Tnfig)

Si
0
j

!
=

Sij � �Sij .

We know, by de�nition, that

c
Tnfig
i0 � cTi0 = gi0(w

Tnfig
i0 )� gi0(wTi0 )

Hence we can conclude that
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c(T )� c(Tnfig) = cTi �
P

j2E\T
(Sij � �Sij)�

P
i02P\(Tnfig)

(gi0(w
Tnfig
i0 )� gi0(wTi0 )).

�

Proof of Theorem 1.1

Here we have to prove that the marginal contribution of an agent k diminishes as a

coalition grows. Any agent k can only be either a �rm or a country, and Lemma 1.4

provided its marginal contribution.

If the agent is a �rm j, then for all T � T 0, j 2 T , cTj � cT
0

j , and so c
T
j = c(T ) �

c(Tnfjg) � c(T 0)� c(T 0nfjg) = cT
0

j

On the other hand, if the agent is a country i, again for all T � T 0, cTi � cT
0

i

In addition,
P

j2E\T
(Sij � �Sij) �

P
j2E\T 0

(Sij � �Sij) because all the countries inT are also in

T 0, and if T 0 there is at least one more than in T , then the

inequality is strict.

Finally, for the same reason
P

i02P\Tnfig
zi0i �

P
i02P\T 0nfig

zi0i.

Hence, we can conclude that for all T � T 0 and for all i 2 P \ T ,

c(T ) � c(Tnfig) = cTi �
P

j2E\T
(Sij � �Sij) �

P
i02P\Tnfig

zi0i � cT
0

i �
P

j2E\T 0
(Sij � �Sij) �P

i02P\T 0nfig
zi0i = c(T )� c(T 0nfig).�



91

Proof of Theorem 1.2

(1) First, we prove that for all j 2 E, �j(N; c) = cNj +
1
2

P
i2P
(Sij � �Sij).

Take j 2 E. As detailed before, we know that

�j(N; c) =
P

T�N ;j2T

(t) cTj .

We can separate coalitions j 2 T � N into mixed coalitions (j 2 T � N;T \ P 6= ;,

T \ E 6= ;)

and coalitions with only �rms (j 2 T � N ,T \ P = ;, T \ E 6= ;)

Then,

�j(N; c) =P
j2T�N;T\P=;;T\E 6=;


(t)(
P
i2P

Sij) +
P

j2T�N;T\P 6=;;T\E 6=;

(t)(

P
i2PnP\T 0

�Sij).

Taking into account that
P

T�N ;j2T

(t) = 1, we have thatP

j2T�N;T\P=;;T\E 6=;

(t) = 1�

P
j2T�N;T\P 6=;;T\E 6=;


(t),

and then,

�j(N; c) = (1�
P

j2T�N;T\P 6=;;T\E 6=;

(t)(

P
i2P

Sij)+

+
P

j2T�N;T\P 6=;;T\E 6=;

(t)(

P
i2PnP\T

Sij +
P

i2P\T
�Sij)

=
P
i2P

Sij +
P

j2T�N;T\P 6=;;T\E 6=;

(t)(

P
i2PnP\T

Sij +
P

i2P\T
�Sij �

P
i2P

Sij)

=
P
i2P

Sij �
P

j2T�N;T\P 6=;;T\E 6=;

(t)

P
i2P\T

(Sij � �Sij).

Now, we prove for all coalitions that contain j 2 T\E and a particular country i 2 T\P ,P
j2T�N;T\P 6=;;T\E 6=;


(t) = 1
2 ,

and then,

�j(N; c) =
P
i2P

Sij � 1
2

P
i2P\T

(Sij � �Sij) =
1
2

P
i2P
(Sij � �Sij).

Indeed,

P
j2T�N;T\P 6=;;T\E 6=;


(t) =
nP
t=2

0B@ n� 2

t� 2

1CA 
(t) =

nP
t=2

(t�1)
n(n�1) =

nP
k=1k�n
n(n�1) = 1

2

where

0B@ n� 2

t� 2

1CA
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is the number of coalitions in which there is j and a particular country i0.

Finally, doing some algebra, we have that

�j(N; c) =
P
i2P
(Sij � �Sij) = cNj +

1
2

P
i2P
(Sij � �Sij),

and so, we conclude that

�j(N; c) = cNj +
1
2

P
i2P
(Sij � �Sij)

(2) Second, we demonstrate that for all i 2 P ,

�i(N; c) = cNi � 1
2

P
j2E
(Sij � �Sij) +

1
2

P
i02Pnfig

(zii0 � zi0i).

Take i 2 P . As demonstrated, we know that

�i(N; c) =P
i2T�N


(t)

 
cTi �

P
j2E\T

(Sij � �Sij)�
P

i02P\Tnfig
(gi0(w

Tnfig
i0 )� gi0(wTi0 ))

!
.

Let�s calculate each of the addens separately.

(2.1) First, taking into account that

cTi = ci �
P

i02P\Tnfig
zii0, for all T 2 N , and

nP
t=2

0B@ n� 2

t� 2

1CA 
(t) = 1
2 ,

we obtain thatP
i2T�N


(t)cTi = ci �
nP
t=2

0B@ n� 2

t� 2

1CA 
(t)
P

i02P\Tnfig
zii0 = cNi +

1
2

P
i02P\Tnfig

zii0,

where

0B@ n� 2

t� 2

1CAis now the number of coalitions that contain i and a
particular country i0.

(2.2) Second, by a similar argument,

P
i2T�N


(t)
P

j2E\T
(Sij � �Sij) =

nP
t=2

0B@ n� 2

t� 2

1CA 
(t)
P
j2E
(Sij � �Sij) =

1
2

P
j2E
(Sij � �Sij) = 0.

(2.3) Third, by the same argument,

P
i2T�N


(t)
P

i02P\Tnfig
(gi0(w

Tnfig
i0 )� gi0(wTi0 )) =
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nP
t=2

0B@ n� 2

t� 2

1CA 
(t)
P

i02Pnfig
zi0i = �1

2

P
i02Pnfig

zi0i.

Finally, adding the above three expressions, we obtain that

�i(N; c) = cNi +
1
2

P
i02P\Tnfig

zii0 � 1
2

P
j2E
(Sij � �Sij)� 1

2

P
i02Pnfig

zi0i =

cNi � 1
2

P
j2E
(Sij � �Sij) +

1
2

P
i02Pnfig

(zii0 � zi0i). �



APPENDIX B

Proposition 2.1 in section 2.3, shows that PE-games are always concave. To prove this,

the class of unanimity games must be described. Shapley (1953) proves that the family of

unanimity games f(N;uT ); T � Ng forms a basis of the vector space of all games with set

of players N , where (N;uT ) is de�ned for each S � N as follows:

uT (S) =

8><>: 1; T � S

0; otherwise

Hence, for each cost game (N; c) there are unique real coe¢ cients (�T )T�N such that

c =
P
T�N �TuT : Many di¤erent classes of games, including airport games (Littlechild

and Owen, 1973) and sequencing games (Curiel et al., 1989), can be characterized through

constraints on these coe¢ cients.

Proof of Proposition 2.1

Let (N; e; fci(ei); frji(eij)gj2Nnfiggi2N ) be a PE-situation and (N; e; c) the associated

PE-game. First, we prove that this game can be rewritten as a weighted sum of unanimity

games ufig and ufi;jg for all i; j 2 N as follows:

c =
X
i2N

ci(ei)ufig �
X

i;j2N ;i6=j
rij(eji)ufi;jg: (7.1)

Indeed, for all S � N ,

94
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c(S) =
X
i2N

ci(ei)ufig(S)�
X

i;j2N ;i6=j
rij(eji)ufi;jg(S) =

=
X
i2S

ci(ei)�
X

i;j2S;i6=j
rij(eji) =

=
X
i2S

ci(ei)�
X
i2S

X
j2Snfig

rij(eji):

It is easily shown that the additive game
P
i2N ci(ei)ufig is concave and that ufi;jg is

convex. Thus, the game �
P
i;j2N ;i6=j rij(eji)ufi;jg is concave because of rij(eji) > 0 for all

i; j 2 N: Finally, the concavity of (N; e; c) follows from the fact that game c is the sum of

two concave games. �

Theorem 2.1, in section 2.3, shows that the Shapley value reduces the individual cost of

an agent by half the total reduction that it obtains from the others (Ri(N)) plus a half of the

total reduction that it provides to the rest of the agents, which is Gi(N) =
P
j2Nnfig rji(eij).

The Shapley value is the only allocation rule that satis�es the four properties of E¢ -

ciency, Equal treatment of equals, Linearity and Null player. Next, we describe all of these

properties of the Shapley value, which are useful in demonstrating the Theorem 2.1.

(EFF) E¢ ciency. The sum of the Shapley values of all agents equals the value of the

grand coalition, so all the gain is allocated to the agents:

X
i2N

�i (c) = c(N): (7.2)

(ETE) Equal treatment of equals. If i and j are two agents who are equivalent in the sense

that c(S [fig) = c(S [fjg) for every coalition S of N which contains neither i nor j,

then �i(c) = �j(c):

(LIN) Linearity. If two cost games c and c� are combined, then the cost allocation should

correspond to the costs derived from c and the costs derived from c�:

�i(c+ c
�) = �i(c) + �i(c

�);8i 2 N: (7.3)
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Also, for any real number a,

�i(ac) = a�i(c);8i 2 N: (7.4)

(NUP) Null Player. The Shapley value �i(c) of a null player i in a game c is zero. A

player i is null in c if c(S [ fig) = c(S) for all coalitions S that do not contain i:

Proof of Theorem 2.1

Consider the PE-game (N; e; c) rewritten as a weighted sum of unanimity games given

by the expression 2.5, i.e.

c =
X
i2N

ci(ei)ufig �
X

i;j2N ;i6=j
rij(eji)ufi;jg:

Take an agent k 2 N . By the (LIN) property of the Shapley value, �k(e), it follows that

�k(e) = �k
X
i2N

ci(ei)ufig

!
� �k

0@ X
i;j2N ;i6=j

rij(eji)
�
ufi;jg

�1A
=
X
i2N

ci(ei)�k
�
ufig

�
�
X
i2N

X
j2Nnfig

rij(eji)�k
�
ufi;jg

�
:

(7.5)

In addition, it is known from the (NUP) property that

�k
�
ufig

�
=

8><>: 1; i = k

0; otherwise
(7.6)

and from (ETE) and (NUP), that

�k
�
ufi;jg

�
=

8><>: 1=2; i = k; j = k; i 6= j

0; otherwise
(7.7)

Consequently, by substituting the values (7.6) and (7.7) in equation (7.5), the following

is obtained:
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�k(e) = ck(ek)�
X

j2Nnfkg
rkj(ejk)�k

�
ufk;jg

�
�

X
j2Nnfkg

rjk(ekj)�k
�
ufj;kg

�
= ck(ek)�

1

2

X
j2Nnfkg

[rkj(ejk) + rjk(ekj)]:

Finally, it can be concluded that, for each agent k 2 N ,

�k(e) = ck(ek)�
1

2
[Rk(N) +Gk(N)]:

�

Proof of Proposition 2.2

To prove that the Shapley value coincides with the Nucleolus for PE-games, it is �rst

necessary to describe the class of PS-games introduced by Kar et al (2009).

Denote by Mic(T ) the marginal contribution of player i 2 T , that is Mic(T ) = c(T ) �

c(T n fig); for all i 2 T � N . A cost game (N; c) satis�es the PS property if for all i 2 N

there exists ki 2 R such that Mic(T [ fig) + Mic(N n T ) = ki; for all i 2 N and all

T � N n fig. Kar et al (2009) show that for PS games, the Shapley value coincides with

the Nucleolus, i.e. �i(c) = �i(c) =
ki
2 ; for all i 2 N .

Therefore, it only remains to show that (N; e; c) is a PS-game with ki = [ci(ei) �

Ri(N)] + [ci(ei)�Gi(N)], for all i 2 N .

First, it is straightforward to prove that Mic(T ) = ci(ei) �
P
j2Tnfig[rji(eij) +

rij(eji)] for all i 2 T � N . Second, we show that Mic(T [ fig) +Mic(N n T ) = [ci(ei) �

Ri(N)] + [ci(ei)�Gi(N)] for all i 2 N and T � N n fig.

Indeed, take a coalition T � N and an agent i 2 T . It is shown that Mic(T [ fig) =

ci(ei)�
P
j2T (rji(eij) + rij(eji)) ; andMic(NnT ) = ci(ei)�

P
j2Nn(T[fig) (rji(eij) + rij(eji)) :

Therefore,

Mic(T [ fig) +Mic(N n T ) = 2ci(ei)�
P
j2Nnfig (rji(eij) + rij(eji)) =h

ci(ei)�
P
j2Nnfig rij(eji)

i
+
h
ci(ei)�

P
j2Nnfig rji(eij)

i
:

Hence, Mic(T [ fig) +Mic(N n T ) = [ci(ei)�Ri(N)] + [ci(ei)�Gi(N)] = ki);

and so (N; e; c) is a PS game. �
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Proof of Theorem 2.2

Consider the PE-game (N; e; c) associated with the PE-situation

(N; e; fci(ei); frij(eij)gj2Nnfiggi2N ):

Take a family of weights !iij ; !
i
ji 2 [0; 1], for all j 2 Nnfig, such that !iij = 1� !jij and

!iji = 1� !
j
ji, and 
(e) the corresponding cost allocation with weighted pairwise reduction

with 
i(e) = ci(ei) �
P
j2Nnfig[!

i
ijrij(eji) + !ijirji(eij)], for all i 2 N . To prove that


(e) belongs to the core of (N; e; c) it must be checked that (1)
P
i2N 
i(e) = c(N); (2)P

i2S 
i(e) � c(S), for all S � N:

We start by checking (1). Notice that
P
i2N 
i(e) = c(N) is equivalent toP

i2N
P
j2Nnfig[!

i
ijrij(eji) + !

i
jirji(eij)] =

P
i2N

P
j2Nnfig rij(eji):

Indeed,P
i2N

P
j2Nnfig[!

i
ijrij(eji) + !

i
jirji(eij)] =

P
i2N

P
j2Nnfig(!

i
ij + !

j
ij)rij(eji) =

=
P
i2N

P
j2Nnfig rij(eji);

where the last equality is due to !iij + !
j
ij = 1 for all i; j 2 N:

Next we check (2). Take S � N: Notice now that
P
i2S 
i(e) � c(S) is equivalent toP

i2S
P
j2Nnfig[!

i
ijrij(eji) + !

i
jirji(eij)]�

P
i2S
P
j2Snfig rij(eji) � 0:

Indeed, an argument similar to that used in (1) leads toP
i2S
P
j2Nnfig[!

i
ijrij(eji) + !

i
jirji(eij)]�

P
i2S
P
j2Snfig rij(eji) =P

i2S
P
j2Snfig[!

i
ijrij(eji) + !ijirji(eij)] +

P
i2S
P
j2NnS[fig[!

i
ijrij(eji) + !ijirji(eij)] �P

i2S
P
j2Snfig rij(eji) =P

i2S
P
j2Snfig rij(eji)+

P
i2S
P
j2NnS[fig[!

i
ijrij(eji)+!

i
jirji(eij)]�

P
i2S
P
j2Snfig rij(eji) =P

i2S
P
j2NnS[fig[!

i
ijrij(eji) + !

i
jirji(eij)] � 0:

�
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Proof of Proposition 2.3

To prove this result it is necessary to analyze c(N) as a function of e. First, It is

easy to prove that c(N) is strictly convex in eij for all i, j 2 N; i 6= j. Indeed, @
2c(N)
@e2ij

=

@2ci(ei)
@e2ij

� @2rji(eij)

@e2ij
> 0, because @

2ci(ei)
@e2ij

> 0 and @2rji(eij)

@e2ij
< 0. Thus, there is a unique e¤ort

pro�le ~e that minimizes c(N).

Second, we focus on �nding this e¢ cient e¤ort pro�le ~e. Note that the derivative

@c(N)
@eij

= @ci(ei)
@eij

� @rji(eij)
@eij

only depends on eij because
@c2i (ei)
@eij@eih

= 0 for all h 6= i; j. Therefore,

if @ci(ei)@eij
>

@rji(eij)
@eij

for all eij 2 [0; 1], then the function c(N) is increasing in eij , which

implies that ~eij = 0. Analogously, if @ci(ei)@eij
>

@rji(eij)
@eij

for all eij 2 [0; 1], then ~eij = 1.

Finally, if there is a solution of @ci(ei)@eij
=

@rji(eij)
@eij

, that solution is ~eij . �

Proof of Lemma 2.1

Consider the non-cooperative game (N; fEigi2N ; f
igi2N ). To learn the optimal level of

e¤ort êij that agent i must exert to reduce the costs of agent j in this game, it is necessary

to analyze the function 
i(e) = ci(ei)�
P
j2Nnfig[!

i
ijrij(eji)+!

i
jirji(eij)] for all i 2 N with

!iij ; !
i
ji 2 [0; 1], i, j 2 N; i 6= j, such that !iij = 1� !

j
ij and !

i
ji = 1� !

j
ji.

As above, we also prove that the function 
i(e) is strictly convex in eij : Indeed,
@2i 
(e)

@e2ij
=

@2ci(ei)
@e2ij

� !iji
@2rji(eij)

@e2ij
> 0 because @2ci(ei)

@e2ij
> 0 and @2rji(eij)

@e2ij
< 0: Hence, there is a unique

optimal level of e¤ort ê.

Again, we focus on �nding this optimal level of e¤ort ê:We know that @
i(e)@eij
= @ci(ei)

@eij
�

!iji
@rji(eij)
@eij

, but @ci(ei)@eij
only depends on eij , because

@c2i (ei)
@eij@eih

= 0 for all h 6= i; j. Moreover,

for all eij 2 [0; 1], @
ii(e)@eij
� 0 () @ci(ei)

@eij
� !iji

@rji(eij)
@eij

.

Therefore, if @ci(ei)@eij
> !iji

@rji(eij)
@eij

for all eij 2 [0; 1], then êij = 0. If @ci(ei)@eij
< !iji

@rji(eij)
@eij

for all eij 2 [0; 1], then êij = 1. Finally, if there is a solution of @ci(ei)@eij
= !iji

@rji(eij)
@eij

, that

solution is êij and is unique. Hence, there is a unique optimal level of e¤ort.

�
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Proof of Theorem 2.3

Now consider the non-cooperative game (N; fEigi2N ; fHigi2N ). Note that, both deriv-

ative functions @ci(ei)@eij
and @rji(eij)

@eij
only depend on eij . Thus, by Lemma, the optimal level

of e¤ort of a particular agent i 2 N with another particular agent j 2 Nnfig, i.e. êij , is

independent of any other e¤ort made by i or by any other agent. Thus, the equilibrium is

also characterized by Lemma with !iji = 1 for i, j 2 N; i 6= j. Comparing Lemma 2.1 with

Proposition, it follows directly that the equilibrium must also be e¢ cient. �

Proof of Corollary 2.1

This is straightforward from the proof of Theorem 2.3. �

Proof of Proposition 2.4

Take A�(e) the allocation rule in WPAR with ��ij for all i; j 2 N which induces the e¤ort

pro�le e�A
�
that minimizes the cost of the grand coalition. Since WPAR is a subfamily of

WPR in which !iij = !jij = �ij 2 [0; 1] for all i; j 2 N , by Lemma 2.1 the optimal level of

e¤ort for A�(e) can be also characterized.

Thus, the e¤orts are optimal in equilibrium and so e�A
�
must hold that

e�A
�

ij = 0 if and only if @ci(ei)@eij
> ��ij

@rji(eij)
@eij

, for all eij 2 [0; 1],

e�A
�

ij = 1 if and only if @ci(ei)@eij
< ��ij

@rji(eij)
@eij

, for all eij 2 [0; 1],

Otherwise, e�A
�

ij 2 (0; 1) so @ci(ei)
@eij

���
eij=e�A

�
ij

= ��ij
@rji(eij)
@eij

���
eij=e�A

�
ij

holds.

Comparing the above expressions with Proposition 2.3 and taking into account that

@ci(ei)
@eij

is a positive increasing function, @rji(eij)@eij
a positive decreasing function, and ��ij 2

[0; 1], it can be concluded that ~eij � e�A
�

ij for all i, j 2 N . �



APPENDIX C

Theorem 3.1, in section 3.2, characterizes all possible types of e¤ort equilibrium according

to the value of the parameter �ij , for all i; j 2 N; i 6= j: Before proving this theorem, we

consider a previous Lemma that is very useful for latter results. It characterizes the optimal

e¤ort level for agent i 2 N in the �rst stage non-cooperative game.

Lemma 3.1

Let (N; fEigi2N ; fAigi2N ) be the e¤ort game, with êij being the optimal level of e¤ort

that agent i exerts to reduce the costs of agent j. Thus,

1. êij = 0 if and only if �ij � �ij

2. There is a unique êij 2 (0; 1) that holds c0i(êij) � �ijr
0
ji(êij) = 0 if and only if �ij <

�ij < ��ij .

3. êij = 1 if and only if �ij � ��ij .

Proof

First, remember that the cost function Ai(e) is convex for all i 2 N . To obtain the

optimal e¤ort, the derivative of this function can be analyzed with respect to eij for any

j 2 Nnfig: It must be noted that @Ai(e)
@eij

> 0 () c0i(eij) > �ijr
0
ji(eij) for all eij 2 [0; 1],

which is a necessary and su¢ cient condition for êij = 0 to be the optimal e¤ort. 1

1This occurs because Ai(e) is an increasing function in eij and the minimum value is obtained for êij = 0,

which is the optimal e¤ort for agent i:

101
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We begin by proving point 1. Note that �ij =
c0i(0)
r0ji(0)

<
c0i(eij)
r0ji(eij)

because c0i > 0, r0ji > 0,

c00i > 0, and r
00
ji < 0. Thus, c

0
i(eij) is a positive and increasing function, and r

0
ji(eij) a positive

and decreasing function, so for any eij > 0, c0i(0) < c0i(eij) and r
0
ji(0) > r0ji(eij). Therefore,

�ij � �ij () c0i(eij) > �ijr
0
ji(eij) for all eij > 0 () êij = 0.

The demonstration in point 3 is similar to that of point 1. The above arguments are

the same and only the signs of the inequalities change.

To end the proof, we prove point 2. First, we show that there is a unique êij 2 (0; 1) such

that c0i(êij) = �ijr
0
ji(êij), which is the unique optimal e¤ort because

@Ai(e)
@eij

���
ei=êij

= 0 and

Ai(e) is a convex function. In addition, c0i(eij) is a positive increasing function and r
0
ji(eij)

a positive decreasing function, in eij 2 [0; 1]. This means that equation @Ai(e)
@eij

= c0i(eij) �

�ijr
0
ji(eij) = 0 has a unique root, which belongs to (0; 1) if and only if �ij 2 (�ij ; ��ij). Note

that if �ij 2 (�ij ; ��ij) then c0i(0) < �ijr
0
ji(0) and c

0
i(1) > �ijr

0
ji(1), and so there is a unique

point êij where c0i(êij) = �ijr
0
ji(êij).�

Proof of Theorem 3.1

As we already mention, the optimum êij is independent of other e¤orts. Therefore, the

equilibrium e¤ort is determined by Lemma 3.1. In addition, we want to characterize the

e¤ort equilibrium according to the value of the parameter �ij . Thus, in the case of agent

j, �ji < �ji < ��ji , �ji < 1� �ij < ��ji , 1� ��ji < �ij < 1� �ji. �

The next corollary shows how the pairwise equilibrium e¤orts e�ij depend on �ij , for all

i; j 2 N ,i 6= j.

As expected, as the proportion of aggregate cost reduction obtained by an agent in-

creases, the e¤ort that agent exerts also increases (or at least stays the same).
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Corollary 3.1

Let (N; fEigi2N ); fAigi2N ) be the e¤ort game and (e�ij ; e�ji) the pairwise e¤orts equilib-

rium. Thus,

� @e�ij
@�ij

> 0, if �ij 2 (�ij ; ��ij);
@e�ij
@�ij

= 0 otherwise

� @e�ji
@�ij

< 0, if �ij 2 (1� ��ji; 1� �ji);
@e�ji
@�ij

= 0 otherwise

Proof

By the implicit function theorem,
@e�ij
@�ij

= �
@(c0i(e

�
ij)��ijr

0
ji(e

�
ij))

@�ij

@(c0
i
(e�
ij
)��ijr0ji(e

�
ij
))

@e�
ij

=
r0ji(e

�
ij)

c00i (e
�
ij)��ijr00ji(e�ij)

> 0,

because r0ji(e
�
ij) > 0, c

00
i (e

�
ij) > 0, and r

00
ji(e

�
ij) < 0. Thus, for any �ij � �ij ,

Lemma 3.1 implies that e�ij = 0, thus,
@e�ij
@�ij

= 0. However, if �ij 2 (�ij ; ��ij), then

e�ij 2 (0; 1) and
@e�ij
@�ij

> 0. Finally, if �ij � ��ij , then e�ij = 1 and
@e�ij
@�ij

= 0. Analogously, if

�ji � �ji () �ij � 1 � �ji, then e
�
ji = 0 and

@e�ji
@�ij

= 0, if �ji 2 (�ji; ��ji) () �ij 2

(1 � ��ji; 1 � �ji), then e
�
ji 2 (0; 1) and

@e�ji
@�ij

< 0. Finally, if �ji � ��ji () �ij � 1 � ��ji,

then e�ij = 1 and
@e�ji
@�ij

= 0. �

Theorem 3.2, in Section 3.2, provides the weights �ij that minimizes function L�ij(�ij),

and the e¢ cient e¤ort equilibrium. To solve the above optimization problem it is necessary

to know the function L�ij(�ij) very accurately.

To demonstrate Theorem 3.2, three technical lemmas are needed �rst. Lemmas 3.2, 3.3,

and 3.4 characterize the derivatives @(A
�
i (�ij))
@�ij

,
@(L�ij(�ij))

@�ij
, and

@2(L�ij(�ij))

@�2ij
respectively.

The �rst lemma shows how the optimal cost function of agent i 2 N depends on �ij .

Henceforth, to simplify notation, we consider that for any i; j 2 N , @rij(e
�
ji)

@e�ji
and @ci(e

�
i )

@e�ij
stand

for derivatives @rij(eji)@eji
and @ci(ei)

@eij
evaluated in the unique e¤ort equilibrium.
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Lemma 3.2

Let (N; fEigi2N ; fAigi2N ) be the e¤ort game and e� the e¤ort equilibrium. Thus,

1. @(Ai(e
�))

@�ij
=

@(A�i (�ij))
@�ij

=8><>: �rij(e�ji)� �ij
@rij(e

�
ji)

@e�ji

@e�ji
@�ij

� rji(e�ij); if �ij 2 (�ij ; ��ij)

�rij(e�ji)� rji(e�ij) < 0; otherwise

2. @(Aj(e
�))

@�ij
=

@(A�j (1��ij))
@�ij

=8><>: rji(e
�
ij)� (1� �ij)

@rji(e
�
ij)

@e�ij

@e�ij
@�ij

+ rij(e
�
ji); if �ij 2 (1� ��ji; 1� �ji)

rji(e
�
ij) + rij(e

�
ji) > 0; otherwise:

Proof

It is known that Ai(e�) = ci(e
�
i ) �

P
z2Nnfig �iz(riz(e

�
zi) + rzi(e

�
iz)), and A�i (�ij) =

ci(e
�
i )� �ij(rij(e�ji) + rji(e�ij)), thus
@(Ai(e

�))
@�ij

=
@(A�i (�ij))
@�ij

=
@ci(e

�
i )

@e�ij

@e�ij
@�ij

� rij(e�ji)��ij
@rij(e

�
ji)

@e�ji

@e�ji
@�ij

� rji(e�ij)��ij
@rji(e

�
ij)

@e�ij

@e�ij
@�ij

,

=
�
@ci(e

�
i )

@e�ij
� �ij

@rji(e
�
ij)

@e�ij

�
@e�ij
@�ij

� rij(e�ji)� �ij
@rij(e

�
ji)

@e�ji

@e�ji
@�ij

� rji(e�ij).

The �rst term of the above expression is always zero, i.e.
�
@ci(e

�
i )

@e�ij
� �ij

@rji(e
�
ij)

@e�ij

�
@e�ij
@�ij

= 0.

To see this, note that if �ij 2 (�ij ; ��ij), then e�ij 2 (0; 1) by Lemma 3.1, so
�
@ci(e

�
i )

@e�ij
� �ij

@rji(e
�
ij)

@e�ij

�
=

0 because it is evaluated in equilibrium. In the other case, where �ij � �ij or �ij � ��ij ,

e�ij = 0, so
@e�ji
@�ij

= 0. Therefore, @(Ai(e
�))

@�ij
= �rij(e�ji)� �ij

@rij(e
�
ji)

@e�ji

@e�ji
@�ij

� rji(e�ij).

It is known by assumption that rij(e�ji) � 0,
@rij(e

�
ji)

@e�ji
> 0. If �ij 2 (1� ��ji; 1��ji), then

by Proposition in Lemma 3.2,
@e�ji
@�ij

< 0. However, if �ij =2 (1� ��ji; 1� �ji) then,
@e�ji
@�ij

= 0,

so @(Ai(e
�))

@�ij
= �rij(e�ji)� rji(e�ij).

The proof is analogous for @(Aj(e
�))

@�ij
. �

Notice that the e¤ect of �ij on the cost function of agent i could be positive or negative

because of two simultaneous e¤ects. First e¤ect: As expected, if �ij increases so does the

proportion of cost reduction that agent i can obtain, and thus the cost function, Ai(e�),

decreases. This decrease is measured by the term �rij(e�ji)� rji(e
�
ij) < 0 in the derivative.
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Second e¤ect: When �ij increases, the e¤ort of agent j decreases in equilibrium, so the cost

function of agent i increases. The term ��ij
@rij(e

�
ji)

@e�ji

e�ji
@�ij

> 0 measures this second e¤ect.

The sum of these two e¤ects determines the sign of the derivative. Therefore, an increase in

the proportion of the aggregate cost reduction that an agent obtains could increase the cost

of that agent if the second e¤ect dominates the �rst. This is an interesting result: Giving

too much to a particular agent could be not only worse for the aggregate cost but also for

that particular agent.

The second lemma calculates the derivative of the aggregate cost function L�ij(�ij) in

the e¤ort equilibrium for any i; j 2 N .

Lemma 3.3

Let (N; fEigi2N ; fAigi2N ) be the e¤ort game, and e� the e¤ort equilibrium.

Thus,

@(L�ij(�ij))

@�ij
=
�
@ci(e

�
i )

@e�ji
� @rij(e

�
ji)

@e�ji

�
@e�ji
@�ij

Ij +
�
cj(e

�
j )

@e�ij
� @rji(e

�
ij)

@e�ij

�
@e�ij
@�ij

Ii,

where Ii =

8><>: 1 if �ij 2 (�ij ; ��ij)

0 otherwise
and Ij =

8><>: 1 if �ij 2 (1� ��ji; 1� �ji)

0 otherwise
.

Therefore, there are four possible cases:

� @(L�ij(�ij))

@�ij
can be positive and/or negative if �ij 2 (�ij ; ��ij) \ (1� ��ji; 1� �ji)

� @(L�ij(�ij))

@�ij
= 0, if �ij =2 (�ij ; ��ij) [ (1� ��ji; 1� �ji)

� @(L�ij(�ij))

@�ij
> 0 if �ij 2 (1� ��ji; 1� �ji) \

�
(0; �ij) [ (��ij ; 1)

�
� @(L�ij(�ij))

@�ij
< 0 if �ij 2

�
(0; 1� ��ji) [

�
1� �ji; 1

�
) \
�
�ij ; ��ij

��
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Proof

From (3.2), we calculate that
@(L�ij(�ij))

@�ij
=
�
@ci(e

�
i )

@e�ji
� @rij(e

�
ji)

@e�ji

�
@e�ji
@�ij

+
�
cj(e

�
j )

@e�ij
� @rji(e

�
ij)

@e�ij

�
@e�ij
@�ij

.

Simplifying for the di¤erent subsets of �ij , the following emerges:

1. if �ij 2 (�ij ; ��ij)\ (1� ��ji; 1��ji) then, by Theorem 3.1, e�ji 2 (0; 1) and e�ij 2 (0; 1),

thus, by Corollary 3.1,
@e�ji
@�ij

< 0 and
@e�ij
@�ij

> 0. In addition, since @ci(e
�
i )

@e�ji
��ij

@rij(e
�
ji)

@e�ji
=

0 and
cj(e

�
j )

@e�ij
� (1 � �ij)

@rji(e
�
ij)

@e�ij
= 0, it follows that @ci(e

�
i )

@e�ji
� @rij(e

�
ji)

@e�ji
< 0 and

cj(e
�
j )

@e�ij
�

@rji(e
�
ij)

@e�ij
< 0. Therefore,

@(L�ij(�ij))

@�ij
=
�
@ci(e

�
i )

@e�ji
� @rij(e

�
ji)

@e�ji

�
@e�ji
@�ij

+
�
cj(e

�
j )

@e�ij
� @rji(e

�
ij)

@e�ij

�
@e�ij
@�ij

,

which can be positive or negative in this case.

2. if �ij =2 (�ij ; ��ij)[(1� ��ji; 1��ji) then, by Theorem 3.1, e�ji 2 f0; 1g and e�ij 2 f0; 1g,

and by Corollary 3.1,
@e�ji
@�ij

=
@e�ij
@�ij

= 0. Therefore,
@(L�ij(�ij))

@�ij
= 0.

3. if �ij 2 (1� ��ji; 1� �ji) \
�
(0; �ij) [ (��ij ; 1)

�
, then, as above,

@(L�ij(�ij))

@�ij
=
�
@ci(e

�
i )

@e�ji
� @rij(e

�
ji)

@e�ji

�
@e�ji
@�ij

> 0.

4. if �ij 2
�
(0; 1� ��ji) [

�
1� �ji; 1

�
) \
�
�ij ; ��ij

��
then

@(L�ij(�ij))

@�ij
=
�
cj(e

�
j )

@e�ij
� @rji(e

�
ij)

@e�ij

�
@e�ij
@�ij

< 0.

�

The derivative is a piecewise function and there are intervals where its sign is indepen-

dent of the particular form of the functions of the game. For those cases, it is straightforward

to �nd the optimal �ij that minimizes the function L�ij(�ij). In those intervals, the deriv-

ative is either positive, negative or zero throughout the interval. These cases are respec-

tively
@(L�ij(�ij))

@�ij
=
�
@ci(e

�
i )

@e�ji
� @rij(e

�
ji)

@e�ji

�
@e�ji
@�ij

> 0,
@(L�ij(�ij))

@�ij
=
�
cj(e

�
j )

@e�ij
� @rji(e

�
ij)

@e�ij

�
@e�ij
@�ij

< 0,

and
@(L�ij(�ij))

@�ij
= 0. However, there is an interval where the sign of the derivative de-

pends on the particular form of functions of the game. In this particular case
@(L�ij(�ij))

@�ij
=�

@ci(e
�
i )

@e�ji
� @rij(e

�
ji)

@e�ji

�
@e�ji
@�ij

+
�
cj(e

�
j )

@e�ij
� @rji(e

�
ij)

@e�ij

�
@e�ij
@�ij

. This occurs when �ij 2 (�ij ; ��ij) \ (1 �

��ji; 1� �ji), which implies that in equilibrium simultaneously 0 < e�ij < 1 and 0 < e�ji < 1.
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Therefore, in this case only, the derivative may be zero for some �ij within this interval. In

that case, the second derivative is needed to solve the optimization problem.

The third Lemma shows that the aggregate cost function L�ij(�ij) is convex in �ij . Two

additional assumptions about third derivatives need to be introduced.

Lemma 3.4

Let (N; fEigi2N ; fAigi2N ) be the e¤ort game, e� the e¤ort equilibrium,

and @3ci(e
�
i )

@e�3ij
> 0 and

@3rji(e
�
ij)

@e�3ij
< 0, for any i; j 2 N .

Thus
@2L�ij(�ij))

@��2ij
> 0 for all �ij 2 (�ij ; ��ij) \ (1� ��ji; 1� �ji).

Proof

Take �ij 2 (�ij ; ��ij) \ (1� ��ji; 1� �ji). Thus,

@2(L�ij(�ij))

@�2ij
=

@2
��

@ci(e
�
i )

@e�
ji

�
@rij(e

�
ji)

@e�
ji

�
@e�ji
@�ij

+

�
cj(e

�
j )

@e�
ij
�
@rji(e

�
ij)

@e�
ij

�
@e�ij
@�ij

�
@�2ij�

@2ci(e
�
i )

@e�ji@�ij
� @2rij(e

�
ji)

@e�ji@�ij

�
@e�ji
@�ij

+
�
@ci(e

�
i )

@e�ji
� @rij(e

�
ji)

@e�ji

�
@2e�ji
@�2ij

+

�
@2cj(e

�
j )

@e�ij@�ij
� @2rji(e

�
ij)

@e�ij@�ij

�
@e�ij
@�ij

+
�
@cj(e

�
j )

@e�ij
� @rji(e

�
ij)

@e�ij

�
@2e�ij
@�2ij

=

�
@2ci(e

�
i )

@2e�ji

@e�ji
@�ij

� @2rij(e
�
ji)

@2e�ji

@e�ji
@�ij

�
@e�ji
@�ij

+
�
@ci(e

�
i )

@e�ji
� @rij(e

�
ji)

@e�ji

�
@2e�ji
@�2ij

+

�
@2cj(e

�
j )

@2e�ij

@e�ij
@�ij

� @2rji(e
�
ij)

@2e�ij

@e�ij
@�ij

�
@e�ij
@�ij

+
�
@cj(e

�
j )

@e�ij
� @rji(e

�
ij)

@e�ij

�
@2e�ij
@�2ij

=

�
@2ci(e

�
i )

@2e�ji
� @2rij(e

�
ji)

@2e�ji

��
@e�ji
@�ij

�2
+
�
@ci(e

�
i )

@e�ji
� @rij(e

�
ji)

@e�ji

�
@2e�ji
@�2ij

+

�
@2cj(e

�
j )

@2e�ij
� @2rji(e

�
ij)

@2e�ij

��
@e�ij
@�ij

�2
+
�
@cj(e

�
j )

@e�ij
� @rji(e

�
ij)

@e�ij

�
@2e�ij
@�2ij

> 0

Now we prove that
@2e�ji
@�2ij

< 0 and
@2e�ij
@�2ij

< 0, so
@2(L�ij(�ij))

@�2ij
> 0.

We �rst prove that
@2e�ji
@�2ij

< 0. It is known that

@Aj(e
�)

@eji
=

@cj(e
�
j )

@e�ji
� (1� �ij)

@rij(e
�
ji)

@e�ji
= 0

We now derive the second term regarding �ij .

@2cj(e
�
j )

@e�2ji

@e�ji
@�ij

+
@rij(e

�
ji)

@e�ji
� (1� �ij)

@2rij(e
�
ji)

@e�2ji

@e�ji
@�ij

= 0

We now do the same for �ij .�
@3cj(e

�
j )

@e�3ji

�
@e�ji
@�ij

�2
+

@2cj(e
�
j )

@e�2ji

@2e�ji
@�2ji

�
+

@2rij(e
�
ji)

@e�2ji

@e�ji
@�ij

�(1� �ij)
�
@3rij(e

�
ji)

@e�3ji

�
@e�ji
@�ij

�2
+

@2rij(e
�
ji)

@e�2ji

@2e�ji
@�2ji

�
= 0
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@2cj(e

�
j )

@e�2ji
� (1� �ij)

@2rij(e
�
ji)

@e�2ji

�
@2e�ji
@�2ji

+
@2rij(e

�
ji)

@e�2ji

@e�ji
@�ij

+

�
@3cj(e

�
j )

@e�3ji
� (1� �ij)

@3rij(e
�
ji)

@e�3ji

��
@e�ji
@�ij

�2
= 0

@2e�ji
@�2ij

=
�
@2rij(e

�
ji)

@e�2
ji

@e�ji
@�ij

�
 
@3cj(e

�
j )

@e�3
ji

�(1��ij)
@3rij(e

�
ji)

@e�3
ji

!�
@e�ji
@�ij

�2
@2cj(e

�
j
)

@e�2
ji

�(1��ij)
@2rij(e

�
ji
)

@e�2
ji

Clearly, this expression is lower than zero if
@3cj(e

�
j )

@e�3ji
> 0 and

@3rij(e
�
ji)

@e�3ji
< 0; note that

@e�ji
@�ij

< 0 by Proposition.

Analogously, we obtain

@2e�ij
@�2ij

=

@2rji(e
�
ij)

@e�2
ij

@e�ij
@�ij

�
 
@3ci(e

�
i )

@e�3
ij

��ij
@3rji(e

�
ij)

@e�3
ij

!�
@e�ij
@�ij

�2
@2ci(e

�
i
)

@e�2
ij

��ij
@2rji(e

�
ij
)

@e�2
ij

< 0.

�

Lemma 3.4 enables us to state that in any interval where the piecewise derivative function

takes the value
@(L�ij(�ij))

@�ij
= ��ij

@rij(e
�
ji)

@e�ji

@e�ji
@�ij

� (1��ij)
@rji(e

�
ij)

@e�ij

@e�ij
@�ij

, the function L�ij(�ij) is

convex (see also Lemma 3.3 ).

The following proposition shows that, according to the value of the e¤ort equilibrium,

the cost function L�ij(�ij) is a continuous piecewise function with four types of piece. This

result characterizes all of those pieces, showing the shape of L�ij(�ij) and the optimal �ij in

each type of piece.

Proposition 3.1

Consider the e¤ort game (N; fEigi2N ; fAigi2N ) and e� as the e¤ort equilibrium. Let

�ij 2 [a; b] be a piece of L�ij(�ij) with 0 � a < b � 1, L�ij(�ij) can have only four types of

piece:

1. Constant (e�ij ; e
�
ji) is either (0; 0), (1; 0), (0; 1) or (1; 1). Thus

@(L�ij(�ij))

@�ij
= 0 and L�ij(�ij)

is always constant. Therefore, any �ij 2 [a; b] minimizes L�ij(�ij):

2. Increasing: e�ij is either 0 or 1, and 0 < e�ji < 1. Thus
@(L�ij(�ij))

@�ij
=
�
@ci(e

�
i )

@e�ji
� @rij(e

�
ji)

@e�ji

�
@e�ji
@�ij

>

0 and L�ij(�ij) is always increasing. Therefore, �ij = a minimizes L�ij(�ij).

3. Decreasing: : 0 < e�ij < 1, and e
�
ji is either 0 or 1. Thus

@(L�ij(�ij))

@�ij
=
�
cj(e

�
j )

@e�ij
� @rji(e

�
ij)

@e�ij

�
@e�ij
@�ij

<

0 and L�ij(�ij) is always decreasing. Therefore, �ij = b minimizes L�ij(�ij).
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4. Depending on cost function shape: 0 < e�ij < 1 and 0 < e�ji < 1. Thus,

@(L�ij(�ij))

@�ij
=
�
@ci(e

�
i )

@e�ji
� @rij(e

�
ji)

@e�ji

�
@e�ji
@�ij

+
�
cj(e

�
j )

@e�ij
� @rji(e

�
ij)

@e�ij

�
@e�ij
@�ij

.

In this case, there is always a unique ��[a;b]ij 2 [a; b] that minimizes L�ij(�ij), which is:

��
[a;b]
ij =

8>>>><>>>>:
a if

@(L�ij(�ij))

@�ij
> 0 for all �ij 2 [a; b]

b if
@(L�ij(�ij))

@�ij
< 0 for all �ij 2 [a; b]

Solution of
@(L�ij(�ij))

@�ij
= 0 otherwise

Proof

The proof of Lemma 3.3 shows four possible cases for L�ij(�ij). The point 2. of the proof

of Lemma 3.3 proves the point 1. (Constant). The point 3. proves the point 2. (Increasing),

and point 4. proves point 3 (decreasing). Finally, to prove the point 4. (Depending on cost

function shape) we need the point 1 of Lemma 3.3 and Lemma 3.4 which proves that L�ij(�ij)

is convex in this case. Therefore, in this last case, it is also straightforward to show that

@(L�ij(�ij))

@�ij
is continuous, so there is always a unique �ij that minimizes L�ij(�ij) in such

pieces. The procedure for calculating ��[a;b]ij is the following: First, by Theorem, we calculate

e�ij and e
�
ji as a function of �ij from c0i(eij) � �ijr

0
ji(eij) = 0 and c0j(eji) � �jir

0
ij(eji) = 0.

Second, we build the function L�ij(�ij) with the e
�
ij(�ij) and e

�
ji(�ij) previously calculated.

Finally, we calculate
@(L�ij(�ij))

@�ij
and obtain ��[a;b]ij .

Finally, Theorem 3.2 characterizes the optimal ��ij , for all i; j 2 N with i 6= j, which

incentivizes an e¢ cient e¤ort equilibrium, which is also provided.

Proof of Theorem 3.2

As L�ij(�ij) is a continuous piecewise function, we analyze the �ve pieces that de�ne it

in each case. Lemma 3.3, 3.4 and Proposition 3.1 enable the type of piece to be determined,

thus giving the value of �ij that minimizes L�ij(�ij) in each piece. Comparing the pieces

gives the ��ij that minimizes the aggregate cost for each of the six cases. This value need

not be unique. Note, in addition, that �ij , ��ij , ��ji and �ji are always greater than zero,

but any of them may be greater than one, which implies that some pieces of certain cases

may not exist. We prove the theorem case by case:
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Case A (�ij < ��ij < 1� ��ji < 1� �ji)

Note that those thresholds are always greater than zero,

so 0 < �ij < ��ij < 1� ��ji < 1� �ji < 1. By Lemma 3.3,

� if �ij 2
�
0; �ij

�
, then L�ij(�ij) is constant in this interval.

� If �ij 2
�
�ij ; ��ij

�
, then L�ij(�ij) is decreasing, which implies that �ij = 1 � ��ji

minimizes L�ij(�ij).

� If �ij 2 (��ij ; 1� ��ji), then L�ij(�ij) is constant in this interval.

� If �ij 2
�
1� ��ji; 1� �ji

�
, then L�ij(�ij) is increasing, which implies that 1 � ��ji

minimizes L�ij(�ij).

� If �ij 2
�
1� �ji; 1

�
, then L�ij(�ij) is constant in this interval.

Therefore, ��ij is equal to any �ij 2 [��ij ; 1� ��ji].

Case B (�ij < 1� ��ji < ��ij < 1� �ji)

Analogously, 0 < �ij < 1� ��ji < ��ij < 1� �ji < 1,

and by Lemma Lemma 3.3, 3.4 and Proposition 3.1,

� if �ij 2
�
0; �ij

�
, then L�ij(�ij) is constant in this interval.

� If �ij 2
�
�ij ; 1� ��ji

�
, then L�ij(�ij) is decreasing, which implies that �ij = 1 � ��ji

minimizes L�ij(�ij).

� If �ij 2 (1� ��ji; ��ij), then ��ij minimizes L�ij(�ij), where ��ij is de�ned-64 in Propo-

sition 3.1.

� If �ij 2
�
��ij ; 1� �ji

�
, then L�ij(�ij) is increasing, which implies that ��ij minimizes

L�ij(�ij).

� If �ij 2
�
1� �ji; 1

�
, then e�ij = 1, e

�
ji = 0, and L

�
ij(�ij) is constant in this interval.
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Therefore, ��ij = ��
[1���ji;��ij ]
ij .

Case C (�ij < 1� ��ji < 1� �ji < ��ij)

It may happen here that either ��ij < 1 or ��ij � 1. Thus there are two subcases:

0 < �ij < 1� ��ji < 1� �ji < ��ij < 1

0 < �ij < 1� ��ji < 1� �ji < 1 < ��ij

Starting with the �rst subcase, by Lemma 3.3, 3.4 and Proposition 3.1

� if �ij 2
�
0; �ij

�
, then L�ij(�ij) is constant in this interval.

� If �ij 2
�
�ij ; 1� ��ji

�
, then L�ij(�ij) is decreasing, which implies that �ij = 1 � ��ji

minimizes L�ij(�ij).

� If �ij 2
�
1� ��ji; 1� �ji

�
, then ��ij minimizes L�ij(�ij).

� If �ij 2
�
1� �ji; ��ij

�
, then L�ij(�ij) is decreasing, which implies that ��ij minimizes

L�ij(�ij).

� If �ij 2 (��ij ; 1), then L�ij(�ij) is constant, in this interval.

However, in the second subcase ��ij > 1, which implies that the last interval described

above does not exist. The rest of the analysis is similar to the �rst subcase.

Therefore, ��ij = argminfL�ij(��
[1���ji;1��ji]
ij ); L�ij(�(��ij))g. Note that, if ��ij = �(��ij)

and ��ij < 1, then ��ij is equal to any �ij 2 (��ij ; 1).
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Case D (1� ��ji < �ij < ��ij < 1� �ji)

It may happen here that either 1� ��ji > 0 or 1� ��ji � 0. Thus there are two subcases:

0 < 1� ��ji < �ij < ��ij < 1� �ji < 1

1� ��ji < 0 < �ij < ��ij < 1� �ji < 1

Starting with the �rst subcase, by Lemma 3.3, 3.4 and Proposition 3.1

� if �ij 2 (0; 1� ��ji), then e�ij = 0, e�ji = 1, and L�ij(�ij) is constant in this interval.

� If �ij 2
�
1� ��ji; �ij

�
, then L�ij(�ij) is increasing, which implies that �ij = 1 � ��ji

minimizes L�ij(�ij).

� If �ij 2
�
�ij ; ��ij

�
, then ��ij minimizes L�ij(�ij).

� If �ij 2
�
��ij ; 1� �ji

�
, then e�ij = 1, 0 < e�ji < 1, and L�ij(�ij) is increasing, which

implies that ��ij minimizes L�ij(�ij).

� If �ij 2 (��ij ; 1), then e�ij = 1, e�ji = 0, and L�ij(�ij) is constant in this interval.

However, if 1 � ��ji < 0 the �rst interval above does not exist. Again, the rest of the

analysis is similar to the �rst subcase.

Therefore, ��ij = argminfL�ij(�(1� ��ji)); L�ij(��
[�ij ;��ij]
ij )g: Note that if ��ij = �(1� ��ji)

and 1� ��ji > 0, then ��ij is equal to any �ij 2 [0; 1� ��ji]:
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Case E (1� ��ji < �ij < 1� �ji < ��ij)

In this case, it may happen that either 1� ��ji > 0 or 1� ��ji � 0, and either ��ij < 1 or

��ij � 1. Thus there are four subcases:

0 < 1� ��ji < �ij < 1� �ji < ��ij < 1

1� ��ji < 0 < �ij < 1� �ji < ��ij < 1

0 < 1� ��ji < �ij < 1� �ji < 1 < ��ij

1� ��ji < 0 < �ij < 1� �ji < 1 < ��ij

Focusing on the �rst subcase, by Lemma 3.3, 3.4 and Proposition 3.1

� if �ij 2 (0; 1� ��ji), then L�ij(�ij) is constant in this interval.

� If �ij 2
�
1� ��ji; �ij

�
, then L�ij(�ij) is increasing, which implies that �ij = 1 � ��ji

minimizes L�ij(�ij).

� If �ij 2
�
�ij ; 1� �ji

�
, then ��ij minimizes L�ij(�ij).

� If �ij 2
�
1� �ji; ��ij

�
, then L�ij(�ij) is decreasing, which implies that ��ij minimizes

L�ij(�ij).

� If �ij 2 (��ij ; 1), then e�ij = 1, e�ji = 0, and L�ij(�ij) is constant in this interval

In the other three subcases, the �rst and/or last interval may not exist. Once again,

the rest of the analysis for those subcases is similar to the �rst one.

Therefore, ��ij = argminfL�ij(�(1 � ��ji)); ��
[�ij ;1��ji]
ij ; L�ij(�(��ij))g. Note that if ��ij =

�(1 � ��ji) and 1 � ��ji > 0 then ��ij is equal to any �ij 2 [0; 1 � ��ji], and if �Eij = �(��ij)

and ��ij < 1, then ��ij is equal to any �ij 2 [��ij ; 1]
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Case F (1� ��ji < 1� �ji < �ij < ��ij)

This is the most general case and anything could happen with thresholds greater than

one. Thus there are nine subcases.

First consider the case 0 < 1� ��ji < 1� �ji < �ij < ��ij < 1 :

If �ij 2 (0; 1� ��ji), then L�ij(�ij) is constant in this interval.

If �ij 2
�
1� ��ji; 1� �ji

�
, then L�ij(�ij) is increasing, which implies that �ij = 1 � ��ji

minimizes L�ij(�ij).

If �ij 2
�
1� �ji; �ij

�
, then L�ij(�ij) is constant in this interval.

If �ij 2
�
�ij ; ��ij

�
, then L�ij(�ij) is decreasing, which implies that �ij = ��ij minimizes

L�ij(�ij).

If �ij 2 (��ij ; 1), then L�ij(�ij) is constant in this interval.

In any other subcase, the �rst, second, to last, and last intervals considered above, may

not exist. The rest of the analysis for those subcases is similar to the �rst one.

Therefore, ��ij = argMinfL�ij(�(1 � ��ji)); L�ij(�(��ij))g. Note that, if ��ij = �(1 � ��ji)

and 1� ��ji > 0, then ��ij is equal to any �ij 2 [0; 1� ��ji], but if ��ij = �(��ij) and ��ij < 1,

then ��ij is equal to any �ij 2 [��ij ; 1]. Additionally, if 1 � �ji < 0 and ��ij > 1, then

L�ij(�(1� ��ji)) = L�ij(�(��ij), so �
�
ij is equal to any �ij 2 [0; 1].
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Table 1: Notation summary

N = f1; 2; ::ng Agents

Ei= [0; 1]
n�1

Strategy space of agent i of the non-coop erative gam e

E =
Q
i2N Ei= [0; 1]

n(n�1)
Strategy pro�le space of the non-coop erative gam e

eij2 [0; 1] E¤ort exerted by agent i to reduce the cost of agent j

ei= (eij)j 6=i2 Ei E¤orts exerted by agent i

e 2 E E¤ort pro�le

ci: Ei! R+ Cost function for agent i with ci(ei) the cost of e¤ort ei

rij : [0; 1]! R+ Cost reduction function of agent i given by agent j

rij(eji) Cost reduction for agent i due to e¤ort eji

c : 2N! R Characteristic function of the coop erative cost gam e

S � N Coalition of agents

cS(fig) = ci(ei)�
P
j2Snfig rij(eji) The reduced cost of agent i in coalition S

c(S) =
P
i2S c

S(fig) The reduced cost for coalition S

 i: E ! R Allo cation to agent i

 (e) = ( i(e))i2N Allo cation ru le, w ith
P
i2N  i(e) = c(N)


i(e) = ci(ei)�
P
j2Nnfig [!

i
ijrij(eji) + !

i
jirji(eij)] WPR allo cation for agent i, where !iij 2 [0; 1],

and !iji = 1� !
j
ji with i, j 2 N; i 6= j

Ai(e) = ci(ei)�
P
j2Nnfig �ij [rij(eji) + rji(eij)] WPAR allo cation for agent i,

where �ij 2 [0; 1] and �ji = 1� �ij :

� = (�i)i2N with �i = (�ij)j2Nnfig Weights of WPAR allo cation

�(c) Shapley value

�(e) Nucleolus
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Table 2: Summary of optimization problems

~e E¢ cient e¤ort pro�le ~e = arg min
e2[0;1]n(n�1)

c(N)

êi Optimal e¤orts of agent i given e¤orts of other agents êi = arg min
ei2[0;1](n�1)

Ai(e)

e�i Equilibrium strategy of agent i e�i= êi

�� Optimal weights of WPAR allo cation ��=arg min
�2[0;1]n(n�1)

P
i2N Ai(e

�)

m

��ij = arg min
�ij2[0;1]

L�ij(�ij) for i 6= j 2 N

with L�ij(�ij) = ci(e
�
i ) + cj(e

�
j )
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1.1 Introduction

In recent years, as a result of an eminently globalized environment, the debate
on the necessary cooperation among states and firms has been intensified.
The absence of this cooperation among countries can cause both a race to
the bottom tax competition in fiscal policies and opacity or financial secrecy.
On the part of firms or individuals, it can cause underground economy, tax
evasion or fiscal fraud. All of them are inefficient behaviors.

In particular, the underground economy is a significant problem and diffi-
cult to deal with. The causes and negative effects of the underground economy
have been debated by authors as [9], [3], [10], and [2], among other authors.
The solutions to be adopted to detect and reduce the underground economy

1
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have been studied, for example, by [14], [15], [5], [16], and [1]. Three solutions
of particular relevance are the design of optimal tax systems, the increase
in transparency and information, and a greater severity of the punishments.
These elements allow to increase the capability to detect and discourage the
infringing behaviors. These efforts not only benefit the states themselves by
allowing an increase in tax collection, but also benefit all the firms that act
in accordance with the law, since it eliminates the competitors that acted in
a submerged manner.

However, carry out effective policies focused at combating the underground
economy, requires a high economic cost in human and material resources that
must be faced by the countries governments. Cooperation among countries
and firms could reduce these costs. For example, cooperation among countries
could be based on the desire for transparency and the transfer of information
in order to facilitate the detection of fraudulent behavior, allowing a reduction
of costs. In addition, beyond the mandatory legal requirement, a firm can make
an effort to improve the transparency of its financial practice. The firm can
also just share any kind of relevant information with the tax authorities. This
cooperation could be rewarded by a tax reduction.

Inspired by the Spanish tax system, [7] introduce a cooperative model,
where the Government is considered the only benefactor, as it keeps costs
at the same level, zero cost, while reduce the costs of those investors who
act legally (beneficiaries). Investors may decide to cooperate or not cooperate
with the Government. If they decide to cooperate, the Government will pro-
vide a framework of legal certainty, which is in their benefit. On the contrary,
if investors decide not cooperate with the Government and try to defraud the
system by tax evasion, they can be detected and charged with unlawful behav-
ior. Once this irregular behavior is demonstrated, they will be punished and
required to return all amount defrauded plus a penalty. This means that the
costs of not cooperating with the Government would be higher than cooperate,
and so all investors are willing to pay the lowest taxes under legal protection
of the Government. The authors present the class of corporation tax games
as an application of linear cost games to the corporate tax reduction system.

Linear cost games were introduced by [6] as a particular case of k-norm cost
games with benefactor and beneficiaries, when k = 1. The authors introduce
a class of cost-coalitional problems, which are based on a priori information
about the cost faced by each agent in each set that it could belong to. Then,
they focus on problems with decreasingly monotonic coalitional costs. Their
paper study the effects of giving and receiving, on cost-coalitional problems,
when there exist players whose participation in an alliance always contributes
to the savings of all alliance members (benefactors), and there also exist play-
ers whose cost decreases in such an alliance (beneficiaries).

[6] show that when there are multiple benefactors, an agent sees the same
individual costs in any coalition that contains at least one benefactor and is not
all-inclusive. Thus, with a single benefactor all the members of a coalition may
see their cost increase if he leaves the group; they say that he is irreplaceable.
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On the other hand, when there are several benefactors, the cost of a member
of the coalition remains the same as long as there is another benefactor in
the coalition; they say then that each benefactor in this case is replaceable.
They study separately the two cases, and use linear and quadratic norm cost
games to analyze the role played by benefactors and beneficiaries in achieving
stability of different cooperating alliances. Different notions of stability, the
core and the bargaining set, are considered there and provided conditions for
stability of the grand coalition which leads to minimum value of total cost
incurred by all agents.

In this paper, we present a new model of corporate tax system with sev-
eral firms and countries (multiple dual benefactors). Countries are dual in the
sense they are benefactors (they reduce the cost of both firms and other coun-
tries) and beneficiaries (the information provided by others countries reduce
its cost). They are also irreplaceable benefactors because all the members of a
coalition may see their cost increase if one of them leaves the group. It differs
from the corporate tax system given by [7] in the following three points. First,
there is a single benefactor there. Moreover, the definition of benefactor given
by [7] is a particular case of the definition of dual and irreplaceable benefac-
tor given here. We can say that dual benefactors here generalize benefactors
there. Second, the concept of beneficiary in [7] is less restrictive than the one
considered here. We can say that a beneficiary here is a beneficiary in the cor-
porate tax system given there (see Section 2 for more details). And third, we
propose here the Shapley value [11] a as stable allocation rule for sharing the
reduced total costs. [6] and [7], proved that the grand coalition is stable in the
sense of the core, but they didn’t study the Shapley Value. Here we present
a simple expression for the Shapley value of multiple corporation tax games
that benefits all agents and, in particular, compensates the benefactors for
their dual role and irreplaceable character. A recent survey on this allocation
rule is [8].

The outline of the paper is as follow. First, in Section 2, the cost-coalitional
problems with multiple dual and irreplaceable benefactors and some of their
properties are described. After that, in Section 3, we introduce the class of
cooperative cost games associated to cost-coalitional problems with multi-
ple dual and irreplaceable benefactors, the so called multiple corporation tax
games. Section 4 presents a simple and easily computable expression for the
Shapley value of multiple corporation tax games. An example illustrating the
model and the role played by dual and irreplaceable benefactors is given in
Section 5. Finally some concluding remarks and highlights for further research
are collected in Section 6.
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1.2 Cost-coalitional problems with multiple dual and ir-

replaceable benefactors

Let E = {1, 2, .., e} be a set of firms, and P = {1, 2, .., p} be a set of countries,
with Si

j ≥ 0 and S̄i
j ≥ 0 be respectively a tax and a reduced tax that firm j pays

in country i, with Si
j > S̄i

j . Let N = E ∪P denote the set of all agents (firms
and countries), with |N | = n = e+p, where e ≥ 1 and p ≥ 2. We define T ⊆ N
as an arbitrary set of agents in N . If two given countries are in a coalition
T , then they cooperate and share information, which implies that they can
reduce their levels of tax evasion and underground economy. The size of the
reduction depends on how much information a country has and how relevant
it is for the other country. Note that, for a country i, the more countries are
in a coalition with it, the more relevant information this country gathers, and
consequently, the smaller the degree of tax evasion and underground economy
it has. Formally, let wT

i be a measure of the underground economy and tax
evasion of country i when it is in a coalition T , thus, given two sets T ⊆
T ′ ⊆ N , we assume that always wT

i > wT ′

i if (T ′\T ) ∩ P 6= ∅, and wT
i = wT ′

i

otherwise. Therefore, always wT
i ≥ wT ′

i . We denote by wi the countrys’ stand

alone measure of tax evasion, i.e., wi = w
{i}
i .

Any agent k ∈ T incurs certain non-negative cost, which depends on the
subset T . We denote this cost by cTk , and by ck an agents’ stand alone cost,

i.e., ck = c
{k}
k . For any coalition T ⊆ N , the cost of agents are:

1. cTj =
∑

i∈P∩T

S̄i
j +

∑

i∈P\(P∩T )

Si
j for all j ∈ T ∩ E.

2. cTi = gi
(

wT
i

)

for all i ∈ T ∩ P .

Where firm j ∈ T must pay a tax S̄i
j to country i if i ∈ T , and Si

j if i /∈ T . In
addition, gi is a strictly increasing function such that for all i, i′ ∈ P and for all

T ⊆ N , where i, i′ ∈ P ∩T , always it holds that gi

(

w
T\{i′}
i

)

−gi
(

wT
i

)

= zii′ ,

with zii′ > 0 being how much the country i′ reduces the cost of i with the
information i′ shares with i. 1

Next, we identify two special roles that all the agents can play in the model,
being benefactors and beneficiaries.

Definition 1.1 A benefactor is an agent k̄ ∈ N such that for any set T ⊂

N\k̄ and for all k ∈ T , cTk ≥ c
T∪{k̄}
k , in addition, for at least one agent k ∈ T ,

cTk > c
T∪{k̄}
k . The agents whose cost decreases in an alliance with a benefactor

are denoted by beneficiaries.

1We assume zii′ > 0, thus, countries are always benefactors. However, zii′ could be as
close to zero as we want, i.e., the information that a country shares with other country can
be negligible. Therefore, in the limit case in which zii′ = 0, the results should hold. In any
case, a wider generalization of this model will be consider in future research.
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The following lemma characterizes the agents of the game as benefactors
and beneficiaries.

Lemma 1.1 An agent k is a benefactor if and only if it is a country. However,

both firms and countries can be beneficiaries.

Proof. Consider agent k′ ∈ N and any set T ⊂ N\{k′}. To prove Lemma 1.1,
we first consider that agent k′ is a country and compare the cost of agents in
T and in T ∪ {k̄}, and second we consider that agent k′ is a firm, and we do
the same analysis. Note that agents in T could be either countries or firms:

1. Consider that agent k′ is a country i′, then

(a) For all i ∈ T ∩ P , cTi = gi
(

wT
i

)

and c
T∪{i′}
i = gi

(

w
T∪{i′}
i

)

, where

wT
i > w

T∪{i′}
i because T ⊆ T ∪ {i′} and i′ ∈ P . Consequently, as

gi is increasing, c
T
i > c

T∪{i′}
i .

(b) For all j ∈ T ∩ E,

cTj =
∑

i∈P∩T

S̄i
j+

∑

i∈P\(P∩T )

Si
j =

∑

i∈P∩T

S̄i
j+S

i′

j +
∑

i∈P\(P∩(T∪{i′}))

Si
j ,

and

c
T∪{i′}
j =

∑

i∈P∩(T∪{i′})

S̄i
j +

∑

i∈P\(P∩(T∪{i′}))

Si
j =

∑

i∈P∩T

S̄i
j + S̄i′

j +

∑

i∈P\(P∩(T∪{i′}))

Si
j . Consequently, c

T
j > c

T∪{i′}
j because Si′

j > S̄i′

j .

2. Consider that agent k′ is a firm j′, then,

(a) For all i ∈ T ∩P , cTi = gi
(

wT
i

)

and c
T∪{j′}
i = gi

(

w
T∪{j′}
i

)

, where,

wT
i = w

T∪{j′}
i because T ⊆ T ∪ {j′} and j′ ∈ E. Consequently,

cTi = c
T∪{j′}
i .

(b) For all j ∈ T ∩ E,

cTj =
∑

i∈P∩T

S̄i
j +

∑

i∈P\(P∩T )

Si
j , and

c
T∪{j′}
j =

∑

i∈P∩(T∪{j′})

S̄i
j +

∑

i∈P\(P∩(T∪{j′}))

Si
j =

∑

i∈P∩T

S̄i
j +

∑

i∈P\(P∩T )

Si
j . Therefore, c

T
j = c

T∪{i′}
j .

Point 1 implies that countries are benefactors, and point 2 implies that firms
are not benefactor. Point 1 and 2 imply that countries and firms can be ben-
eficiaries and an agent k ∈ N is a benefactor if and only if it is a country.

There are agents that are dual in the sense that they are benefactors
and beneficiaries, these are the countries. However, the firms are exclusively
beneficiaries.

The following definition is a relevant property of a benefactor.
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Definition 1.2 A benefactor k̄ ∈ T ⊆ N is irreplaceable if cTk 6= c
T\k̄
k for at

least an agent k ∈ T \k̄.

The following lemma states that our benefactors are irreplaceable.

Lemma 1.2 Countries are irreplaceable benefactors.

Proof. Note that by Lemma 1.1 only countries can be benefactors, then con-
sider any T ⊂ N such that T ∩ P 6= ∅ where i′ ∈ T ∩ P . To prove Lemma
1.2, we compare the costs in set T and in set T \{i′}. Agents in T \{i′} can
be either countries or firms. First, if the agent is a country, i ∈ (T \{i′}) ∩ P ,

then cTi = gi
(

wT
i

)

< c
T\{i′}
i = gi

(

w
T\{i′}
i

)

because gi is increasing, and

wT
i < w

T\{i′}
i because T \{i′} ⊂ T .

Second, if the agent in T \{i′} is a firm, j ∈ (T \{i′}) ∩ E, then cTj =
∑

i∈P∩T

S̄i
j +

∑

i∈P\(P∩T )

Si
j =

∑

i∈P∩T\{i′}

S̄i
j + S̄i′

j +
∑

i∈P\(P∩T )

Si
j , and c

T\{i′}
j =

∑

i∈P∩(T\{i′})

S̄i
j +

∑

i∈P\P∩(T\{i′})

Si
j =

∑

i∈P∩(T\{i′})

S̄i
j +Si′

j +
∑

i∈P\(P∩T )

Si
j. Con-

sequently, cTj < c
T\{i′}
j because S̄i′

j < Si′

j .

We denote the vector of individual agents’ costs in all possible subsets by
cN =

(

cTk
)

k∈T,∅6=T⊆N
. Thus, the set of agents N and the cost coalitional vec-

tor cN define a cost-coalitional problem with multiple dual and irreplaceable
benefactors

(

N, cN
)

.
A desirable property is that cooperation is beneficial. This can be guaran-

teed if the cost in large subsets do not exceed their cost in smaller ones. The
following definition formalize this idea.

Definition 1.3 A cost-coalitional vector cN satisfies cost monotonicity if

cTk ≥ cT
′

k for all k ∈ T , with T ⊂ T ′ ⊆ N .

The following lemma shows that the cost-coalitional problem with multiple
dual benefactors has this property.

Lemma 1.3 The cost coalitional problem
(

N, cN
)

has the property of cost

monotonicity.

Proof. Consider two sets such that S ⊂ T ⊆ N . Any agent in S has to be
either a country or a firm.

First, if the agent is a country i ∈ S ∩ P , then always cSi = gi
(

wS
i

)

and

cTi = gi
(

wT
i

)

, which implies that cSi ≥ cTi . Note that, gi is an increasing
function, and wS

i ≥ wT
i because S ⊂ T .

Second, if the agent in S is a firm j ∈ S ∩E , then
cSj =

∑

i∈P∩S

S̄i
j +

∑

i∈P\(P∩S)

Si
j =

∑

i∈P∩S

S̄i
j +

∑

i∈P∩(T\S)

Si
j +

∑

i∈P\(P∩T )

Si
j ,

and
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cTj =
∑

i∈P∩T

S̄i
j +

∑

i∈P\(P∩T )

Si
j =

∑

i∈P∩S

S̄i
j +

∑

i∈P∩(T\S)

S̄i
j +

∑

i∈P\(P∩T )

Si
j .

Note that, if in T \S there is at least a country, then cSj > cTj because

Si
j > S̄i

j, otherwise c
S
j = cTj .

We now define cost games related to our cost-coalitional problem with
multiple dual benefactors and prove the cooperation in beneficial for all the
agents in the model, benefactors and beneficiaries.

1.3 Multiple corporation tax games

For a given cost-coalitional problem with multiple dual and irreplaceable bene-
factors

(

N, cN
)

we define the multiple corporation tax game (N, c), where
c(T ) =

∑

k∈T

cTk for all T ⊆ N , and c(∅) = 0.

We consider now the following issue. Is it profitable for the agents in N to
form the grand coalition to pay lower taxes and so reduce the degree of tax
evasion? Here, we prove that the answer to this question is positive because
(N, c) is a subadditive game, in the sense that c (T ∪ T ′) ≤ c (T ) + c (T ′), for
any T , T ′ ⊂ N , and T ∩ T ′ = ∅. Notice that the superadditivity condition
implies that if N is partitioned into disjoint coalitions (whose integrants reduce
the degree of tax evasion) the corresponding cost will not decrease.

In fact we prove that (N, c) is not only subadditive but also concave, in
the sense that for all k ∈ N and all T, T ′ ⊂ N such that T ⊂ T ′ ⊂ N with
k ∈ T , then c(T )−c(T \{k}) ≥ c(T ′)−c(T ′ \{k}). It is a well-known result in
cooperative game theory that every concave game is subadditive. Moreover,
the concavity property provides us with additional information about the
game: the marginal contribution of an agent diminishes as a coalition grows.
It is well-known as the snowball effect. For more details on cooperative game
theory see, for example, [4].

First, in Lemma 1.4, we found out which are the cost marginal contribu-
tions of the agents (firms and countries).

Lemma 1.4 Let
(

N, cN
)

be a cost-coalitional problem with multiple dual

and irreplaceable benefactors and (N, c) the associated multiple corporation

tax game. Then,

1. For all T ⊆ N , for all j ∈ E ∩ T ,

c(T )− c(T \ {j}) = cTj .
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2. For all T ⊆ N , for all i ∈ P ∩ T ,

c(T )− c(T \ {i}) =cTi −
∑

j∈E∩T

(Si
j − S̄i

j)

−
∑

i′∈P∩(T\{i})

(

gi′(w
T\{i}
i′ )− gi′(w

T
i′ )

)

.

Proof. First, we prove (1). Take a coalition T ⊆ N, and a firm j ∈ E ∩ T .
Then,

c(T )− c(T \ {j}) =
∑

k∈T

cTk −
∑

k∈T\{j}

c
T\{j}
k = cTj +

∑

k∈T\{j}

(cTk − c
T\{j}
k ).

Now, we prove that
∑

k∈T\{j}

(cTk −c
T\{j}
k ) = 0, and so c(T )−c(T \{j}) = cTj .

Indeed,
∑

k∈T\{j}

(cTk −c
T\{j}
k ) =

∑

i∈P∩(T\{j})

(cTi −c
T\{j}
i )+

∑

j′∈E∩(T\{j})

(cTj′ −c
T\{j}
j′ ).

We know that cTi − c
T\{j}
i = gi(w

T
i )− gi(w

T\{j}
i ) = 0, since w

T\{j}
i = wT

i .

Moreover, cTj′ − c
T\{j}
j′ =

∑

i∈P∩T

S̄i
j′ +

∑

i∈P\(P∩T )

Si
j′ −

∑

i∈P∩(T\{j})

S̄i
j′ −

∑

i∈P\(P∩T\{j})

Si
j′ = 0.

Then,
∑

i∈P∩(T\{j})

(cTi − c
T\{j}
i ) = 0, and

∑

j′∈E∩(T\{j})

(cTj′ − c
T\{j}
j′ ) = 0.

Hence, we conclude that
∑

k∈T\{j}

(cTk − c
T\{j}
k ) = 0.

Second, we prove (2). Take a coalition T ⊆ N, and a country i ∈ P ∩ T .
Then,

c(T )− c(T \ {i}) =
∑

k∈T

cTk −
∑

k∈T\{i}

c
T\{i}
k = cTi −

∑

k∈T\{i}

(c
T\{j}
k − cTk ).

We know that,
∑

k∈T\{i}

(c
T\{i}
k − cTk ) =

∑

i′∈P∩(T\{i})

(c
T\{i}
i′ − cTi′ )+

∑

j∈E∩(T\{i})

(c
T\{i}
j − cTj ).

We prove now that

c
T\{i}
j − cTj =



Si
j +

∑

i′∈P∩(T\{i})

S̄i′

j +
∑

i′∈P\P∩(T\{i})

Si′

j





−



S̄i
j +

∑

i′∈P∩(T\{i})

S̄i′

j +
∑

i′∈P\P∩(T\{i})

Si′

j



 = Si
j − S̄i

j .
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We know, by definition, that

c
T\{i}
i′ − cTi′ = gi′(w

T\{i}
i′ )− gi′(w

T
i′ )

Hence, we can conclude that

c(T )−c(T \{i}) = cTi −
∑

j∈E∩T

(Si
j−S̄

i
j)−

∑

i′∈P∩(T\{i})

(

gi′(w
T\{i}
i′ )− gi′(w

T
i′ )

)

.

In point 1, this proposition states that a firm j always contributes to a
coalition T \ {j} exactly with its cost in coalition T , which is cTj . As a firm is
always and exclusively a beneficiary in this model, it has not effect in the cost
of others agents: either countries or firms. However, a country is a benefactor to
both firms and others countries, therefore, its marginal contribution is smaller
than its cost in coalition T . If country i is withdrawn from a coalition T , the
individual cost of firms and others countries in coalition T increases.

The following Theorem states that our class of games are concave.

Theorem 1.1 The multiple corporation tax games (N, c) are concave.

Proof. Here we have to prove that the marginal contribution of an agent k
diminishes as a coalition grows. Any agent k can only be either a firm or a
country, and Lemma 1.4 provided its marginal contribution.

If the agent is a firm j, then for all T ⊆ T ′, j ∈ T , by Lemma 1.3, cTj ≥ cT ′
j ,

and so cTj = c(T )− c(T \ {j}) ≥ c(T ′)− c(T ′ \ {j}) = cT ′
j .

On the other hand, if the agent is a country i, again for all T ⊂ T ′, by
Lemma 1.3, cTi ≥ cT ′

i .

In addition,
∑

j∈E∩T

(Si
j − S̄i

j) ≤
∑

j∈E∩T ′

(Si
j − S̄i

j) because all the countries

in T are also in T ′, and if T ′ there is at least one more than in T , then the
inequality is strict.

Finally, for the same reason
∑

i′∈P∩T\{i}

zi′i ≤
∑

i′∈P∩T ′\{i}

zi′i.

Hence, we can conclude that for all T ⊂ T ′ and for all i ∈ P ∩ T ,

c(T )−c(T \{i}) = cTi −
∑

j∈E∩T

(Si
j−S̄

i
j)−

∑

i′∈P∩T\{i}

zi′i ≥ cT
′

i −
∑

j∈E∩T ′

(Si
j−

S̄i
j)−

∑

i′∈P∩T ′\{i}

zi′i = c(T )− c(T ′ \ {i}).

So we proved that in a cost-coalitional problem with multiple dual and
irreplaceable benefactors

(

N, cN
)

it is efficient that all firms pay lower taxes
and all countries manage to jointly reduce their degrees of tax evasion. In that
case, the reduced total cost is given by c(N) =

∑

i∈P

cNi +
∑

j∈E

cNj .

An allocation rule for multiple corporation tax games is a map ψ which
assigns a vector ψ (N, c) ∈ RN to every (N, c), satisfying that

∑

k∈N

ψk (N, c) =
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c(N). Each component ψk (N, c) indicates the cost allocated to k ∈ N , so an
allocation rule for multiple corporation tax games is a procedure to allocate the
reduced total cost among the agents in N when they cooperate. An allocation
rule should have good properties from the following points of view.

1. Computability. For a particular game the rule should be computable in
a reasonable CPU time, even when the number of agents is large.

2. Coalitional Stability. It is very convenient that the rule proposes an al-
location which belongs to the core of the cost game. This means that,
for every multiple corporation tax game (N, c) , ψ should satisfy the fol-
lowing:
∑

k∈T

ψk (N, c) ≤ c(T ), for every T ⊆ N.

This condition assures that no group of agents T is disappointed with
the proposal of the rule, because the cost allocated to it is less than or
equal to the cost it would support if its members formed a coalition to
pay lower taxes, and reduce the levels of tax evasion, independently of
the agents in N \ T .

3. Acceptability. The rule must be understandable and acceptable by the
agents.

A very natural allocation rule for multiple corporation tax games is ψk (N, c) =
cNk , for all k ∈ N . It has good properties at least with respect to computabil-
ity and coalitional stability. Notice that, for every T ⊆ N,

∑

k∈T

ψk (N, c) =
∑

k∈T

cNk ≤
∑

k∈T

cTk = c(T ).

Nevertheless, the benefactors will have serious difficulties accepting the
above allocation rule that rewards the beneficiaries excessively while they do
not receive enough compensation for their dual role of giving and receiving.

Since the multiple corporation tax games are concave, cooperative game
theory provides allocation rules for them with good properties at least with re-
spect to items coalitional stability and acceptability. We highlight the Shapley
value and the nucleolus, which always provide core allocations in this context
(see [4] for details on them). Both allocations are, in general, hard to compute
when the number of agents increases.

Next, we present a simple and easily calculated expression for the Shapley
value of multiple corporation tax games that compensates the benefactors for
their dual role and irreplaceable character.
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1.4 The Shapley value

One of the most important allocation rules for cost games is the Shapley value
(see [11]). As we already mentioned, the Shapley value is specially convenient
for concave games: it is the barycenter of its core (see [13]).

We denote by φ (N, c) the shapley value of multiple corporation tax
game (N, c) , where for each agent k ∈ N, φk (N, c) =

∑

T⊆N ;k∈T

γ(T ) [c(T )

− c(T \ {k})] , with γ(t) = (n−t)!(t−1)!
n! , |T | = t.

The following Theorem states that the Shapley value can be easily com-
puted in the class of multiple corporation tax games. Moreover, it shows that
the Shapley value provides an acceptable allocation for multiple corporation
tax games: it increases the cost of a beneficiary in a half of the benefits it
obtains from benefactors, and it decreases the cost of a benefactor in a half of
the benefits it provided to the beneficiaries.

Theorem 1.2 For any multiple corporation tax game (N, c), the Shapley

value is

1. For all j ∈ E, φj (N, c) = cNj + 1
2

∑

i∈P

(Si
j − S̄i

j)

2. For all i ∈ P , φi (N, c) = cNi − 1
2

∑

j∈E

(Si
j − S̄i

j) +
1
2

∑

i′∈P\{i}

(zii′ − zi′i)

Proof. (1) First, we prove that for all j ∈ E, φj (N, c) = cNj + 1
2

∑

i∈P

(Si
j − S̄i

j).

Take j ∈ E. By Lemma 1.4, we know that

φj (N, c) =
∑

T⊆N ;j∈T

γ(t)cTj .

We can separate coalitions j ∈ T ⊆ N into mixed coalitions (j ∈ T ⊆
N, T ∩P 6= ∅, T ∩E 6= ∅) and coalitions with only firms (j ∈ T ⊆ N, T ∩ P =
∅, T ∩ E 6= ∅).

Then,

φj (N, c) =
∑

j∈T⊆N,T∩P=∅,T∩E 6=∅

γ(t)(
∑

i∈P

Si
j)

+
∑

j∈T⊆N,T∩P 6=∅,T∩E 6=∅

γ(t)(
∑

i∈P\P∩T ′

Si
j +

∑

i∈P∩T ′

S̄i
j).

Taking into account that
∑

T⊆N ;j∈T

γ(t) = 1, we have that

∑

j∈T⊆N,T∩P=∅,T∩E 6=∅

γ(t) = 1−
∑

j∈T⊆N,T∩P 6=∅,T∩E 6=∅

γ(t),
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and then,

φj (N, c) =(1 −
∑

j∈T⊆N,T∩P 6=∅,T∩E 6=∅

γ(t))(
∑

i∈P

Si
j)

+
∑

j∈T⊆N,T∩P 6=∅,T∩E 6=∅

γ(t)(
∑

i∈P\P∩T

Si
j +

∑

i∈P∩T

S̄i
j)

=
∑

i∈P

Si
j +

∑

j∈T⊆N,T∩P 6=∅,T∩E 6=∅

γ(t)(
∑

i∈P\P∩T

Si
j +

∑

i∈P∩T

S̄i
j −

∑

i∈P

Si
j)

=
∑

i∈P

Si
j −

∑

j∈T⊆N,T∩P 6=∅,T∩E 6=∅

γ(t)
∑

i∈P∩T

(Si
j − S̄i

j).

Now, we prove that for all coalitions that contain j ∈ T∩E and a particular
country i ∈ T ∩ P,

∑

j∈T⊆N,T∩P 6=∅,T∩E 6=∅

γ(t) = 1/2,

and then,

φj (N, c) =
∑

i∈P

Si
j −

1
2

∑

i∈P∩T

(Si
j − S̄i

j) =
1
2

∑

i∈P

(Si
j + S̄i

j).

Indeed,

∑

j∈T⊆N,T∩P 6=∅,T∩E 6=∅

γ(t) =
n
∑

t=2

(

n− 2
t− 2

)

γ(t) =

n
∑

t=2

(t−1)
n(n−1) =

n∑

k=1

k−n

n(n−1) = 1/2,

where

(

n− 2
t− 2

)

is the number of coalitions in which there is j and a partic-

ular country i′.

Finally, doing some algebra, we have that

1
2

∑

i∈P

(Si
j + S̄i

j) = cNj + 1
2

∑

i∈P

(Si
j − S̄i

j),

and so, we conclude that

φj (N, c) = cNj + 1
2

∑

i∈P

(Si
j − S̄i

j).

(2) Second, we demostrate that for all i ∈ P ,

φi (N, c) = cNi − 1
2

∑

j∈E

(Si
j − S̄i

j) +
1
2

∑

i′∈P\{i}

(zii′ − zi′i) .

Take i ∈ P. By Lemma 1.4, we know that

φi (N, c) =
∑

i∈T⊆N

γ(t)

×



cTi −
∑

j∈E∩T

(Si
j − S̄i

j)−
∑

i′∈P∩T\{i}

(

gi′(w
T\{i}
i′ )− gi′(w

T
i′ )

)



 .
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Let’s calculate each of the addends separately.

(2.1) First, taking into account that cTi = ci−
∑

i′∈P∩T\{i}

zii′ , for all T ∈ N,

and
n
∑

t=2

(

n− 2
t− 2

)

γ(t) = 1
2 ,

we obtain that

∑

i∈T⊆N

γ(t)cTi = ci−
n
∑

t=2

(

n− 2
t− 2

)

γ(t)
∑

i′∈P∩T\{i}

zii′ = cNi + 1
2

∑

i′∈P∩T\{i}

zii′ ,

where

(

n− 2
t− 2

)

is now the number of coalitions that contain i and a

particular country i′.

(2.2) Second, by a similar argument,

∑

i∈T⊆N

γ(t)
∑

j∈E∩T

(Si
j − S̄i

j) =
n
∑

t=2

(

n− 2
t− 2

)

γ(t)
∑

j∈E

(Si
j − S̄i

j) =

1
2

∑

j∈E

(Si
j − S̄i

j).

(2.3) Third, by the same argument,

∑

i∈T⊆N

γ(t)
∑

i′∈P∩T\{i}

(

gi′(w
T\{i}
i′ )− gi′(w

T
i′ )

)

=

n
∑

t=2

(

n− 2
t− 2

)

γ(t)
∑

i′∈P\{i}

zi′i = − 1
2

∑

i′∈P\{i}

zi′i .

Finally, adding the above three expressions, we obtain that

φi (N, c) = cNi + 1
2

∑

i′∈P∩T\{i}

zii′ −
1
2

∑

j∈E

(Si
j − S̄i

j)−
1
2

∑

i′∈P\{i}

zi′i =

cNi − 1
2

∑

j∈E

(Si
j − S̄i

j) +
1
2

∑

i′∈P\{i}

(zii′ − zi′i) .

From Theorem 1.2 can be derived that Shapley value compensates bene-
factors. Note first that, the cost of a firm j in the grand coalition is cNj . This

firm j is benefited from a country i in an amount which is Si
j −S

i

j . The Shap-
ley value reduces this benefit exactly in a half, and consequently this is the
amount in which the cost of firm j is increased, see point 1 of Theorem 1.2.
In addition, the country i is compensated exactly in this amount, and conse-
quently its cost is reduced, see point 2 of Theorem 1.2. However, a country in
its relation with others countries is simultaneously benefactor and beneficiary.
Let’s first look at the role as beneficiary of i, in any coalition, the country i
is benefited from country i′ in a cost reduction of zii′ , in this case, country
i plays the role of beneficiary and i′ of benefactor. Thus, the Shapley value
reduces the benefit zii′ of country i in a half, in others words, it increases its
cost in this amount. Nevertheless, at the same time, the country i benefits
country i′ in an amount equal to zi′i. Now, country i is the benefactor and i′
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the beneficiary. In this case, the Shapley value works in the same way, it com-
pensates the benefactor and increasing the cost of the beneficiary in a half of
zi′i. Therefore, in the relation between two countries both are simultaneously
benefactors and beneficiaries, however, if zii′ − zi′i > 0, then country i could
be seen as a ”net” beneficiary and i′ as a ”net” benefactor, on the contrary if
zii′ − zi′i < 0 . Thus, country i can be a ”net” benefactor with some countries
and a ”net” beneficiary with others.

In conclusion, regarding to the individual cost in the grand coalition, the
Shapley values increases the cost of a beneficiary in a half of the benefits it
obtains from benefactors, and it decreases the cost of a benefactor in a half
of the benefits it provided to the beneficiaries. As in our model there are dual
agents (benefactors and beneficiaries), the final effect on these agents depends
on which role is stronger.

1.5 An Example

In this example, we propose a simple situation with two countries A and B,
and two firms 1 and 2 with activity in both countries. These countries are
very concern about their own levels of underground economy, tax evasion,
and fraud. To fight against this illegal behavior, these countries must to face
a high economic cost in human and material resources. However, this cost can
be reduced if both countries decide to cooperate and, for example, they share
resources and/or information in its fight.

On the other hand, firms have to pay in each country a certain amount
of taxes. Nevertheless, these firms can choose to cooperate with a particular
country. For example, beyond the mandatory legal requirement, a firm can
make an effort to improve the transparency of its financial practice. The firm
can also just share any kind of relevant information with the tax authorities.
This cooperation is rewarded by a tax reduction. In particular, country A will
fix a reduction of 10%, and B will do it of 15%. Thus, each firm must pay
either a tax (Si

j) or a reduce tax (S̄i
j) as it is given in Table 1.1.

TABLE 1.1: Tax and reduced tax of each
firm (in millions of euros)

SA
1 = 2 SB

1 = 4 SA
2 = 5 SB

2 = 8

S
A

1 = 1.80 S
B

1 = 3.40 S
A

2 = 4.50 S
B

2 = 6.80

We consider that the cost function of any country cTi = gi
(

wT
i

)

has two
terms. The first term does not depend on the type of coalition the coun-
try belong to. In other words, it does not depend on the information other
countries could provide. This is a kind of fixed cost. The second term does
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depend on which coalition the country is. In particular, gA (wA) = 4 + wT
A

and gB (wB) = 8 + 2wT
B. In addition, the level of underground economy or

tax evasion are normalized to 1 in any coalition with only one country, i.e.,
without the help of others countries. Thus, wT

i = 1 for any i ∈ P , T ⊂ N such
that P ∩ T \{i} = ∅. However, in any coalition T ′ ⊂ N such that A,B ∈ T ′,
wT ′

A = 0.50 and wT ′

B = 0.60.
Table 1.2 shows the cost-coalitional vector (columns 2-5) and correspond-

ing cost game (last column); i.e. for any coalition T ⊆ N , the cost of each
agent cTk , and the cost of this coalition c(T )

TABLE 1.2: Cost-coalitional vector and cost
game

Coalition\
Agent

A B 1 2 c(T )
{A} 5 5
{B} 10 10
{1} 6 6
{2} 13 13
{A,B} 4.5 9.2 13.70
{A, 1} 5 5.80 10.80
{A, 2} 5 12.50 17.50
{B, 1} 10 5.40 15.40
{B, 2} 10 11.80 21.80
{1, 2} 6 13 19
{A,B, 1} 4.50 9.20 5.20 18.90
{A,B, 2} 4.5 9.20 11.30 25
{A, 1, 2} 5 5.80 12.50 23.30
{B, 1, 2} 10 5.40 11.80 27.20
{A,B, 1, 2} 4.50 9.20 5.20 11.30 30.20

From the previous table, it is straightforward to obtain zii′ , where zii′ =

c
T\{i′}
i − cTi for all T ⊆ N such that i, i′ ∈ P ∩ T . Therefore, zAB = 0.50
and zBA = 0.80, i.e., country B reduces the cost of country A in 0.50 and
country A reduces the cost of country B in 0.80. Consequently, country A is a
net-benefactor with country B, and country B a net-beneficiary with country
A.

We can calculate now the Shapley value by using the expressions from
Theorem 1.2. Note that, in this case, we only need the values of Table 1.1,
the last row of Table 1.2 (cNA , cNB , cN1 and cN2 ), and both values zAB and
zBA. Therefore, Theorem 1.2 allows to reduces significantly the amount of
information and time to compute Shapley value.

In Table 1.3, it is shown for any agent its individual cost, the cost in the
grand coalition, the Shapley value, and the difference between the last two
values.

Notice that costs in the grand coalition reduce the costs of each player.
Regarding to the cost in the grand coalition, Shapley value decreases the cost



16

TABLE 1.3: Comparsison among individual costs, cost in the
grand coalition and the Shapley value

Agent\
Value

c({k}) ψk (N, c) φk (N, c) ψk (N, c)− φk (N, c)
A 5 4.50 4 0.50
B 10 9.20 8.45 0.75
1 6 5.20 5.60 −0.40
2 13 11.30 12.15 −0.85

of benefactors in a half of the benefits that it provided to the beneficiaries.
Additionally, it increases the cost of beneficiaries in a half of the benefits
that they obtain from benefactors. For example, for country A, φA (N, c) =
cNA − 1

2

(

(SA
1 − S̄A

1 ) + (SA
2 − S̄A

2 )
)

+ 1
2 (zAB − zBA). As zAB − zBA = −0.30,

country A is a net-benefactor. Thus, Shapley value decreases its cost in a half
of this difference. However, for country B, the cost is increased in the same
amount because it is a net-beneficiary. In this example, there are only two
countries, however, if there were more countries, a given country could be a
net benefactor with some countries and a net beneficiary with others, this
depends on the sign of zii′ − zi′i.

1.6 Conclusions

Corporation tax games were introduced by [7] as an application of linear cost
games (see [6]) to a corporate tax reduction system. Motivated by the Span-
ish tax system, the authors considered that the Government, as benefactor,
provided different group investment options which reduced the costs of those
investors who acted legally (beneficiaries).

In this chapter, we have presented a new model of cooperation in corporate
tax systems with several firms and countries (multiple dual and irreplaceable
benefactors). Countries are dual in the sense they are benefactors (they re-
duce the costs of both firms and others countries), and beneficiaries (its cost
is reduced by the information provided by others countries). They are also
irreplaceable benefactors because all the members of a coalition may see their
cost increase if one of them leaves the group.

The class of TU cooperative games corresponding to this model is called
multiple corporation tax games. We have proved that these games are concave,
i.e., the marginal contribution of a firm and a country diminishes as a coalition
grows (snowball effect). Hence, the grand coalition is stable in the sense of
the core. This means that firms have strong incentives to cooperate with the
countries instead of being fraudsters. Then, we propose the Shapley value as
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an easily computable core-allocation that benefits all agents and, in particular,
compensates the benefactors for their dual and irreplaceable role.

Our model here, distinguishes two groups of agents: dual benefactors
(countries) and beneficiaries (firms), while the original model presented by
[6], considered two disjoint groups of agents, benefactors and beneficiaries. A
natural extension would be to consider that all agents can be dual (benefac-
tors and beneficiaries). We believe that similar results to those obtained here
could be achieved.
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. Introduction 

The search for greater efficiency, access to new markets and 

reater competitiveness are some of the main factors that result in 

nter-organization or inter-corporate cooperation structures. There 

re different forms of cooperation depending on the degree of in- 

egration or interdependence of partners and on the intended goals 

f agreements. These forms have been widely studied in economic 

iterature (see e.g. Todeva and Knoke [1] for a survey). There is 

ne specific type of cooperation whose properties and character- 

stics differentiate it from the rest. It can occur between agents 

hat share, for example, resources, knowledge or infrastructure. The 

ommon purpose is to obtain individual advantages such as reduc- 

ng their respective individual costs. The particularity of this form 
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f cooperation lies in the fact that the cost reduction is based on 

ilateral interactions. 

We consider that form of cooperation here in which, given any 

air of cooperating agents, one agent reduces the cost of the other 

y a certain amount which is independent of cooperation with 

ther agents. This means that if there are more agents in the coali- 

ion the amount of the cost reduction does not change. This pair- 

ise cost reduction is independent of the coalition to which the 

air of agents may belong. Therefore, for any agent, the total cost 

eduction in any coalition can easily be calculated as the sum of 

he reductions obtained from each bilateral interaction with the 

ther members of the coalition. 

There are several situations where this kind of cooperation with 

airwise cost reduction occurs and is profitable, e.g. strategic col- 

aboration agreements between firms to reduce logistical opera- 

ional costs. The need to increase market share requires logistics 

rms to expand their radius of action as far as possible. This means 

ajor investments in expensive infrastructures at new sites, which 

ncrease operational costs. Agreements are established between 

ompanies to reduce those costs while maintaining control of their 
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o

espective markets and hindering access by new competitors. They 

ffer the resources held by each firm in its respective area of in- 

uence under advantageous conditions. This enables them to ex- 

and their operating ranges with significant cost savings. Interac- 

ions occur bilaterally, with each company using the resources of 

he other. These cost reductions are independent of any cost re- 

uctions that can also be obtained by interacting with other agents 

n larger coalitions. 

The second situation is that of bilateral free trade agreements 

etween countries. In a globalized economy, free trade agreements 

re quite common. They facilitate trade in goods and services be- 

ween countries, reducing trade barriers and consequently the cost 

f trade. These cost reductions are specific to each pair of coun- 

ries, and are independent of any other agreements that either may 

ecide to establish with other countries. 

A third situation is the sharing of market data. Currently, in- 

ormation on customers and their purchase patterns is vitally im- 

ortant for firms. It enables them to maximize returns on adver- 

ising costs and focus on their ideal target markets. Cooperation 

etween firms (usually from complementary sectors) consists of 

haring information about their respective customers. This reduces 

he costs of each of the firms involved. The information that a par- 

icular firm provides is specific to it, so the value of the informa- 

ion that it receives from another specific firm is independent of 

nformation from other firms. Even if two firms provide informa- 

ion about the same customer, the information itself is different 

ecause it describes the purchase of a different good or service. 

his can increase the value of that particular customer as a target, 

hich again boosts the value of this particular kind of cooperation. 

The last situation presented here is that of inter-firm coopera- 

ion agreements to reduce costs by increasing the range of firms’ 

espective telecommunication networks. In eminently competitive 

ectors such as mobile telephony and online services, cooperation 

etween operators has become quite common. For example, they 

ay share the locations of their respective antennas, which en- 

bles them to expand the reach of their networks. This means 

reater benefits thanks to the offering of a broader service, while 

voiding the costs that would be entailed by each company in- 

talling its own structures. Here again, cost reduction is bilateral 

hen two agents decide to share and use each other’s antennas. 

hese cost savings are independent of any collaboration agree- 

ents that each firm may have with other agents to share anten- 

as in larger coalitions. 

In this kind of cooperation, the cost reduction between agents 

ay be highly asymmetric when they cooperate in pairs. For ex- 

mple, if two agents A and B decide to cooperate, agent A could 

rovide a major reduction for agent B, while the reduction pro- 

ided in the opposite direction could be more modest. These asym- 

etries can induce imbalances or discriminations that could jeop- 

rdize cooperation. A fair distribution mechanism for the costs 

enerated by cooperation is undoubtedly needed to ensure the sta- 

ility of any strategic partnership, as Thomson [2] points out. 

In addition, it is quite common for this kind of cooperation to 

equire the agents involved to make a set level of effort. It is nat- 

ral to think that the amount by which one agent can reduce the 

osts of the other (if they decide to cooperate) could depend on 

he effort that the agent exerts. For example, if one country can ob- 

ain information relevant to another (e.g. information on tax eva- 

ion and the flight of capital involving its citizens), the amount 

nd quality of the specific information may depend on the effort 

xerted by the first country in gathering it. This extends the situ- 

tion beyond a cooperative model. For this reason, we model the 

equence of decisions as a bi-form game ( [3] ). In the first stage of

he bi-form game, agents decide how much (costly) effort they are 

illing to exert. This has a direct impact on their pairwise cost re- 

uctions. This first stage is modeled as a non-cooperative game in 
2 
hich agents determine the level of pairwise effort to reduce the 

osts of their partners. In the second stage, agents engage in bi- 

ateral interactions with multiple independent partners where the 

ost reduction brought by each agent to another agent is indepen- 

ent of any possible coalition. We study this bilateral cooperation 

n the second stage as a cooperative game in which cooperation 

eads agents to reduce their respective costs, so that the total re- 

uction in costs for each agent in a coalition is the sum of the 

eductions generated by the rest of the members of that coalition. 

n the non-cooperative game of the first stage, the agents antici- 

ate the cost allocation that will result from the cooperative game 

n the second stage by incorporating the effect of the effort made 

nto their cost functions. Based on this model, we explore costs, 

enefits, and challenges associated with setting up a pairwise ef- 

ort situation. 

We investigate the impact of pairwise effort s on cost reduc- 

ions and the resulting cost structure for this framework. In par- 

icular, we explore the design of a cost-allocation mechanism that 

fficiently allocates the gains from pairwise effort to all parties. 

o that end, we first compute the optimal level of cost reduction, 

aking into account the pairwise cost reductions collectively ac- 

rued by all agents. An ideal allocation scheme should encourage 

gents to participate in it and, at the same time, establish proper 

ncentives to make efforts prior to cooperation. Specifically, we first 

how that it is profitable for all agents to participate in a pairwise 

ffort situation. Then we study how the total reduction in costs 

hould be allocated to the participants in such a situation. We do 

his by modeling the pairwise cost reduction between agents that 

akes place in the second stage as a cooperative game, which we 

efer to as the pairwise effort game or ”PE-game”. 

We prove that the marginal contribution of an agent diminishes 

s a coalition grows in PE-games (i.e. they are concave games) and 

hus all-included cooperation is feasible, in the sense that there are 

ossible cost reductions that make all agents better off or, at least, 

ot worse off (i.e. PE-games are balanced, which means that the 

ore is not empty). This all-included cooperation is also consistent 

i.e. PE-games are totally balanced, which means the core of ev- 

ry subgame is non-empty). We identify various allocation mech- 

nisms that enable all-included cooperation to be feasible (i.e. al- 

ocation mechanisms that belong to the core of PE-games). In par- 

icular, we discuss a family of cost allocations with weighted pair- 

ise reduction which is always a subset of the core of PE-games. 

his is a broad family of core-allocations which includes the Shap- 

ey value, which is obtained when all the weights work out to a 

alf. We provide a highly intuitive, simple expression for the Shap- 

ey value, which matches the Nucleolus in our model. To select one 

f these core-allocations in the second stage, we take into account 

he incentives that it generates in the effort s made by agents, and 

onsequently in the aggregate cost of a coalition. We show that the 

hapley value can induce inefficient effort strategies in equilibrium 

n the non-cooperative model. However, it is always possible to 

nd core-allocations with weighted pairwise reductions that cre- 

te appropriate incentives for agents to make optimal efforts that 

inimize aggregate costs, i.e. core-allocations that generate an ef- 

cient level of effort in equilibrium. 

This paper contributes to the literature by presenting a doubly 

obust cost sharing mechanism. That mechanism not only has good 

roperties regarding the cooperative game in the second stage but 

lso creates appropriate incentives in the non-cooperative game in 

he first stage that enable efficiency to be achieved. 

Cooperative game theory has developed a substantial mathe- 

atical framework for identifying and providing suitable cost shar- 

ng allocations (see, e.g., [4–6] for a survey). Multiple solutions 

ave been proposed from a wide range of approaches (see, e.g., 

7–16] ). The Shapley value ( [17] ) is considered one of the most 

utstanding of them, and a suitable solution concept (see, e.g., 
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1 A scalar field is said to be class C 2 at [0 , 1] n −1 if its 2-partial derivatives exist at 

all points of [0 , 1] n −1 and are continuous. 
2 This last assumption implies that the Hessian matrix is a diagonal matrix. In 

addition, note that, given our assumptions about c i , w.l.o.g. we could consider that 

c i (e i ) = 

∑ 

j∈ N\{ i } c i j (e i j ) where c i j (. ) : [0 , 1] → R + . We omit it from the paper so as 

not to introduce more notation into the model. 
3 ∂r ji (e i j ) /δe i j > 0 (increasing) and ∂ 2 r ji (e i j ) /δe 2 < 0 (concave). 
18,19] for a survey). As an allocation rule it has very good prop- 

rties, such as efficiency, proportionality, and individual and coali- 

ional rationality. However, it has the disadvantage of posing com- 

utational difficulties, which increase as the number of players in- 

reases. Nonetheless, there is a large body of literature in which 

he Shapley value is proposed as a simple, easy-to-apply solution 

n different economic scenarios (see, e.g., [20–25] ). These papers 

ive simplified solutions for different classes of games. They take 

he cost structure as given and do not consider the system ex- 

ernalities that arise when agents make efforts to give and re- 

eive cost reductions. Our paper here incorporates both the non- 

ooperative aspects of making efficient efforts (by modeling deci- 

ions related to pairwise cost reductions) and the cooperative na- 

ure of giving and receiving cost reductions in pairwise effort situ- 

tions. 

As in principal-agent literature, we refer to action by agents as 

effort”. In this setting, the concept of ”effort” is widely used in an- 

lyzing different kinds of problem. One of the first was the moral 

azard problems: See for example [26] . Other examples are Holm- 

trom [27] and Dewatripont et al. [28] , who identify conditions un- 

er which more information can induce an agent to make less ef- 

ort. The approach in our model is quite different, in that we do 

ot consider any kind of principal. As far as we know, our model 

s novel in that it analyzes the incentive for agents to make effort s

n a bi-form game: A non-cooperative stage where agents choose 

ow much effort to make and a cooperative second stage. As men- 

ioned, we show that the solution of the cooperative game deter- 

ines the incentives of agents to make an effort in the first stage, 

nd consequently the efficiency of the final outcome. 

In [29] , it is also used a bi-form model to analyze the role of

rocess improvement in a decentralized assembly system in which 

n assembler lays in components from several suppliers. The as- 

embler faces a deterministic demand and suppliers incur variable 

nventory costs and fixed production setup costs. In the first stage 

f the game suppliers invest in process improvement activities to 

educe their fixed production costs. Upon establishing a relation- 

hip with suppliers, the assembler sets up a knowledge sharing 

etwork which is modeled as a cooperative game between sup- 

liers in which all suppliers obtain reductions in their fixed costs. 

hey compare two classes of allocation mechanism: Altruistic al- 

ocation enables non-efficient suppliers to keep the full benefits of 

he cost reductions achieved due to learning from the efficient sup- 

lier. The Tute allocation mechanism benefits a supplier by trans- 

erring the incremental benefit generated by including an efficient 

upplier in the network. They find that the system-optimal level of 

ost reduction is achieved under the Tute allocation rule. Our bi- 

orm game is novel in terms of incentive for efforts by agents and 

s also richer in results: We find the allocation rule that generates 

he unique efficient effort in equilibrium in cooperation with pair- 

ise cost reduction. 

The paper is organized as follows. Section 2 presents the bi- 

orm game and describes in detail the two stages in which the 

odel is developed. Section 3 is devoted to analyzing the second 

tage which is a cooperative game. In this cooperative game, agents 

educe each other’s costs as a result of cooperation, so that the to- 

al reduction in the cost of each agent in a coalition is the sum 

f the reductions generated by the rest of the members of that 

oalition. In Section 4 the first stage is studied, that is the non- 

ooperative game that precedes the cooperative game in the sec- 

nd stage. Here, the agents anticipate the cost allocation that re- 

ults from the cooperative game in the second stage by incorpo- 

ating the effect of the effort exerted into their cost functions. We 

onsider a family of cost allocation rules (in the second state) with 

airwise reductions weighted separately (WPR family) and obtain 

he corresponding effort equilibria in the first state. Then, we de- 

elop a general and complete analysis of the efficient effort equi- 
3 
ibria. Finally, in this section, we found the core-allocation rule in 

his WPR family that generates the unique efficient effort equilib- 

ia. Section 5 focuses on a subfamily of the WPR family in which 

airwise reductions are not weighted separately, but are weighted 

s aggregated reduction, this is the WPAR family. We find out that 

he level of efficiency is lower than that attained when the pair- 

ise reductions are weighted separately for each agent. Then, we 

ound the rule, within this WPAR family, that generates the equi- 

ibrium effort s closest to the efficient ones. Finally, Section 6 com- 

letes the study of our model by comparing the two families of 

ore-allocation analyzed. We complete the paper with a section of 

onclusions and four appendices containing the proofs of the re- 

ults and tables of summaries (notation and optimization prob- 

ems). 

. Model 

We consider a model with a finite set of agents N = { 1 , 2 , .n } ,
here each agent has a good (for example resources, knowledge 

r infrastructure) and has to perform a certain activity. The total 

ost of an agent’s activity can be reduced if it cooperates with an- 

ther agent, which means that the two agents share their goods. 

hese cost reductions obtained by sharing goods in pairs depend 

n the effort made previously by each agent. Our model consists 

f two different stages. In the first stage, agents choose their effort 

evels as in a non-cooperative game. In the second stage, agents co- 

perate to reduce their costs, and allocate the minimum cost they 

chieve by pairwise cost reductions as in a cooperative game. The 

roposed cost allocation for the cooperative game in the second 

tage determines the payoff function of the non-cooperative game 

n the first stage. Therefore, we model the sequence of decisions as 

 bi-form game ( [3] ). The two stages of the model are described in

etail below. 

First Stage (non-cooperative game) : Each agent i ∈ N chooses 

n this state an effort level e i = (e i 1 , . . . , e i ( i −1 ) , e i ( i +1 ) , . . . e in ) ∈
0 , 1] n −1 , where e i j ∈ [0 , 1] stands for the level of effort by agent i

o reduce the cost of agent j if they cooperate in the second stage. 

hese efforts have a cost c i (e i ) ∈ R + for any i ∈ N. We assume that

 i (. ) : [0 , 1] n −1 → R + is a scalar field of class C 2 ([0 , 1] n −1 ) . 1 More-

ver, for all e i j ∈ [0 , 1] with j ∈ N\{ i } , it is assumed that 
∂c i (e i ) 

∂e i j 
> 0 ,

∂ 2 c i (e i ) 

∂e 2 
i j 

> 0 , and 

∂ 2 c i (e i ) 

∂ e i j ∂ e ih 
= 0 for all h � = i, j, which implies that the

arginal cost 
∂c i (e i ) 

∂e i j 
is independent of the effort that i exerts with 

gents other than j. 2 

Second Stage (cooperative game) : Given the effort made in the 

rst stage, agents cooperate, so for any pair of cooperating agents 

, j ∈ N and a given effort e i j , agent i reduces the total cost of

gent j by an amount r ji (e i j ) ∈ R + , and vice versa. These partic-

lar reductions between agents i, j ∈ N are independent of cooper- 

tion with other agents. We also assume for all j ∈ N\{ i } that func-

ion r i j (. ) : [0 , 1] → R + is class C 2 , increasing and concave 3 at [0,1].

hus, these agents participate in bilateral interactions with multi- 

le independent partners whose cost reductions are coalitionally 

ndependent, i.e. the cost reduction given by each agent to another 

gent is independent of any possible coalition. This means that the 

otal reduction in cost for each agent in a coalition S ⊂ N is the 

um of the pairwise cost reductions given to that agent by the rest 
i j 
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f the members of the coalition, i.e. for agent i , it is 
∑ 

j∈ S\{ i } r i j (e ji ) .

e assume perfect information regarding agents’ costs and cost re- 

uctions depending on effort s. 

Given an effort profile e = (e 1 , e 2 , . . . , e n ) ∈ [0 , 1] n (n −1) in the

rst stage, the second stage can be seen as a cooperative game, 

ore specifically a transferable utility cost game (N, e, c) , where N

s the finite set of players, and c : 2 N → R is the so-called charac-

eristic function of the game, which assigns to each subset S ⊆ N

he cost c(S) that is incurred if agents in S cooperate. By con- 

ention, c(∅ ) = 0 . The cost of agent i in coalition S ⊆ N is given

y c S (i ) := c i (e i ) −
∑ 

j∈ S\{ i } r i j (e ji ) . This cost can be interpreted as

he reduced cost of agent i in coalition S. Note that the larger 

he coalition, the greater the cost reduction it achieves, i.e. for all 

 ∈ S ⊆ T ⊆ N, c T ({ i } ) ≤ c S ({ i } ) . The total reduced cost for coalition

is given by 

(S) := 

∑ 

i ∈ S 
c S ({ i } ) = 

∑ 

i ∈ S 
[ c i (e i ) −

∑ 

j∈ S\{ i } 
r i j (e ji )] . (1)

When all agents cooperate, they form what is called the grand 

oalition, which is denoted by N . Thus, c(N ) is the aggregate 

ost of the grand coalition. The allocation of the grand coalition 

ost achieved through cooperation, in the second stage, assigns 

 reduced final cost to each agent, that is, ψ i (e ) , for all i ∈ N,

here ψ i : E → R with E := 

∏ 

i ∈ N E i and E i := [0 , 1] n −1 . Then, we

efine the cost allocation rule ψ : E → R n s.t. ψ(e ) = ( ψ i (e ) ) i ∈ N 
nd 

∑ 

i ∈ N ψ i (e ) = c(N) . 

The non-cooperative cost game in the first stage is defined 

hrough that cost allocation rule ψ by (N, { E i } i ∈ N , { ψ i } i ∈ N ) , where

 i is the strategy space of agent i ∈ N (its effort level space), and

 i is the payoff function of agent i , but in this case is a cost func-

ion. Hence, for an effort profile e ∈ E, the corresponding cost func- 

ion is ψ(e ) . That effort is made in anticipation of the result of

he cooperative cost game that follows in the second stage. There- 

ore, we first analyze the second stage (see Section 3 ), and focus 

n different ways of allocating the grand coalition cost. We de- 

ermine cost allocation rules with good computability properties 

nd coalitional stability for this cooperative cost game. Notice that 

 given cost allocation rule will generate precise incentives in the 

rst state and consequently particular equilibrium effort strategies 4 

n turn, these particular effort strategies will have an associate cost 

f the grand coalition. At this point, a question about efficiency 

rises. The lower the cost of the grand coalition generated in equi- 

ibrium is, the more efficient the equilibrium effort strategies and 

he allocation rule considered will be. 

Therefore, there are two dimensions to be considered. First, 

he cost allocation rule for the cooperative game should have 

ood properties (computability and coalitional stability). Second, 

he allocation rule must induce the right incentives in the non- 

ooperative game to obtain the lowest cost of the grand coalition. 

his interesting, relevant question is analyzed in Section 4 and 5 . 

Throughout the paper, we consider the following assumptions: 

(CA) Cost assumptions: c i ∈ C 2 , and 

∂c i (e i ) 

∂e i j 
> 0 (increasing), 

∂ 2 c i (e i ) 

∂e 2 
i j 

> 0 (convex), and 

∂ 2 c i (e i ) 

∂ e i j ∂ e iK 
= 0 , if k � = j (additively separable). 

(RA) Reduction assumptions : r ji ∈ C 2 , and ∂r ji (e i j ) /δe i j > 0

increasing), ∂ 2 r ji (e i j ) /δe 2 
i j 

< 0 (concave). 

A summary of the notation and the main optimization prob- 

ems ( Tables 1 and 2 ) can be found in Appendix D. 
4 An effort strategy profile is said to be in equilibrium when each agent has noth- 

ng to gain by changing only their own effort strategy given the strategies of all the 

ther agents (Nash equilibrium). 

c

i

c

c

g

4 
. Cooperation with pairwise cost reduction 

This section presents the analysis of cooperation with pairwise 

ost reduction in the second stage. Agents make their efforts in 

airwise sharing in the first stage, and initiate cooperation with ef- 

orts e = (e 1 , . . . , e i , . . . , e n ) . We model the PE-game as a multiple-

gent cooperative game where each agent i incurs an initial cost 

f c i (e i ) . All agents in a pairwise effort group (coalition) give cost

eductions to and receive such reductions from other agents. As a 

esult, all agents in the coalition reduce their initial costs to levels 

hat depend on the effort s made in the first stage by the others. 

o agent outside the pairwise effort situation benefits from this 

airwise cost reduction opportunity. We introduce all the game- 

heoretic concepts used in this paper, but readers are referred to 

30] for more details on cooperative and non-cooperative games. 

We refer to the pairwise effort situation as a PE-situation and 

enote it by the tuple (N, e, { c i (e i ) , { r ji (e i j ) } j∈ N\{ i } } i ∈ N ) . We asso-

iate a cost game (N, e, c) with each PE-situation as defined by (1) .

The class of PE-games has some similarities with the class of 

inear cost games introduced in [31] . They define the concept of 

ost-coalitional vectors as a collection of certain a priori informa- 

ion, available in the cooperative model, represented by the costs 

f the agents in all possible coalitions to which they could belong. 

he cost of a coalition in their study is thus the sum of the costs

f all agents in that coalition. However, the PE-games considered 

ere are significantly different from their linear cost games. Linear 

ost games focus on the role played by benefactors (giving) and 

eneficiaries (receiving) as two groups of disjoint agents, but PE- 

ames consider that all agents could be dual benefactors, in the 

ense that they be benefactors and beneficiaries at the same time. 

n addition, PE-games are based on a bilateral cooperation between 

gents that enables both to reduce their costs but is coalitionally 

ndependent. 

We now consider a PE-situation 

N, e, { c i (e i ) , { r i j (e i j ) } j∈ N\{ i } } i ∈ N ) and consider whether it is prof-

table for the agents in N to form the grand coalition to obtain 

 significant reduction in costs. We find that the answer is yes, 

nd show that the associated PE-game ( N, e, c ) is concave, in the 

ense that for all i ∈ N and all S, T ⊆ N such that S ⊆ T ⊂ N with

 ∈ S, so c( S ) − c(S \ { i } ) ≥ c(T ) − c(T \ { i } ) . This concavity property

rovides additional information about the game: the marginal 

ontribution of an agent diminishes as a coalition grows. This is 

ell-known and is called the ”snowball effect”. 

The first result in this section shows that PE-games are always 

oncave. This means that the grand coalition can obtain a signifi- 

ant reduction in costs. In that case, the reduced total cost is given 

y c(N) = 

∑ 

i ∈ N 
c i (e i ) − R (N ) , where R (N ) = 

∑ 

i ∈ N 

∑ 

j∈ N\{ i } 
r i j (e ji ) is the to-

al reduction produced by bilateral reductions between all agents 

n the situation, which turns out to be the total cost savings for 

ll agents. The proof of Proposition 1 , together with all our other 

roofs for this section, is shown in Appendix A. 

roposition 1. Every PE-game is concave. 

An allocation rule for PE-games is a map ψ which assigns a 

ector ψ ( e ) ∈ R n to every ( N, e, c ) , satisfying efficiency, that is, ∑ 

 ∈ N 
ψ i ( e ) = c(N) . Each component ψ i ( e ) indicates the cost allocated 

o i ∈ N, so an allocation rule for PE-games is a procedure for al-

ocating the reduced total to all the agents in N when they coop- 

rate. It is a well-known result in cooperative game theory that 

oncave games are totally balanced: The core of a concave game 

s non-empty, and since any subgame of a concave game is con- 

ave, the core of any subgame is also non-empty. That means that 

oalitionally stable allocation rules can always be found for PE- 

ames. We interpret a non-empty core for PE-games as indicating a 
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etting where all included cooperation is feasible, in the sense that 

here are possible cost reductions that make all agents better off

or, at least, not worse off). The totally balanced property suggests 

hat this all-included cooperation is consistent, i.e. for every group 

f agents whole-group cooperation is also feasible. 

A highly natural allocation rule for PE-games is ϕ i ( e ) = 

 

N ({ i } ) = c i (e i ) − R i (N) , for all i ∈ N, with R i (N) = 

∑ 

j∈ N\{ i } 
r i j (e ji )

eing the total reduction received by agent i ∈ N from the rest of 

he agents j ∈ N\{ i } . It has good properties at least with respect

o computability and coalitional stability in the sense of the core. 

ormally, the core of a PE-game ( N, c ) is defined as follows 

ore ( N, c ) = { x ∈ R 

n / 
∑ 

i ∈ N 
x i = c(N) , 

∑ 

i ∈ S 
x i ≤ c(S) ∀ S ⊆ N} . (2)

Notice that ϕ ( e ) ∈ Core ( N, c ) . Indeed, 
∑ 

i ∈ N 
ϕ i ( e ) ≤ c(N) and for 

very S ⊆ N, 
∑ 

i ∈ S 
ϕ i ( e ) = 

∑ 

i ∈ S 
c N (i ) ≤ ∑ 

i ∈ S 
c S (i ) = c(S) . Nevertheless, the

gents could argue that this allocation does not provide sufficient 

ompensation for their dual role of giving and receiving. Note that 

he allocation only considers their role as receivers. 

PE-games are concave, so cooperative game theory provides al- 

ocation rules for them with good properties, at least with respect 

o coalitional stability and acceptability of items. We highlight the 

hapley value (see [17] ), which assigns a unique allocation (among 

he agents) of a total surplus generated by the grand coalition. 

t measures how important each agent is to the overall coopera- 

ion, and what cost can it reasonably expect. The Shapley value of 

 concave game is the center of gravity of its core (see [32] ). In

eneral, this allocation becomes harder to compute as the number 

f agents increases. We present a simple expression here for the 

hapley value of PE-games that takes into account all bilateral re- 

ations between agents and compensates them for their dual role 

f giving and receiving. 

Given a general cost game (N, c) , we denote the Shapley value 

y φ(c) , where the corresponding cost allocation for each agent 

 ∈ N, is 

i (c) = 

∑ 

i ∈ T ⊆N 

(n − t)!(t − 1)! 

n ! 
[ (c(T ) − c(T \{ i } ) ] , with | T | = t. 

(3) 

The Shapley value has many desirable properties, and it is also 

he only allocation rule that satisfies a certain subset of those 

roperties (see [33] ). For example, it is the only allocation rule that 

atisfies the four properties of Efficiency, Equal treatment of equals, 

inearity and Null player ( [17] ). 

Given a PE-game (N, e, c) , we denote by φ(e ) the Shapley value

f the cost game. The following Theorem shows that the Shap- 

ey value provides an acceptable allocation for PE-games. Indeed, 

t reduces the individual cost of an agent by the average of the to- 

al reduction that it obtains from the others ( R i (N) ) plus half of

he total reduction that it provides to the rest of the agents, i.e. 

 i (N) = 

∑ 

j∈ N\{ i } r ji (e i j ) . 

heorem 1. Let (N, e, c) be a PE-game. For each agent k ∈ N, φk (e ) =
 k (e k ) − 1 

2 [ R k (N) + G k (N)] . 

From Theorem 1 it can be derived that the Shapley value, φ(e ) ,

onsiders the dual role of giving and receiving of all agents, and 

he final effect on those agents depends on which role is stronger. 

s mentioned above, if an allocation does not compensate them for 

heir dual role of giving and receiving, and it only considers their 

ole as receivers, as the individual cost in the grand coalition, ϕ(e ) ,

oes, the cooperation would not be desirable for those dual agents. 

his non-acceptability can be avoided by using the Shapley value, 

hich also coincides with the Nucleolus ( [34] ) for PE-games. 
5 
The nucleolus selects the allocation in which the coalition 

ith the smallest excess (the worst treated) has the high- 

st possible excess. The nucleolus maximizes the ”welfare” of 

he worst treated coalitions. Denote by ν(e ) ∈ R n the Nucle- 

lus of the PE-game (N, e, c) , associated with a PE-situation 

N, e, { c i (e i ) , { r i j (e i j ) } j∈ N\{ i } } i ∈ N ) . First, we define the excess of

oalition S in (N, e, c) with respect to allocation x as d ( S, x ) = 

(S) − ∑ 

i ∈ S x i . This excess can be considered as an index of the 

welfare” of coalition S at x : The greater d ( S, x ) , the better coali- 

ion S is at x . Let d ∗(x ) be the vector of the 2 n excesses arranged

n (weakly) increasing order, i.e., d ∗
i 
(x ) ≤ d ∗

j 
(x ) for all i < j. Second,

e define the lexicographical order �l . For any x, y ∈ R n , x �l y if

nd only if there is an index k such that for any i < k , x i = y i and

 k > y k . The nucleolus of the PE-game (N, e, c) is the set 

(e ) = { x ∈ X : d ∗(x ) �l d 
∗(y ) for all y ∈ X } (4)

ith X = { x ∈ R n : 
∑ 

i ∈ N x i = c(N) , x i ≥ c({ i } ) for all i ∈ N} . 
It is well known that the Nucleolus is a singleton for balanced 

ames and that it is always a core-allocation. 

The Proposition 2 proves that for PE-games the Shapley value 

atches the Nucleolus. This is a very good property that few cost 

ames satisfy. 

roposition 2. Let (N, e, c) be a PE-game. For each agent k ∈ N,

k (e ) = φk (e ) . 

Therefore, given an effort profile, the Shapley value is a very 

uitable way of allocating the reduced cost due to cooperation. 

ote that, the cost reduction as a result of cooperation between 

ny pair of agents i, j ∈ N is r i j (e ji ) + r ji (e i j ) , and the Shapley value

ssigns one half of this amount to i and the other half to j. This

eems a reasonable way to split this aggregate cost reduction. 

owever, if agents knew before choosing their levels of efforts that 

he cost reductions resulting from their effort s were going to be 

llocated according to the Shapley value, the incentives created 

ould generate inefficiencies. Some agents could find it optimal to 

xert too little effort and in some situations this could be ineffi- 

ient. 

For example, consider a PE-situation in which one agent has the 

bility to produce a substantial reduction in costs for other agents 

ith a low effort cost and the rest of the agents have almost no 

bility to reduce costs for others even with a high effort cost. If the 

hapley value is used as the allocation rule for this game, agents 

ay not have incentives to make any level of effort. Note that 

n the first step agents have to decide how much effort to make. 

owever, if the Shapley value is modified to give a greater portion 

f the pairwise cost reduction to the especially productive agent, 

t might make more effort and thus produce a greater reduction in 

ost for other agents. This change in the Shapley value generates 

ew allocation rules, which can reduce the cost of the grand coali- 

ion regarding the Shapley allocation. The following example with 

hree agents illustrates these ideas. 

xample 1. Consider a pairwise inter-organizational situation 

ith three firms, i.e. N = { 1 , 2 , 3 } . For any effort profile e ∈
0 , 1] 6 , the PE-situation is given by the following initial costs, 

c 1 (e 12 , e 13 ) = 100 + 100 e 12 + 4 e 2 12 + 100 e 13 + 4 e 2 13 

c 2 (e 21 , e 23 ) = 100 + 100 e 21 + 4 e 2 
21 

+ 100 e 23 + 4 e 2 
23 

c 3 (e 31 , e 32 ) = 100 + 100 e 31 + 4 e 2 31 + 100 e 32 + 4 e 2 32 

nd the following pairwise reduced costs, all of them in thousands 

f Euros, 

r i 1 (e 1 i ) = 2 + 200 e 1 i − 3 e 2 
1 i 

with i = 2 , 3 

r i 2 (e 2 i ) = 2 + 3 e 2 i − e 2 
2 i 

with i = 1 , 3 

r i 3 (e 3 i ) = 2 + 3 e 3 i − e 2 
3 i 

with i = 1 , 2 
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6 Note that the second derivative in e is equal to ∂ 2 c i (e i ) − ∂ 2 r ji (e i j ) , which is al- 
If the allocation rule in the second stage is the Shapley value, 

he firms choose their levels of effort according to this cost al- 

ocation function. It is straight forward to show that in this case 

he unique effort equilibrium e ∗, is one in which the three firms 

ake no effort, i.e. e ∗
i j 

= 0 for i, j ∈ N. 5 Thus, the Shapley value dis-

ributes the cost of the grand coalition c ∗(N) = 288 equally, i.e. for

ach firm i = 1 , 2 , 3 , φi (e ∗) = c i (e ∗
i 
) − 1 

2 

∑ 

j∈ N\{ i } [ r ij (e ∗
ji 
) + r ji (e ∗

ij 
)] =

00 − 1 
2 ((2 + 2) + (2 + 2)) = 96 . 

Note that, for example, in the relationship between firm 1 and 

, the pairwise cost reduction is r 12 (e 21 ) + r 21 (e 12 ) , and the Shap-

ey value gives 1 
2 of this amount to firm 1 and the other 1 

2 to firm

. However, if the proportion that firm 1 obtains is increased, e.g. 

rom 

1 
2 to 3 

4 , and the part for firm 2 is thus reduced to 1 
4 , the

ncentive of firm 1 to make an effort can be increased. The same 

oes for firms 1 and 3 so that the incentive of firm 1 to make an

ffort f or firm 3 is also increased. These changes in the Shapley 

alue lead to a new allocation rule which we denote by �(e ) =
�1 (e ) , �2 (e ) , �3 (e )) for any effort profile e ∈ [0 , 1] 6 . With this

ew allocation rule, the equilibrium effort s are zero for firms 2 

nd 3, and one for firm 1. That is, e ∗∗
1 j 

= 1 , for j = 2 , 3 , e ∗∗
2 j 

= 0 , for

j = 1 , 3 , and e ∗∗
3 j 

= 0 , for j = 1 , 2 . In this case, the grand coalition

ost c ∗∗(N) = 102 is allocated equally between firms 2 and 3, and

he rest to firm 1. That is, �i (e ∗∗) = 100 − 1 
4 [(2 + 200 − 3) + 2] −

1 
2 (2 + 2) = 47 , 75 for i = 2 , 3 , and �1 (e ∗∗) = 100 + 100 + 4 + 100 +
 − 3 

4 [(2 + (2 + 200 − 3)) + (2 + (2 + 200 − 3))] = 6 , 5 . 

Hence, the new allocation rule �(e ∗∗) greatly reduces the grand 

oalition cost (by 136.0 0 0 Euros) as well as the costs of each firm;

.e. a reduction of 89.500 Euros for firm 1 and 23.250 Euros for 

rms 2 and 3. In relative terms, with the Shapley value each com- 

any pays 33.33% of the total cost. However, with the modified 

hapley value agent 1 only pays 4.4% of the total cost, while agents 

 and 3 pay 47.8% each. Therefore, the modified Shapley value gen- 

rates a more efficient outcome in the sense that it creates more 

ppropriate incentives for firms. 

To reach efficient effort strategies in equilibrium (henceforth 

EE) in the first stage, we consider a new family of allocation rules, 

or PE-games (second stage), based on the Shapley value. This fam- 

ly consists of the rules �(e ) ∈ R n , where for all i ∈ N, 

i (e ) = c i (e i ) −
∑ 

j∈ N\{ i } 
[ ω 

i 
i j r i j (e ji ) + ω 

i 
ji r ji (e i j )] , 

ith ω 

i 
i j 
, ω 

i 
ji 

∈ [0 , 1] , for all j ∈ N\{ i } , such that ω 

i 
i j 

= 1 − ω 

j 
i j 

and

 

i 
ji 

= 1 − ω 

j 
ji 

. The Shapley value is a particular case of this family

f rules in which ω 

i 
i j 

= ω 

i 
ji 

= 

1 
2 , for all i ∈ N and all j ∈ N\{ i } . This

amily of cost allocation for PE-games is referred to as cost alloca- 

ion with weighted pairwise reduction . 

The Theorem below shows that the family of cost allocations 

ith weighted pairwise reduction is always a subset of the core of 

E-games. This property identifies a wide subset of the large core 

f PE-games, including the Shapley value (and thus the Nucleolus). 

heorem 2. Let (N, e, c) be a PE-game. For every family of weights 

 

i 
i j 
, ω 

i 
ji 

∈ [0 , 1] , i , j ∈ N, i � = j, such that ω 

i 
i j 

= 1 − ω 

j 
i j 

and ω 

i 
ji 

= 1 −
 

j 
ji 

, �(e ) belongs to the core of (N, e, c) . 

Now a complete analysis of the EEE for cooperation in pairwise 

ost reduction can be conducted. 
5 Theorem 3 , in Section 4 , shows the effort s of equilibrium in the non-cooperative 

ame in the general case. 

w

c

6 
. Efficiency, equilibrium strategies, and optimal rule 

We first define an efficient effort profile as the effort profile 

hat minimizes the cost of the grand coalition, c(N) = 

∑ 

i ∈ N [ c i (e i ) −
 

j∈ N\{ i } r i j (e ji )] . 

efinition 1. An effort profile ˜ e = ( ̃  e 1 , . . . , ̃  e i , . . . , ̃  e n ) with 

˜  i = ( ̃  e i 1 , . . . , ̃  e i ( i −1 ) , ̃  e i ( i +1 ) , . . . ̃  e in ) ∈ [0 , 1] n −1 is efficient if ˜ e = arg

min 
 ∈ [0 , 1] n (n −1) 

∑ 

i ∈ N [ c i (e i ) −
∑ 

j∈ N\{ i } r i j (e ji )] 

An efficient effort profile ˜ e is well defined because c(N) as a 

unction of e is strictly convex in e i j for all i , j ∈ N, i � = j. 6 

The following proposition shows that the effort e i j is efficient if 

he marginal cost of that effort equals the marginal reduction that 

his effort generates; otherwise, the effort is zero or one. The proof 

f Proposition 3 appears in Appendix B, together with those of all 

he other proofs in this section. 

roposition 3. There exists a unique efficient effort profile 

˜  = ( ̃  e 1 , . . . , ̃  e i , . . . , ̃  e n ) with ˜ e i = ( ̃  e i 1 , . . . , ̃  e i ( i −1 ) , ̃  e i ( i +1 ) , . . . ̃  e in ) ∈
0 , 1] n −1 , such that 

• ˜ e i j = 0 if 
∂c i (e i ) 

∂e i j 
> 

∂r ji (e i j ) 

∂e i j 
for all e i j ∈ [0 , 1] , 

• ˜ e i j = 1 if 
∂c i (e i ) 

∂e i j 
< 

∂r ji (e i j ) 

∂e i j 
for all e i j ∈ [0 , 1] , 

• ˜ e i j ∈ (0 , 1) is the unique solution of 
∂c i (e i ) 

∂e i j 

∣∣∣
e i j = ̃ e i j 

= 

∂r ji (e i j ) 

∂e i j 

∣∣∣
e i j = ̃ e i j 

, 

otherwise. 

We now focus on the non-cooperative effort game that arises 

nder the family of cost allocation with weighted pairwise reduction 

henceforth, WPR family). Then we analyze efficiency in equilib- 

ium. 

Consider the WPR family, i.e., �i (e ) = c i (e i ) −
 

j∈ N\{ i } [ ω 

i 
i j 

r i j (e ji ) + ω 

i 
ji 

r ji (e i j )] for all i ∈ N with ω 

i 
i j 
, ω 

i 
ji 

∈ [0 , 1] ,

 , j ∈ N, i � = j, such that ω 

i 
i j 

= 1 − ω 

j 
i j 

and ω 

i 
ji 

= 1 − ω 

j 
ji 

. For each

pecification of these weights, a particular allocation rule can be 

btained that induces a certain equilibrium effort strategy in the 

rst stage, which in turn generates the associated cost allocation 

n equilibrium. The aim of this section is twofold. First, we identify 

he efficient allocation rule within the WPR family, i.e., that which 

esults in the lowest cost of the grand coalition. Second, we show 

hat the effort profile induced in equilibrium by this allocation 

ule coincides with the efficient effort profile of Proposition 3 . 

The non-cooperative cost game associated with � = ( �i ) i ∈ N in 

he first stage is defined by (N, { E i } i ∈ N , { �i } i ∈ N ) , where for every

gent i ∈ N, E i := [0 , 1] n −1 is the players’ i strategy set, and for all

ffort profiles e ∈ E := 

∏ 

i ∈ N E i , and �i is the cost function for agent

 ∈ N. We call this an effort game. 

In this game, we use the following definition of equilibrium. 

efinition 2. The effort profile e ∗ = (e ∗
1 
, . . . , e ∗n ) ∈ E is an equilib-

ium for the game (N, { E i } i ∈ N , { �i } i ∈ N ) if e ∗i is the optimal effort for

gent i ∈ N given the strategies of all the other agents j ∈ N\{ i } . 
First, note that the optimal effort for agent i ∈ N given the 

trategies of all the other agents j ∈ N\{ i } is the effort e i that min-

mizes �i (e i , e −i ) . Note that the function �i (e i , e −i ) is strictly con-

ex in the effort e i j that agent i exerts for any j ∈ N\{ i } . 7 This

eans that for agent i there is a unique optimal level of effort ˆ e i j 
i j ∂e 2 
i j 

∂e 2 
i j 

ays positive because ∂ 2 c i (e i ) 
∂e 2 

i j 

> 0 and 
∂ 2 r ji (e i j ) 

∂e 2 
i j 

< 0 . 

7 Note that ∂�i (e ) 
∂e i j 

= 

∂c i (e i ) 
∂e i j 

− ω 

i 
ji 

∂r ji (e i j ) 

∂e i j 
and 

∂ 2 
i 
�(e ) 

∂e 2 
i j 

= 

∂ 2 c i (e i ) 
∂e 2 

i j 

− ω 

i 
ji 

∂ 2 r ji (e i j ) 

∂e 2 
i j 

> 0 be- 

ause, as assumed above, ∂ 2 c i (e i ) 
∂e 2 

i j 

> 0 and 
∂ 2 r ji (e i j ) 

∂e 2 
i j 

< 0 
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or each j ∈ N\{ i } . That optimal level ˆ e i j depends on the parame-

er ω 

i 
ji 

, on the marginal cost of agent i in regard to effort ˆ e i j (i.e.

∂c i (e i ) 

∂e i j 
), and on the marginal cost-reduction for agent j in regard to 

ffort ˆ e i j , (i.e. 
∂r ji (e i j ) 

∂e i j 
). Consequently, although the cost function of 

gent i depends on other agents’ efforts ( e ji for all j ∈ N\{ i } ), the

ptimal effort does not. 

To obtain the optimal effort, we analyze the derivative of the 

onvex function �i (e ) with respect to e i j , for any j ∈ N\{ i } . It must

e noted that 
∂�ii (e ) 

∂e i j 
≥ 0 ⇐⇒ 

∂c i (e i ) 

∂e i j 
≥ ω 

i 
ji 

∂r ji (e i j ) 

∂e i j 
for all e i j ∈ [0 , 1] . 

he following result characterizes the optimal effort level for agent 

 ∈ N in the first stage of the game. 

emma 1. Let (N, { E i } i ∈ N , { �i } i ∈ N ) be an effort game and ˆ e i j be the

ptimal level of effort that agent i exerts to reduce the costs of agent 

j. Thus, 

• ˆ e i j = 0 if and only if 
∂c i (e i ) 

∂e i j 
> ω 

i 
ji 

∂r ji (e i j ) 

∂e i j 
, for all e i j ∈ [0 , 1] , 

• ˆ e i j = 1 if and only if 
∂c i (e i ) 

∂e i j 
< ω 

i 
ji 

∂r ji (e i j ) 

∂e i j 
, for all e i j ∈ [0 , 1] , 

• ˆ e i j ∈ (0 , 1) that holds 
∂c i (e i ) 

∂e i j 

∣∣∣
e i j = ̂ e i j 

= ω 

i 
ji 

∂r ji (e i j ) 

∂e i j 

∣∣∣
e i j = ̂ e i j 

, otherwise. 

The following theorem shows the unique allocation rule of the 

PR family that induces an efficient effort profile in equilibrium. 

his allocation rule gives all the reductions to the agent that gen- 

rates them. Formally, let H(e ) := (H i (e )) i ∈ N be the allocation rule

n the WPR family with ω 

i 
ji 

= 1 for i , j ∈ N, i � = j, that is H i (e ) =
 i (e i ) −

∑ 

j∈ N\{ i } r ji (e i j ) for i ∈ N. We consider an allocation rule as

fficient if it induces an efficient effort profile in equilibrium. 

heorem 3. Consider the effort game (N, { E i } i ∈ N , { H i } i ∈ N ) . Let e ∗
i j 

be

he level of effort that an agent i exerts to reduce the costs of agent j

n the unique equilibrium with i , j ∈ N, i � = j. Thus, 

• e ∗
i j 

= 0 if and only if 
∂c i (e i ) 

∂e i j 

∣∣∣
e i j =0 

> 

∂r ji (e i j ) 

∂e i j 

∣∣∣
e i j =0 

• e ∗
i j 

= 1 if and only if 
∂c i (e i ) 

∂e i j 

∣∣∣
e i j =1 

< 

∂r ji (e i j ) 

∂e i j 

∣∣∣
e i j =1 

• e ∗
i j 

∈ (0 , 1) that holds 
∂c i (e i ) 

∂e i j 

∣∣∣
e i j = e ∗i j 

= 

∂r ji (e i j ) 

∂e i j 

∣∣∣
e i j = e ∗i j 

, otherwise. 

In addition, e ∗
i j 

= ˜ e i j for i , j ∈ N, i � = j and H i (e ) is the only allo-

ation rule of the WPR family that always induces an efficient effort 

rofile in equilibrium. 

The next Corollary shows that the allocation rule H is not only 

he only efficient one within the WPR family, but that it induces 

he lowest possible grand coalition cost for any possible allocation 

ule. 

orollary 1. Let 
 be the set of all allocation rules for PE-games. 

here is no ψ ∈ 
 such that the effort equilibrium profile induced in 

he non cooperative game (N, { E i } i ∈ N , { ψ i } i ∈ N ) generates a lower cost

f the grand coalition than allocation rule H. 

As mentioned, the effort e i j is efficient when its marginal cost 

atches the marginal reduction that it generates; otherwise, the 

ffort is zero or one. Allocation rule H(e ) aligns the incentives of 

gents in the first stage game with this idea. It gives all the reduc- 

ion to the agent that generates it. In that case, the best response 

f any agent is to make its marginal cost equal to the marginal 

eduction that its effort generates; otherwise, this agent exerts 

he minimal or maximal effort depending on which is higher: the 

arginal cost or the marginal reduction. 
7 
We illustrate this analysis with the 3-firm case given in 

xample 2 in Section 6 . 

In this section we work out the allocation rule (in the second 

tage) within the WPR family that generates the unique efficient 

ffort equilibrium (in the first stage). However, there are situations 

n which pairwise reductions cannot be weighted separately, i.e. it 

s not possible to assign different weights to what an agent gives 

nd what the same agent receives in a pairwise interaction. For 

xample, there may be situations in which there is a unique cost 

eduction for any pair of agents that depends on the effort exerted 

y both agents, i.e. an aggregate reduction. In that case they have 

o decide how to split the whole cost reduction. Such cases require 

 weight to be assigned to the pairwise aggregate reduction. 

The question that arises in this new scenario is whether the 

evel of efficiency maintained is the same as that attained when 

he pairwise reductions are weighted separately for each agent. 

nfortunately, the answer is no: the level of efficiency decreases 

n this new scenario. The next section focuses on measuring the 

evel of efficiency of effort s in equilibrium for a particular family 

f weighted pairwise aggregate reductions. 

. Measuring efficiency for pairwise aggregate reduction 

Consider the family of cost allocation with weighted pairwise 

ggregate reduction A (e ) ∈ R n defined as follows: 

 i (e ) = c i (e i ) −
∑ 

j∈ N\{ i } 
αi j [ r i j (e ji ) + r ji (e i j )] , (5)

ith αi j ∈ [0 , 1] . The interaction between agents i and j generates 

n aggregate cost reduction which is r i j (e ji ) + r ji (e i j ) . The parame-

er αi j measures the proportions in which this reduction is shared 

etween agents i and j, i.e. αi j is the proportion for agent i and 

ji = 1 − αi j for agent j. 

Note that A (e ) is a subfamily of the WPR family �(e ) , where

ow ω 

i 
i j 

= ω 

j 
i j 

= αi j , for all i, j ∈ N. From now on we refer to this

ubfamily as the WPAR family. It is important to note that the 

hapley value and the Nucleolus belong to the WPAR family with 

i j = 

1 
2 for all i , j ∈ N, i � = j. We consider whether the allocation

ule H(e ) , which generates the efficient effort in equilibrium, is 

pplicable in this situation. Unfortunately, H(e ) does not fit the 

cheme of pairwise aggregate reduction. 

This section analyzes the non-cooperative effort game that 

rises in the first stage when cost allocations in the WPAR family 

re considered. 

Our goal is to find out, within the WPAR family, a core- 

llocation in the cooperative game of the second stage that induce 

he effort equilibrium level in the first stage closest to the efficient 

ne. We consider that an effort profile e 
′ ∈ E is more efficient than 

 profile e 
′′ ∈ E if the aggregate cost generated in the second stage 

y e 
′ 

is lower than that generated by e 
′′ 

. 

We therefore first study the non-cooperative effort game 

hat arises under this new cost allocation A (e ) , that is 

N, { E i } i ∈ N , { A i } i ∈ N ) . 
To simplify notation and analysis, we consider that for all i ∈ N

nd j ∈ N\{ i } , c ′ 
i 
(e i j ) := 

∂c i (e i ) 

∂e i j 
, c ′′ 

i 
(e i j ) := 

∂ 2 c i (e i ) 

∂e 2 
i j 

, r ′ 
ji 
(e i j ) := 

∂r ji (e i j ) 

∂e i j 

nd r ′′ 
ji 
(e i j ) := 

∂ 2 r ji (e i j ) 

∂e 2 
i j 

. Note that, as the WPAR family is a subfam-

ly of WPR, the properties of the latter apply to the former. 

Before analyzing the EEE of the above non-cooperative effort 

ame, we define thresholds of alpha parameters that enable them 

o be reached. 
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8 In principle, this problem could be considered a bilevel optimization problem 

( [40] ). The main characteristic of a bilevel programing problem is a kind of hierar- 

chy, because its constraints are defined, in part, by a second optimization problem. 

In our case, the second level (lower level or follower’ level) will be the problem 

min 
e i ∈ [0 , 1] (n −1) 

A i (e ) with solution e ∗ = (e ∗
i 
) i ∈ N where e ∗ depends on α. The first level (up- 

per level or leader’s problem) will be min 
α∈ [0 , 1] n (n −1) 

∑ 

i ∈ N A i (e ∗) . Thus, we can rewrite the 

problem as follows: 

min 
α,e 

∑ 

i ∈ N A i (α, e ) 

s.t. (α, e ) ∈ [0 , 1] n (n −1) × [0 , 1] n (n −1) 

e i ∈ G i (α) for all i ∈ N 
with e = (e i ) i ∈ N 

where G i (α) = arg min 
e i 

A i (α, e ) 

s.t. e i ∈ [0 , 1] (n −1) , α ∈ [0 , 1] n (n −1) 

However, it is difficult to see this problem as a Stakelberg game, as described for 

example in [41] , because α is not a strategy profile but a parameter of the reduc- 

tion cost functions. We believe that our setting better fits a bi-form game that was 

introduced by [3] . 
9 Note that α ji < ᾱ ji and αi j < ᾱi j . 

10 The function L ∗
i j 

is a piecewise function, and although it is continuous in αi j ∈ 
[0 , 1] it is not differentiable at all points in its domain. Since it is defined over inter- 

vals, it is generally non-differentiable at the endpoints of these intervals. Therefore, 

to compute the minimum, it is also necessary to evaluate the function at the inter- 

val endpoints. In addition, due to its convexity, the minimum can also be an interior 

point within any of the intervals. However, each interval entails a distinct deriva- 

tive function, thereby contributing to the complexity of the computation process. 

The introduction of Theorem 5 streamlines the evaluation procedure by reducing 

the number of points to be assessed, presenting them in a case-by-case framework. 
efinition 3. Given an effort game (N, { E i } i ∈ N , { A i } i ∈ N ) , we define

he following lower and upper thresholds for each pair of agents i 

nd j, 

αij := 

c ′ 
i 
(0) 

r ′ 
ji 
(0) 

, ᾱi j := 

c ′ 
i 
(1) 

r ′ 
ji 
(1) 

, α ji := 

c ′ 
j 
(0) 

r ′ 
i j 
(0) 

, and ᾱ ji := 

c ′ 
j 
(1) 

r ′ 
i j 
(1) 

. 

It is clear that 0 < αi j < ᾱi j because c ′ 
i 

is an increasing function 

nd r ′ 
ji 

decreasing one. Analogously, 0 < α ji < ᾱ ji . 

The first Theorem in this section characterizes all possible types 

f effort equilibrium according to the value of the parameter αi j , 

or all i, j ∈ N, i � = j. The proof of Theorem 4 appears in Appendix C,

ogether with all the other proofs in this section. 

heorem 4. Let (N, { E i } i ∈ N , { A i } i ∈ N ) be an effort game. The pairwise

fforts in any unique equilibrium (e ∗
i j 
, e ∗

ji 
) are given by 

e ∗
ij 

= 

⎧ ⎨ 

⎩ 

0 if and only if αij ≤ αij 

e I if and only if αij < αij < αij 

1 if and only if αij ≥ αij 

 

∗
ji 

= 

⎧ ⎨ 

⎩ 

0 if and only if αi j ≥ 1 − α ji 

e J if and only if 1 − ᾱ ji < αi j < 1 − α ji 

1 if and only if αi j ≤ 1 − α ji 

where e I ∈ (0 , 1) is the unique solution of c ′ 
i 
(e i ) − αi j r 

′ 
ji 
(e i j ) = 0

nd e J ∈ (0 , 1) is the unique solution of c ′ 
j 
(e j ) − (1 − αi j ) r 

′ 
i j 
(e ji ) = 0 .

It is demonstrated in Appendix C that e I increases with αi j 

hile e J decreases, see Corollary 2 . The findings of Corollary 2 are 

aluable when the objective is to incentivize agents i, j ∈ N to in- 

rease their pairwise effort e i j by adjusting the parameter αi j . 

owever, our aim is to go beyond this and achieve optimal effi- 

iency within the WPAR family. In other words, we seek to de- 

ermine the optimal values of α∗
i j 

, for all i, j ∈ N, which minimizes

he aggregate cost function 

∑ 

i ∈ N A i (e ∗) at equilibrium, where both 

 i and the effort equilibrium e ∗ depend on αi j . 

The search for alpha parameters which will lead to the EEE 

an be simplified by taking into account the bilateral indepen- 

ent interactions of agents. Note first that any pair of agents have 

 particular αi j , and second that the optimal effort made by any 

gent i ∈ N in regard to any agent j ∈ N\{ i } is independent of the

ptimal effort that agent i exerts in regard to any other agent 

 ∈ N\{ i, j} . Thus, minimizing 
∑ 

i ∈ N A i (e ∗) in terms of αi j is equiv-

lent to minimizing A i (e ∗) + A j (e ∗) , since each particular αi j only

ppears in A i (e ∗) and A j (e ∗) . Fortunately, the problem can be fur-

her simplified: Note that, A i (e ∗) and A j (e ∗) are the sums of dif-

erent terms, but αi j only appears in those terms related to the 

nteraction between i and j (see (5) ). These terms are c i (e ∗
i 
) −

i j (r i j (e ∗
ji 
) + r ji (e ∗

i j 
)) from A i (e ∗) , and c j (e ∗

j 
) − (1 − αi j )(r ji (e ∗

i j 
) +

 i j (e ∗
ji 
)) from A j (e ∗) . Thus, a new function A 

∗
i 
(αi j ) := c i (e ∗

i 
) −

i j (r i j (e ∗
ji 
) + r ji (e ∗

i j 
)) can be considered, and analogously A 

∗
j 
(1 −

i j ) . Note that 
∂ x (A i (e ∗)) 

∂αx 
i j 

= 

∂ x (A ∗
i 
(αi j )) 

∂αx 
i j 

and 

∂ x (A j (e ∗)) 

∂αx 
i j 

= 

∂ x (A ∗
j 
(1 −αi j )) 

∂αx 
i j 

or x = 1 , 2 , . . . . Therefore, for each pair i and j, it is possible to de-

ne the function L ∗
i j 
(αi j ) := A 

∗
i 
(αi j ) + A 

∗
j 
(1 − αi j ) . Hence, minimiz-

ng 
∑ 

i ∈ N A i (e ∗) is equivalent to minimizing L ∗
i j 
(αi j ) , with 

 

∗
i j (αi j ) = c i (e ∗i ) + c j (e ∗j ) 

−
[
αi j (r i j (e ∗ji ) + r ji (e ∗i j )) + (1 − αi j )(r ji (e ∗i j ) + r i j (e ∗ji )) 

]
= c i (e ∗i ) + c j (e ∗j ) − (r i j (e ∗ji ) + r ji (e ∗i j )) (6) 

The function L ∗
i j 
(αi j ) depends on αi j through the equilibrium 

ffort s e ∗
i j 

and e ∗
ji 

because they depend on αi j . We now focus on

nding the αi j that minimizes function L ∗
i j 
(αi j ) , and provide a pro- 

edure for finding the EEE for pairwise aggregate reduction. 
8 
We can summarize this reasoning as follows. 8 Let α = (αi ) i ∈ N 
nd αi = (αi j ) j∈ N\{ i } , then α∗ = arg min 

α∈ [0 , 1] n (n −1) 

∑ 

i ∈ N A i (e ∗) ⇔ α∗
ij 

= 

rg min 
αij ∈ [0 , 1] 

A i (e ∗) + A j (e ∗) for all i ∈ N ⇐⇒ α∗
i j 

= arg min 
αi j ∈ [0 , 1] 

c i (e ∗
i 
) −

i j (r i j (e ∗
ji 
) + r ji (e ∗

i j 
)) + c j (e ∗

j 
) − (1 − αi j )(r ji (e ∗

i j 
) + r i j (e ∗

ji 
)) for all

, j ∈ N, i � = j ⇔ α∗
ij 

= arg min 
αij ∈ [0 , 1] 

c i (e ∗
i 
) + c j (e ∗

j 
) − (r ji (e ∗

ij 
) + r ij (e ∗

ji 
)) for

ll i , j ∈ N, i � = j. As L ∗
i j 
(αi j ) = c i (e ∗

i 
) + c j (e ∗

j 
) − (r i j (e ∗

ji 
) + r ji (e ∗

i j 
)) ,

hen α∗
ij 

= arg min 
αij ∈ [0 , 1] 

L ∗
i j 
(αi j ) for all i j ∈ N, i � = j. 

For any effort game considered here, there are only six possi- 

le distributions of the lower and upper thresholds of the alpha 

arameter. 9 These cases are 

ase A αij < αij < 1 − αji < 1 − αji 

ase B αij < 1 − αji < αij < 1 − αji 

Case C αij < 1 − αji < 1 − αji < αij 

ase D 1 − αji < αij < αij < 1 − αji 

Case E 1 − αji < αij < 1 − αji < αij 

Case F 1 − αji < 1 − αji < αij < αij 

(7) 

The last theorem characterizes the optimal α∗
i j 

in cases A-F. 

hus, Theorem 5 provides the α∗
i j 

that incentivizes an efficient ef- 

ort equilibrium for WPAR. 10 In Theorem 5 we use the following 

otation: 

1. α̌[ a,b] 
i j 

∈ [ a, b] with 0 ≤ a < b ≤ 1 is: 

α̌[ a,b] 
ij 

= 

⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

a if 
∂(L ∗

ij 
(αij )) 

∂αij 
> 0 for all αij ∈ [ a, b] 

b if 
∂(L ∗

ij 
(αij )) 

∂αij 
< 0 for all αij ∈ [ a, b] 

Solution of 
∂(L ∗

ij 
(αij )) 

∂αij 
= 0 otherwise 

2. �(α) = 

{ 

0 if α < 0 

α if α ∈ ( 0 , 1 ) 
1 if α > 1 

heorem 5. Let (N, { E i } i ∈ N , { A i } i ∈ N ) be an effort game, and

 

∗
i j 
(αi j ) = c i (e ∗

i 
) + c j (e ∗

j 
) − (r i j (e ∗

ji 
) + r ji (e ∗

i j 
)) . The optimal solution

∗
i j 

= arg min 
αi j ∈ [0 , 1] 

L ∗
i j 
(αi j ) is in each case, 

Case A α∗
i j 

is any element of [ ̄αi j , 1 − ᾱ ji ] . 
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11 In WPAR, for each pair of agents i, j ∈ N, i � = j, the weight αi j is not always 1, 

because ∂A i (e ) 
∂e i j 

= 

∂c i (e i ) 
∂e i j 

− αi j 
∂r ji (e i j ) 

∂e i j 
and 

∂A j (e ) 

∂e ji 
= 

∂c j (e j ) 

∂e ji 
− α ji 

∂r i j (e ji ) 

∂e ji 
but αi j = 1 − α ji . 

Note that if αi j = 1 , then α ji = 0 and the derivative conditions for efficiency in 

Proposition 3 would be violated. Bear in mind that the weights ω 

i 
ji 

that appear 

in each derivative ∂�i (e ) 
∂e i j 

for i, j ∈ N, i � = j are independent of one another. However, 

the weights αi j that appear in the each derivative ∂A i (e ) 
∂e i j 

for i, j ∈ N, i � = j are not, 

because αi j = 1 − α ji . In addition, it is known that ω 

i 
i j 

= ω 

i 
ji 

= αi j in WPAR for all 

i, j ∈ N, i � = j, where ω 

i 
i j 

= 1 − ω 

j 
i j 

and ω 

i 
ji 

= 1 − ω 

j 
ji 
. The fact that pairwise cost re- 

duction is aggregated by αi j in the subfamily WPAR means that it is not possible to 

apply the efficient argument used for the WPR family. 
Case B α∗
i j 

= α̌
[1 −ᾱ ji , ̄αi j ] 

i j 

Case C 

α∗
i j 

= 

{
any element of [ ̄αi j , 1] if αC = �( ̄αi j ) and �( ̄αi j ) < 1 

αC otherwise 

where 

αC = arg min { L ∗
i j 
( ̌α

[ 1 −ᾱ ji , 1 −α ji ] 
i j 

) , L ∗
i j 
(�( ̄αi j )) } . 

Case D 

α∗
i j 

= 

{ 

any element of [0 , 1 − ᾱ ji ] if α
D = �(1 − ᾱ ji ) and �(1 − ᾱ ji ) > 

αD otherwise 

where 

αD = arg min { L ∗
i j 
(�(1 − ᾱ ji )) , L 

∗
i j 
( ̌α

[ αi j , ̄αi j ] 
i j 

) } . 
Case E 

α∗
i j 

= 

{ 

any element of [0 , 1 − ᾱ ji ] if α
E = �(1 − ᾱ ji ) and �(1 − ᾱ ji ) > 0

any element of [ ̄αi j , 1] if αE = �( ̄αi j ) and �( ̄αi j ) < 1 
αE otherwise 

where 

αE = arg min { L ∗
i j 
(�(1 − ᾱ ji )) , α̌

[ αi j , 1 −α ji ] 
i j 

, L ∗
i j 
(�( ̄αi j )) } . 

Case F 

α∗
i j 

= 

{ 

any element of [0 , 1 − ᾱ ji ] if α
F = �(1 − ᾱ ji ) and �(1 − ᾱ ji ) > 0

any element of [ ̄αi j , 1] if αF = �( ̄αi j ) and �( ̄αi j ) < 1 
αF otherwise 

where 

αF = arg min { L ∗
i j 
(�(1 − ᾱ ji )) , L 

∗
i j 
(�( ̄αi j )) } . 

To conclude the section, we describe a procedure for finding an 

fficient effort in equilibrium induced by the WPAR family. 

EEE PROCEDURE 

Given an effort game (N, { E i } i ∈ N , { A i } i ∈ N ) 
1. we first calculate the lower and upper thresholds of the bilat- 

eral interaction between any pair of agents by using Definition 

; 

2. we then focus on the list (7) and determine which case (A-F) 

applies; 

3. Theorem 5 provides an optimal α∗
i j 

for all i, j ∈ N to minimize 

the centralized (aggregate) cost allocation 

∑ 

i ∈ N A i (e ∗) ; 
4. with this α∗

i j 
Theorem 4 gives the associated efficient effort 

equilibrium (e ∗
i j 
, e ∗

ji 
) for every pair of agents, and thus an ef-

ficient effort equilibrium e ∗ for the game; 

5. at this point the optimal cost allocation that incentivizes agents 

i, j ∈ N to make an efficient effort equilibrium e ∗
i j 

and e ∗
ji 

is 

known, i.e. 

A 

∗
i ( e 

∗) = c i 
(
e ∗i 

)
−

∑ 

j∈ N\ { i } 
α∗

ij 

[
r ij 

(
e ∗ji 

)
+ r ji 

(
e ∗ij 

)]
. 

We illustrate this procedure with the 3-firm case given in 

Example 2 in Section 6 . 

. Comparison of WPR and WPAR families 

We complete the study of our model of cooperation with 

airwise cost reduction by comparing the two families of core- 

llocations analyzed. We find that there is a loss of efficiency when 

ooperation is restricted to a pairwise aggregate cost reduction. 

hat loss of efficiency can be measured. In addition, we show that 

hose agents who receive less than the total reduction generated 

nd bear the total cost of this effort always exert less effort than 

he efficient agent. 

As mentioned above, the allocation rule H(e ) induces an equi- 

ibrium effort e ∗H that matches the efficient effort of Proposition 3 , 

.e. e ∗H = ˜ e . This means that there is no rule that generates a lower

ost of the grand coalition, see Corollary 1 . However, as also men- 

ioned above, WPAR is a subfamily of WPR, but H(e ) is not in

PAR, so e ∗A is not always equal to e ∗H . 

Let A 

∗(e ) be the allocation rule in WPAR that induces the effort

rofile e ∗A ∗ that minimizes the cost of the grand coalition, i.e. the 
9 
fficient allocation in this subfamily. The difference, in terms of ef- 

ciency, between the cost of the grand coalition with e ∗A ∗ and ẽ 

an be measured. Note that for any particular functions c i (e i ) and 

 i j (e ji ) for i , j ∈ N, i � = j, the associated e ∗A ∗ and ˜ e can be obtained.

et 
 be this difference or loss of efficiency, where 

= 

∑ 

i ∈ N 
[ c i (e ∗A ∗

i ) −
∑ 

j∈ N\{ i } 
r i j (e ∗A ∗

ji )] −
∑ 

i ∈ N 
[ c i ( ̃  e i ) −

∑ 

j∈ N\{ i } 
r i j ( ̃  e ji )] . 

(8) 

The following proposition shows the relation between effort s 

 

∗A ∗ and ˜ e . The proof of Proposition appears in Appendix B. 

roposition 4. Let e ∗A ∗
i j 

for i , j ∈ N, i � = j be the equilibrium efforts

f A 

∗(e ) , that minimize the cost of the grand coalition in the family

PAR. Thus, the efficient effort ˜ e i j ≥ e ∗A ∗
i j 

for all i , j ∈ N, i � = j. 

As mentioned above, when an agent receives less than the total 

eduction that it generates and bears the total cost of that effort, 

hen that agent always exerts less effort than the efficient one 

Finally, readers may think that the rationale behind the efficient 

ule, H(e ) , in the WPR family, could also apply to the WPAR family.

owever, this is not the case. To reach an efficient effort equilib- 

ium in the WPR family, for each pair of agents i, j ∈ N, i � = j, the

eight ω 

i 
ji 

must be 1, because 
∂�i (e ) 

∂e i j 
= 

∂c i (e i ) 

∂e i j 
− ω 

i 
ji 

∂r ji (e i j ) 

∂e i j 
, and ω 

j 
i j 

ust also be 1, because 
∂� j (e ) 

∂e ji 
= 

∂c j (e j ) 

∂e ji 
− ω 

j 
i j 

∂r i j (e ji ) 

∂e ji 
. However, this 

s no longer true for the WPAR family. 11 

The following example with three agents illustrates the compar- 

son of the two core allocation families and completes the paper. 

xample 2. Consider a pairwise inter-organizational situation 

ith three firms, i.e. N = { 1 , 2 , 3 } . For any effort profile e ∈
0 , 1] 6 , the PE-situation is given by the following initial costs, 

c 1 (e 12 , e 13 ) = 100 + 100 e 12 + 4 e 2 
12 

+ 100 e 13 + 4 e 2 
13 

c 2 (e 21 , e 23 ) = 100 + 100 e 21 + 4 e 2 
21 

+ 100 e 23 + 4 e 2 
23 

c 3 (e 31 , e 32 ) = 100 + 100 e 31 + 4 e 2 31 + 100 e 32 + 4 e 2 32 

nd the following pairwise reduced costs, all of them in thousands 

f Euros, 

r i 1 (e 1 i ) = 2 + 110 e 1 i − 2 e 2 
1 i 

with i = 2 , 3 

r i 2 (e 2 i ) = 2 + 105 e 2 i − 3 e 2 
2 i 

with i = 1 , 3 

r i 3 (e 3 i ) = 2 + 105 e 3 i − 3 e 2 
3 i 

with i = 1 , 2 

By Definition 3 , the pair of firms { 1 , 2 } has the thresholds α12 =
 . 91 , ᾱ12 = 1 . 02 , α21 = 0 . 95 , and ᾱ21 = 1 . 09 , which correspond to

ase F in the Table 7 . By using Theorem 5 , it can easily be checked

hat αF = �( ̄α12 ) < 1 and α∗
12 

= 1 . Thus, by Theorem 4 , e ∗
12 

=
 . 833 , e ∗21 = 0 . As firms 2 and 3 are identical, α∗

13 = 1 , e ∗13 = 0 . 833

nd e ∗
31 

= 0 . Finally, for the pair { 2 , 3 } , α23 = 0 . 95 , ᾱ23 = 1 . 09 ,

32 = 0 . 95 , and ᾱ32 = 1 . 09 . This is again Case F. Note that in case F,
F = arg min { L ∗23 (�(1 − ᾱ32 )) , L 

∗
23 (�( ̄α23 )) } , where in this partic-

lar case L ∗
23 

(�(1 − ᾱ32 )) = L ∗
23 

(�( ̄α23 )) with �(1 − ᾱ32 ) = 0 and
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( ̄α23 ) = 1 Thus, two solutions emerge: (i) e ∗23 = 0 . 357 , e ∗32 = 0 ,

nd α∗
23 = 1 , and (ii) e ∗23 = 0 , e ∗32 = 0 . 357 , and α∗

23 = 0 . Therefore,

here are two EEE in WPAR. 

(i) e ∗
12 

= e ∗
13 

= 0 . 833 , e ∗
21 

= 0 , e ∗
23 

= 0 . 357 , e ∗
31 

= e ∗
32 

= 0 

(ii) e ∗12 = e ∗13 = 0 . 833 , e ∗21 = e ∗23 = 0 , e ∗31 = 0 , e ∗32 = 0 . 357 

We now calculate the efficient effort s in this example by 

roposition 3 . They are the solutions of c ′ 
i 
(e i j ) − r ′ 

ji 
(e i j ) = 0 , thus,

˜  12 = ˜ e 13 = 0 . 833 , and ˜ e 21 = ˜ e 23 = ˜ e 31 = ˜ e 32 = 0 . 357 . Note that by

heorem 3 these effort s are also the effort equilibrium obtained 

y the allocation rule H(e ) . 

This example is a particular subcase of Case F. This implies that 
∗
i j 

is zero or one, which in turn implies that one of the agents 

akes no effort and the other makes the efficient value. However, 

hey are never able to make the efficient effort simultaneously un- 

er WPAR. The loss of efficiency in WPAR with regard to WPR can 

e calculated with the help of (8) . 

= 

∑ 

i ∈ N [ c i (e ∗A ∗
i 

) − ∑ 

j∈ N\{ i } r ij (e ∗A ∗
ji 

)] − ∑ 

i ∈ N [ c i ( ̃  e i ) −
 

j∈ N\{ i } r ij ( ̃  e ji )] = 278 . 776 − 276 . 104 = 2 . 67 . 

. Conclusions and future research 

This paper presents a model of cooperation with pairwise cost 

eduction. The direct impact of pairwise effort on cost reductions 

s investigated by means of a bi-form game. First, the agents deter- 

ine the level of pairwise effort to be made to reduce the costs 

f their partners. Second, they participate in a bilateral interac- 

ion with multiple independent partners where the cost reduction 

hat each agent gives to another agent is independent of any possi- 

le coalition. As a result of cooperation, agents reduce each other’s 

osts. In the non-cooperative game that precedes cooperation, the 

gents anticipate the cost allocation that will result from the co- 

perative game by incorporating the effect of the effort made into 

heir cost functions. We show that all-included cooperation is fea- 

ible, in the sense that there are possible cost reductions that make 

ll agents better off (or, at least, not worse off), and consistent. We 

hen identify a family of feasible cost allocations with weighted 

airwise reduction. One of these cost allocations is selected by tak- 

ng into account the incentives generated in the effort s that agents 

ake, and consequently in the total cost of coalitions. Surprisingly, 

e find that the Shapley value, which coincides with the Nucleolus 

n this model, can induce inefficient effort strategies in equilibrium 

n the non-cooperative model. However, it is always possible to se- 

ect a core-allocation with appropriate pairwise weights that can 

enerate an efficient effort. 

Future research could take any of several directions. First, this 

aper assumes that the individual effort cost function c i (e i ) is in- 

ependent of the effort of other agents, and that the marginal cost 
∂c i (e i ) 

∂e i j 
is independent of the effort that i makes in regard to agents 

ther than j, i.e. 
∂c 2 

i 
(e i ) 

∂ e i j ∂ e ih 
= 0 . We make a similar assumption with 

he cost reduction function r i j (e ∗
ji 
) . There is some degree of in-

ependence between effort s. This is a reasonable assumption in 

any contexts, but in some settings different assum ptions might 

e needed. For example, there are situations with strategic com- 

lementarity in which the efforts of agents reinforce each other. In 

uch cases the cost function is supermodular. In other cases there 

s strategic substitutability, so that efforts offset each other and the 

unction is submodular. Focusing on the effort cost function of one 

gent, if 
∂c 2 

i 
(e i ) 

∂ e i j ∂ e ih 
> 0 then there is complementarity between the 

ffort s, and if 
∂c 2 

i 
(e i ) 

∂e i j ∂e ih 
< 0 , then there is substitutability. This is a 

ery interesting future extension. It could also be worth consider- 

ng this complementarity/substitutability not only between the dif- 

erent effort s that one agent makes in regard to other agents but 

lso between the effort s made by different agents. This assump- 
10 
ion can be made on both the effort cost functions and the cost 

eduction function. Obviously, complementarity on the effort cost 

unction has the opposite effect to that on the cost reduction func- 

ion. 

The second direction is close to the first. The pairwise total 

ost reduction could be considered as a general function which 

s increasing in the effort s e i j and e ji , that is R i j (e i j , e ji ) . In

ur model, this function is additively separable, i.e. R i j (e i j , e ji ) =
 i j (e ji ) + r ji (e i j ) . However, as mentioned above, there could be sit-

ations with strategic complementarity or substitutability in which 

he effort s of agent s reinf orce or offset each other. In that case, the

unction R i j (e i j , e ji ) would not be separable. This is also an inter-

sting question for analysis. 

Another direction is related to the assumption of bilateral inter- 

ction between agents. This has the advantage of being analytically 

ore tractable and is widely applied in practice (e.g., [35–37] ), but 

verall interaction between agents, dependent on groups, is an im- 

ortant factor that we believe does not affect the success of coop- 

ration. One possible future extension would be to investigate the 

ooperative model with multiple cost reduction and the impact of 

he effort s made on those cost reductions. 

Finally, we identify a large family of core-allocations with 

eighted pairwise reduction which contains the Shapley value and 

he Nucleolus and always provides a level of efficient effort in 

quilibrium. This family is very rich in itself, as a set solution con- 

ept for our cooperative model. Research into this core-allocation 

amily can be furthered through an in-depth analysis of its struc- 

ure and its geometric relationship to the core. 
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ppendix A 

Proposition 1 , in Section 3 , shows that PE-games are always 

oncave. To prove this, the class of unanimity games must be de- 

cribed. In [39] , it is proved that the family of unanimity games 



J.A. García-Martínez, A.J. Mayor-Serra and A. Meca Omega 121 (2023) 102920 

{  

s  

u

c

g

c

P  

(

b

f

c

c

i

−  

a  

t

r

t  

t

G

f

a

S

 

 

 

 

P

a

c

 

φ

φ

φ

a

φ

E

φ

φ

P

w

t

 

i  

s  

M  

e

w

w

c  

w  

[  

a

M  

c

 

G

P

w  

i  

1  

l∑
 

b  ∑
e

 (N, u T ) , T ⊆ N} forms a basis of the vector space of all games with

et of players N, where (N, u T ) is defined for each S ⊆ N as follows:

 T (S) = 

{
1 , T ⊆ S 
0 , otherwise 

Hence, for each cost game (N, c) there are unique real coeffi- 

ients (αT ) T ⊆N such that c = 

∑ 

T ⊆N αT u T . Many different classes of 

ames, including airport games ( [24] ) and sequencing games ( [38] ), 

an be characterized through constraints on these coefficients. 

Proof of Proposition 1 

roof. Let (N, e, { c i (e i ) , { r ji (e i j ) } j∈ N\{ i } } i ∈ N ) be a PE-situation and

N, e, c) the associated PE-game. First, we prove that this game can 

e rewritten as a weighted sum of unanimity games u { i } and u { i, j} 
or all i, j ∈ N as follows: 

 = 

∑ 

i ∈ N 
c i (e i ) u { i } −

∑ 

i, j∈ N;i � = j 
r i j (e ji ) u { i, j} . (9) 

Indeed, for all S ⊆ N, 

(S) = 

∑ 

i ∈ N 
c i (e i ) u { i } (S) −

∑ 

i, j∈ N;i � = j 
r i j (e ji ) u { i, j} (S) 

= 

∑ 

i ∈ S 
c i (e i ) −

∑ 

i, j∈ S;i � = j 
r i j (e ji ) = 

∑ 

i ∈ S 
c i (e i ) −

∑ 

i ∈ S 

∑ 

j∈ S\{ i } 
r i j (e ji ) . 

It is easily shown that the additive game 
∑ 

i ∈ N c i (e i ) u { i } 
s concave and that u { i, j} is convex. Thus, the game ∑ 

i, j∈ N;i � = j r i j (e ji ) u { i, j} is concave because of r i j (e ji ) > 0 for

ll i, j ∈ N. Finally, the concavity of (N, e, c) follows from the fact

hat game c is the sum of two concave games. �

The Theorem 1 , in Section 3 , shows that the Shapley value 

educes the individual cost of an agent by half the total reduc- 

ion that it obtains from the others ( R i (N) ) plus a half of the to-

al reduction that it provides to the rest of the agents, which is 

 i (N) = 

∑ 

j∈ N\{ i } r ji (e i j ) . 

The Shapley value is the only allocation rule that satisfies the 

our properties of Efficiency, Equal treatment of equals, Linearity 

nd Null player. Next, we describe all of these properties of the 

hapley value, which are useful in demonstrating the Theorem 1 . 

(EFF) Efficiency . The sum of the Shapley values of all agents 

equals the value of the grand coalition, so all the gain is al- 

located to the agents: ∑ 

i ∈ N 
φi ( c ) = c(N) . (10) 

(ETE) Equal treatment of equals . If i and j are two agents who 

are equivalent in the sense that c(S ∪ { i } ) = c(S ∪ { j} ) for ev-

ery coalition S of N which contains neither i nor j, then 

φi (c) = φ j (c) . 

(LIN) Linearity . If two cost games c and c ∗ are combined, then 

the cost allocation should correspond to the costs derived 

from c and the costs derived from c ∗: 

φi (c + c ∗) = φi (c) + φi (c ∗) , ∀ i ∈ N. (11)

Also, for any real number a , 

φi (ac) = aφi (c) , ∀ i ∈ N. (12) 

(NUP) Null Player . The Shapley value φi (c) of a null player i in

a game c is zero. A player i is null in c if c(S ∪ { i } ) = c(S) for

all coalitions S that do not contain i. 

roof of the Theorem 1. Consider the PE-game (N, e, c) rewritten 

s a weighted sum of unanimity games given by (9) , i.e. 

 = 

∑ 

i ∈ N 
c i (e i ) u { i } −

∑ 

i, j∈ N;i � = j 
r i j (e ji ) u { i, j} . 
11 
Take an agent k ∈ N. By the (LIN) property of the Shapley value,

k (e ) , it follows that 

k (e ) = φk 

(∑ 

i ∈ N 
c i (e i ) u { i } 

)
− φk 

( ∑ 

i, j∈ N;i � = j 
r i j (e ji ) 

(
u { i, j} 

))
= 

∑ 

i ∈ N 
c i (e i ) φk 

(
u { i } 

)
− ∑ 

i ∈ N 

∑ 

j∈ N\{ i } 
r i j (e ji ) φk 

(
u { i, j} 

)
. 

(13) 

In addition, it is known from the (NUP) property that 

k 

(
u { i } 

)
= 

{
1 , i = k 
0 , otherwise 

(14) 

nd from (ETE) and (NUP), that 

k 

(
u { i, j} 

)
= 

{
1 / 2 , i = k, j = k, i � = j 
0 , otherwise 

(15) 

Consequently, by substituting the values (14) and (15) in 

q. (13) , the following is obtained: 

k (e ) = c k (e k ) −
∑ 

j∈ N\{ k } 
r k j (e jk ) φk 

(
u { k, j} 

)
−

∑ 

j∈ N\{ k } 
r jk (e k j ) φk 

(
u { j,k } 

)
= c k (e k ) −

1 

2 

∑ 

j∈ N\{ k } 
[ r k j (e jk ) + r jk (e k j )] . 

Finally, it can be concluded that, for each agent k ∈ N, 

k (e ) = c k (e k ) −
1 

2 

[ R k (N) + G k (N)] . 

�

roof of Proposition 2. To prove that the Shapley value coincides 

ith the Nucleolus for PE-games, it is first necessary to describe 

he class of PS-games introduced by [39] . 

Denote by M i c(T ) the marginal contribution of player i ∈ T , that

s M i c(T ) = c(T ) − c(T \ { i } ) , for all i ∈ T ⊆ N. A cost game (N, c)

atisfies the PS property if for all i ∈ N there exists k i ∈ R such that

 i c(T ∪ { i } ) + M i c(N \ T ) = k i , for all i ∈ N and all T ⊆ N \ { i } . Kar

t al. [39] show that for PS games, the Shapley value coincides 

ith the Nucleolus, i.e. φi (c) = νi (c) = 

k i 
2 , for all i ∈ N. 

Therefore, it only remains to show that (N, e, c) is a PS-game 

ith k i = [ c i (e i ) − R i (N)] + [ c i (e i ) − G i (N)] , for all i ∈ N. 

First, it is straightforward to prove that M i c(T ) = 

 i (e i ) −
∑ 

j∈ T \{ i } [ r ji (e i j ) + r i j (e ji )] for all i ∈ T ⊆ N. Second,

e show that M i c(T ∪ { i } ) + M i c(N \ T ) = [ c i (e i ) − R i (N)] +
 c i (e i ) − G i (N)] for all i ∈ N and T ⊆ N \ { i } . Indeed, take

 coalition T ⊆ N and an agent i ∈ T . It is shown that 

 i c(T ∪ { i } ) = c i (e i ) −
∑ 

j∈ T 
(
r ji (e i j ) + r i j (e ji ) 

)
, and M i c(N \ T ) =

 i (e i ) −
∑ 

j∈ N\ (T ∪{ i } ) 
(
r ji (e i j ) + r i j (e ji ) 

)
. Therefore, 

M i c(T ∪ { i } ) + M i c(N \ T ) = 2 c i (e i ) −
∑ 

j∈ N\{ i } 
(
r ji (e i j ) + r i j (e ji ) 

)
=[

c i (e i ) −
∑ 

j∈ N\{ i } r i j (e ji ) 
]

+ 

[
c i (e i ) −

∑ 

j∈ N\{ i } r ji (e i j ) 
]
. 

Hence, M i c(T ∪ { i } ) + M i c(N \ T ) = [ c i (e i ) − R i (N)] + [ c i (e i ) −
 i (N)] = k i ) , and so (N, e, c) is a PS game. �

roof of Theorem 2. Consider the PE-game (N, e, c) associated 

ith the PE-situation (N, e, { c i (e i ) , { r i j (e i j ) } j∈ N\{ i } } i ∈ N ) . Take a fam-

ly of weights ω 

i 
i j 
, ω 

i 
ji 

∈ [0 , 1] , for all j ∈ N\{ i } , such that ω 

i 
i j 

=
 − ω 

j 
i j 

and ω 

i 
ji 

= 1 − ω 

j 
ji 

, and �(e ) the corresponding cost al-

ocation with weighted pairwise reduction with �i (e ) = c i (e i ) −
 

j∈ N\{ i } [ ω 

i 
i j 

r i j (e ji ) + ω 

i 
ji 

r ji (e i j )] , for all i ∈ N. To prove that �(e )

elongs to the core of (N, e, c) it must be checked that (1)
 

i ∈ N �i (e ) = c(N) , (2) 
∑ 

i ∈ S �i (e ) ≤ c(S) , for all S ⊂ N. 

We start by checking (1). Notice that 
∑ 

i ∈ N �i (e ) = c(N) is 

quivalent to ∑ 

i ∈ N 
∑ 

j∈ N\{ i } [ ω 

i 
i j 

r i j (e ji ) + ω 

i 
ji 

r ji (e i j )] = 

∑ 

i ∈ N 
∑ 

j∈ N\{ i } r i j (e ji ) . 

Indeed, 
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12 This occurs because A i (e ) is an increasing function in e i j and the minimum 

value is obtained for ˆ e i j = 0 , which is the optimal effort for agent i. 
∑ 

i ∈ N 
∑ 

j∈ N\{ i } [ ω 

i 
i j 

r i j (e ji ) + ω 

i 
ji 

r ji (e i j )] = 

∑ 

i ∈ N 
∑ 

j∈ N\{ i } (ω 

i 
i j 

+ 

 

j 
i j 
) r i j (e ji ) = 

∑ 

i ∈ N 
∑ 

j∈ N\{ i } r i j (e ji ) , where the last equality is due

o ω 

i 
i j 

+ ω 

j 
i j 

= 1 for all i, j ∈ N. 

Next we check (2). Take S ⊂ N. Notice now that 
∑ 

i ∈ S �i (e ) ≤
(S) is equivalent to ∑ 

i ∈ S 
∑ 

j∈ N\{ i } [ ω 

i 
i j 

r i j (e ji ) + ω 

i 
ji 

r ji (e i j )] − ∑ 

i ∈ S 
∑ 

j∈ S\{ i } r i j (e ji ) ≥ 0 . 

Indeed, an argument similar to that used in (1) leads to ∑ 

i ∈ S 
∑ 

j∈ N\{ i } [ ω 

i 
i j 

r i j (e ji ) + ω 

i 
ji 

r ji (e i j )] − ∑ 

i ∈ S 
∑ 

j∈ S\{ i } r i j (e ji ) = ∑ 

i ∈ S 
∑ 

j∈ S\{ i } [ ω 

i 
i j 

r i j (e ji ) + ω 

i 
ji 

r ji (e i j )] + 

 

i ∈ S 
∑ 

j∈ N\ S∪{ i } [ ω 

i 
i j 

r i j (e ji ) + ω 

i 
ji 

r ji (e i j )] − ∑ 

i ∈ S 
∑ 

j∈ S\{ i } r i j (e ji ) = ∑ 

i ∈ S 
∑ 

j∈ S\{ i } r i j (e ji ) + 

∑ 

i ∈ S 
∑ 

j∈ N\ S∪{ i } [ ω 

i 
i j 

r i j (e ji ) + ω 

i 
ji 

r ji (e i j )] −
 

i ∈ S 
∑ 

j∈ S\{ i } r i j (e ji ) = ∑ 

i ∈ S 
∑ 

j∈ N\ S∪{ i } [ ω 

i 
i j 

r i j (e ji ) + ω 

i 
ji 

r ji (e i j )] ≥ 0 . �

ppendix B 

Proof of Proposition 3 

To prove this result it is necessary to analyze c(N) as a func- 

ion of e . First, It is easy to prove that c(N) is strictly convex in e i j 

or all i , j ∈ N, i � = j. Indeed, ∂ 2 c(N) 

∂e 2 
i j 

= 

∂ 2 c i (e i ) 

∂e 2 
i j 

− ∂ 2 r ji (e i j ) 

∂e 2 
i j 

> 0 , because

∂ 2 c i (e i ) 

∂e 2 
i j 

> 0 and 

∂ 2 r ji (e i j ) 

∂e 2 
i j 

< 0 . Thus, there is a unique effort profile ẽ

hat minimizes c(N) . 

Second, we focus on finding this efficient effort profile ˜ e . Note 

hat the derivative ∂c(N) 
∂e i j 

= 

∂c i (e i ) 

∂e i j 
− ∂r ji (e i j ) 

∂e i j 
only depends on e i j be- 

ause 
∂c 2 

i 
(e i ) 

∂ e i j ∂ e ih 
= 0 for all h � = i, j. Therefore, if 

∂c i (e i ) 

∂e i j 
> 

∂r ji (e i j ) 

∂e i j 
for all

 i j ∈ [0 , 1] , then the function c(N) is increasing in e i j , which im-

lies that ˜ e i j = 0 . Analogously, if 
∂c i (e i ) 

∂e i j 
> 

∂r ji (e i j ) 

∂e i j 
for all e i j ∈ [0 , 1] ,

hen ˜ e i j = 1 . Finally, if there is a solution of 
∂c i (e i ) 

∂e i j 
= 

∂r ji (e i j ) 

∂e i j 
, that

olution is ˜ e i j . �
Proof of Lemma 1 

Consider the non-cooperative game (N, { E i } i ∈ N , { �i } i ∈ N ) . To

earn the optimal level of effort ˆ e i j that agent i must exert to re- 

uce the costs of agent j in this game, it is necessary to analyze 

he function �i (e ) = c i (e i ) −
∑ 

j∈ N\{ i } [ ω 

i 
i j 

r i j (e ji ) + ω 

i 
ji 

r ji (e i j )] for all

 ∈ N with ω 

i 
i j 
, ω 

i 
ji 

∈ [0 , 1] , i , j ∈ N, i � = j, such that ω 

i 
i j 

= 1 − ω 

j 
i j 

and

 

i 
ji 

= 1 − ω 

j 
ji 

. 

As above, we also prove that the function �i (e ) is strictly 

onvex in e i j . Indeed, 
∂ 2 

i 
�(e ) 

∂e 2 
i j 

= 

∂ 2 c i (e i ) 

∂e 2 
i j 

− ω 

i 
ji 

∂ 2 r ji (e i j ) 

∂e 2 
i j 

> 0 because 

∂ 2 c i (e i ) 

∂e 2 
i j 

> 0 and 

∂ 2 r ji (e i j ) 

∂e 2 
i j 

< 0 . Hence, there is a unique optimal level 

f effort ˆ e . 

Again, we focus on finding this optimal level of effort ˆ e . We 

now that 
∂�i (e ) 

∂e i j 
= 

∂c i (e i ) 

∂e i j 
− ω 

i 
ji 

∂r ji (e i j ) 

∂e i j 
, but 

∂c i (e i ) 

∂e i j 
only depends on 

 i j , because 
∂c 2 

i 
(e i ) 

∂ e i j ∂ e ih 
= 0 for all h � = i, j. Moreover, for all e i j ∈ [0 , 1] ,

∂�ii (e ) 

∂e i j 
≥ 0 ⇐⇒ 

∂c i (e i ) 

∂e i j 
≥ ω 

i 
ji 

∂r ji (e i j ) 

∂e i j 
. 

Therefore, if 
∂c i (e i ) 

∂e i j 
> ω 

i 
ji 

∂r ji (e i j ) 

∂e i j 
for all e i j ∈ [0 , 1] , then ˆ e i j = 0 . If

∂c i (e i ) 

∂e i j 
< ω 

i 
ji 

∂r ji (e i j ) 

∂e i j 
for all e i j ∈ [0 , 1] , then ˆ e i j = 1 . Finally, if there is

 solution of 
∂c i (e i ) 

∂e i j 
= ω 

i 
ji 

∂r ji (e i j ) 

∂e i j 
, that solution is ˆ e i j and is unique. 

ence, there is a unique optimal level of effort. �
Proof of Theorem 3 

Now consider the non-cooperative game (N, { E i } i ∈ N , { H i } i ∈ N ) .
ote that, both derivative functions 

∂c i (e i ) 

∂e i j 
and 

∂r ji (e i j ) 

∂e i j 
only de- 

end on e i j . Thus, by Lemma, the optimal level of effort of a par-
12 
icular agent i ∈ N with another particular agent j ∈ N\{ i } , i.e. ˆ e i j ,

s independent of any other effort made by i or by any other agent.

hus, the equilibrium is also characterized by Lemma with ω 

i 
ji 

= 1 

or i , j ∈ N, i � = j. Comparing Lemma 1 with Proposition, it follows

irectly that the equilibrium must also be efficient. �
Proof of Corollary 1 

This is straightforward from the proof of Theorem 3 �
Proof of Proposition 4 

Take A 

∗(e ) the allocation rule in WPAR with α∗
i j 

for all i, j ∈ N

hich induces the effort profile e ∗A ∗ that minimizes the cost of the 

rand coalition. Since WPAR is a subfamily of WPR in which ω 

i 
i j 

= 

 

j 
i j 

= αi j ∈ [0 , 1] for all i, j ∈ N, by Lemma 1 the optimal level of

ffort f or A 

∗(e ) can be also characterized. 

Thus, the efforts are optimal in equilibrium and so e ∗A ∗ must 

old that 

e ∗A ∗
i j 

= 0 if and only if 
∂c i (e i ) 

∂e i j 
> α∗

i j 

∂r ji (e i j ) 

∂e i j 
, for all e i j ∈ [0 , 1] , 

e ∗A ∗
i j 

= 1 if and only if 
∂c i (e i ) 

∂e i j 
< α∗

i j 

∂r ji (e i j ) 

∂e i j 
, for all e i j ∈ [0 , 1] , 

Otherwise, e ∗A ∗
i j 

∈ (0 , 1) so 
∂c i (e i ) 

∂e i j 

∣∣∣
e i j = e ∗A ∗

i j 

= α∗
i j 

∂r ji (e i j ) 

∂e i j 

∣∣∣
e i j = e ∗A ∗

i j 

olds. 

Comparing the above expressions with Proposition 3 and taking 

nto account that 
∂c i (e i ) 

∂e i j 
is a positive increasing function, 

∂r ji (e i j ) 

∂e i j 
a 

ositive decreasing function, and α∗
i j 

∈ [0 , 1] , it can be concluded 

hat ˜ e i j ≥ e ∗A ∗
i j 

for all i , j ∈ N. �

ppendix C 

Theorem 4 , in Section 5 , characterizes all possible types of ef- 

ort equilibrium according to the value of the parameter αi j , for all 

, j ∈ N, i � = j. Before proving this theorem, we consider a previous

emma that is very useful for latter results. It characterizes the op- 

imal effort level for agent i ∈ N in the first stage non-cooperative 

ame. 

emma 2. Let (N, { E i } i ∈ N , { A i } i ∈ N ) be the effort game, with ˆ e i j being

he optimal level of effort that agent i exerts to reduce the costs of 

gent j. Thus, 

1. ˆ e i j = 0 if and only if αi j ≤ αi j 

2. There is a unique ˆ e i j ∈ (0 , 1) that holds c ′ 
i 
( ̂  e i j ) − αi j r 

′ 
ji 
( ̂  e i j ) = 0 if

and only if αi j < αi j < ᾱi j . 

3. ˆ e i j = 1 if and only if αi j ≥ ᾱi j . 

roof. First, remember that the cost function A i (e ) is convex for 

ll i ∈ N. To obtain the optimal effort, the derivative of this func- 

ion can be analyzed with respect to e i j for any j ∈ N\{ i } . It must

e noted that 
∂A i (e ) 

∂e i j 
> 0 ⇐⇒ c ′ 

i 
(e i j ) > αi j r 

′ 
ji 
(e i j ) for all e i j ∈ [0 , 1] ,

hich is a necessary and sufficient condition for ˆ e i j = 0 to be the 

ptimal effort. 12 

We begin by proving point 1. Note that αi j = 

c ′ 
i 
(0) 

r ′ 
ji 
(0) 

< 

c ′ 
i 
(e i j ) 

r ′ 
ji 
(e i j ) 

be- 

ause c ′ 
i 
> 0 , r ′ 

ji 
> 0 , c ′′ 

i 
> 0 , and r ′′ 

ji 
< 0 . Thus, c ′ 

i 
(e i j ) is a positive

nd increasing function, and r ′ 
ji 
(e i j ) a positive and decreasing func- 

ion, so for any e i j > 0 , c ′ 
i 
(0) < c ′ 

i 
(e i j ) and r ′ 

ji 
(0) > r ′ 

ji 
(e i j ) . There-

ore, αi j ≤ αi j ⇐⇒ c ′ 
i 
(e i j ) > αi j r 

′ 
ji 
(e i j ) for all e i j > 0 ⇐⇒ ˆ e i j = 0 . 

The demonstration in point 3 is similar to that of point 1. The 

bove arguments are the same and only the signs of the inequali- 

ies change. 

To end the proof, we prove point 2. First, we show that there 

s a unique ˆ e i j ∈ (0 , 1) such that c ′ 
i 
( ̂  e i j ) = αi j r 

′ 
ji 
( ̂  e i j ) , which is the
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(  

−

c

f

t

f

−  

c

f

s

t

t

i

fi

a

t

c

L  

f

{

∂αi j 
i j ji ji i j i j 
nique optimal effort because 
∂A i (e ) 

∂e i j 

∣∣∣
e i = ̂ e i j 

= 0 and A i (e ) is a con- 

ex function. In addition, c ′ 
i 
(e i j ) is a positive increasing func- 

ion and r ′ 
ji 
(e i j ) a positive decreasing function, in e i j ∈ [0 , 1] . This

eans that equation 

∂A i (e ) 

∂e i j 
= c ′ 

i 
(e i j ) − αi j r 

′ 
ji 
(e i j ) = 0 has a unique

oot, which belongs to (0,1) if and only if αi j ∈ ( αi j , ᾱi j ) . Note that

f αi j ∈ ( αi j , ᾱi j ) then c ′ 
i 
(0) < αi j r 

′ 
ji 
(0) and c ′ 

i 
(1) > αi j r 

′ 
ji 
(1) , and so

here is a unique point ˆ e i j where c ′ 
i 
( ̂  e i j ) = αi j r 

′ 
ji 
( ̂  e i j ) . �

roof of Theorem 4. As we already mention, the optimum ˆ e i j 

s independent of other effort s. Theref ore, the equilibrium effort 

s determined by Lemma 2 . In addition, we want to characterize 

he effort equilibrium according to the value of the parameter αi j . 

hus, in the case of agent j, α ji < α ji < ᾱ ji ⇔ α ji < 1 − αi j < ᾱ ji ⇔
 − ᾱ ji < αi j < 1 − α ji . �

The next corollary shows how the pairwise equilibrium effort s 

 

∗
i j 

depend on αi j , for all i, j ∈ N, i � = j. As expected, as the propor-

ion of aggregate cost reduction obtained by an agent increases, 

he effort that agent exerts also increases (or at least stays the 

ame). 

orollary 2. Let (N, { E i } i ∈ N , { A i } i ∈ N ) be the effort game and (e ∗
i j 
, e ∗

ji 
)

he pairwise efforts equilibrium. Thus, 

•
∂e ∗

i j 

∂αi j 
> 0 , if αi j ∈ ( αi j , ᾱi j ) ; 

∂e ∗
i j 

∂αi j 
= 0 , otherwise. 

•
∂e ∗

ji 

∂αi j 
< 0 if αi j ∈ (1 − ᾱ ji , 1 − α ji ) ; 

∂e ∗
ji 

∂αi j 
= 0 , otherwise. 

roof. By the implicit function theorem, 
∂e ∗

i j 

∂αi j 
= −

∂(c ′ 
i 
(e ∗

i j 
) −αi j r 

′ 
ji 
(e ∗

i j 
)) 

∂αi j 

∂(c ′ 
i 
(e ∗

i j 
) −αi j r 

′ 
ji 
(e ∗

i j 
)) 

∂e ∗
i j 

= 

r ′ 
ji 
(e ∗

i j 
) 

c ′′ 
i 
(e ∗

i j 
) −αi j r 

′′ 
ji 
(e ∗

i j 
) 

> 0 , because r ′ 
ji 
(e ∗

i j 
) > 0 , c ′′ 

i 
(e ∗

i j 
) > 0 , and r ′′ 

ji 
(e ∗

i j 
) < 0 .

hus, for any αi j ≤ αi j , Lemma 2 implies that e ∗
i j 

= 0 , thus, 
∂e ∗

i j 

∂αi j 
= 0 .

owever, if αi j ∈ ( αi j , ᾱi j ) , then e ∗
i j 

∈ (0 , 1) and 

∂e ∗
i j 

∂αi j 
> 0 . Finally, if

i j ≥ ᾱi j , then e ∗
i j 

= 1 and 

∂e ∗
i j 

∂αi j 
= 0 . Analogously, if α ji ≤ α ji ⇐⇒ 

i j ≥ 1 − α ji , then e ∗
ji 

= 0 and 

∂e ∗
ji 

∂αi j 
= 0 , if α ji ∈ ( α ji , ᾱ ji ) ⇐⇒ αi j ∈

1 − ᾱ ji , 1 − α ji ) , then e ∗
ji 

∈ (0 , 1) and 

∂e ∗
ji 

∂αi j 
< 0 . Finally, if α ji ≥

¯ ji ⇐⇒ αi j ≤ 1 − ᾱ ji , then e ∗
i j 

= 1 and 

∂e ∗
ji 

∂αi j 
= 0 . �

Theorem 5 , in Section 5 , provides the weights αi j that min- 

mizes function L ∗
i j 
(αi j ) , and the efficient effort equilibrium. To 

olve the above optimization problem it is necessary to know the 

unction L ∗
i j 
(αi j ) very accurately. 

To demonstrate Theorem 5 , three technical lemmas are needed 

rst. Lemmas 3, 4 , and 5 characterize the derivatives 
∂(A ∗

i 
(αi j )) 

∂αi j 
, 

∂(L ∗
i j 
(αi j )) 

∂αi j 
, and 

∂ 2 (L ∗
i j 
(αi j )) 

∂α2 
i j 

respectively. 

The first lemma shows how the optimal cost function of agent 

 ∈ N depends on αi j . Henceforth, to simplify notation, we consider 

hat for any i, j ∈ N, 
∂r i j (e ∗

ji 
) 

∂e ∗
ji 

and 

∂c i (e ∗
i 
) 

∂e ∗
i j 

stand for derivatives 
∂r i j (e ji ) 

∂e ji 

nd 

∂c i (e i ) 

∂e i j 
evaluated in the unique effort equilibrium. 

emma 3. Let (N, { E i } i ∈ N , { A i } i ∈ N ) be the effort game and e ∗ the ef-

ort equilibrium. Thus, 

1. 
∂(A i (e ∗)) 

∂αi j 
= 

∂(A ∗
i 
(αi j )) 

∂αi j 
= 

{ 

−r i j (e ∗
ji 
) − αi j 

∂r i j (e ∗
ji 
) 

∂e ∗
ji 

∂e ∗
ji 

∂αi j 
− r ji (e ∗

i j 
) , i f 

−r i j (e ∗
ji 
) − r ji (e ∗

i j 
) < 0 , 
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∈ ( αi j , ᾱi j ) 

2. 

∂(A j (e ∗)) 

∂αi j 
= 

∂(A ∗
j 
(1 −αi j )) 

∂αi j 

= 

{ 

r ji (e ∗
i j 
) − (1 − αi j ) 

∂r ji (e ∗
i j 

) 

∂e ∗
i j 

∂e ∗
i j 

∂αi j 
+ r i j (e ∗

ji 
) , i f αi j ∈ (1 − ᾱ ji , 1 − α ji ) 

r ji (e ∗
i j 
) + r i j (e ∗

ji 
) > 0 , otherwise . 

roof. It is known that A i (e ∗) = c i (e ∗
i 
) − ∑ 

z∈ N\{ i } αiz (r iz (e ∗
zi 
) +

 zi (e ∗
iz 
)) , and A 

∗
i 
(αi j ) = c i (e ∗

i 
) − αi j (r i j (e ∗

ji 
) + r ji (e ∗

i j 
)) , thus 

∂(A i (e ∗)) 

∂αi j 
= 

∂(A ∗
i 
(αi j )) 

∂αi j 
= 

∂c i (e ∗
i 
) 

∂e ∗
i j 

∂e ∗
i j 

∂αi j 
− r i j (e ∗

ji 
) − αi j 

∂r i j (e ∗
ji 
) 

∂e ∗
ji 

∂e ∗
ji 

∂αi j 
−

 ji (e ∗
i j 
) − αi j 

∂r ji (e ∗
i j 
) 

∂e ∗
i j 

∂e ∗
i j 

∂αi j 

= 

(
∂c i (e ∗

i 
) 

∂e ∗
i j 

− αi j 

∂r ji (e ∗
i j 
) 

∂e ∗
i j 

)
∂e ∗

i j 

∂αi j 
− r i j (e ∗

ji 
) − αi j 

∂r i j (e ∗
ji 
) 

∂e ∗
ji 

∂e ∗
ji 

∂αi j 
− r ji (e ∗

i j 
) . 

The first term of the above expression is always zero, 

.e. 

(
∂c i (e ∗

i 
) 

∂e ∗
i j 

− αi j 

∂r ji (e ∗
i j 
) 

∂e ∗
i j 

)
∂e ∗

i j 

∂αi j 
= 0 . To see this, note that if αi j ∈ 

 αi j , ᾱi j ) , then e ∗
i j 

∈ (0 , 1) by Lemma 2 , so 

(
∂c i (e ∗

i 
) 

∂e ∗
i j 

− αi j 

∂r ji (e ∗
i j 
) 

∂e ∗
i j 

)
=

 because it is evaluated in equilibrium. In the other case, where 

i j ≤ αi j or αi j ≥ ᾱi j , e ∗
i j 

= 0 by Proposition 2 , so 
∂e ∗

ji 

∂αi j 
= 0 . There-

ore, 
∂(A i (e ∗)) 

∂αi j 
= −r i j (e ∗

ji 
) − αi j 

∂r i j (e ∗
ji 
) 

∂e ∗
ji 

∂e ∗
ji 

∂αi j 
− r ji (e ∗

i j 
) . 

It is known by assumption that r i j (e ∗
ji 
) ≥ 0 , 

∂r i j (e ∗
ji 
) 

∂e ∗
ji 

> 0 . If αi j ∈

1 − ᾱ ji , 1 − α ji ) , then by Proposition 2 , 
∂e ∗

ji 

∂αi j 
< 0 . However, if αi j / ∈

1 − ᾱ ji , 1 − α ji ) then, by Proposition 2 , 
∂e ∗

ji 

∂αi j 
= 0 , so 

∂(A i (e ∗)) 

∂αi j 
=

r i j (e ∗
ji 
) − r ji (e ∗

i j 
) . 

The proof is analogous for 
∂(A j (e ∗)) 

∂αi j 
. �

Notice that the effect of αi j on the cost function of agent i 

ould be positive or negative because of two simultaneous ef- 

ects. First effect: As expected, if αi j increases so does the propor- 

ion of cost reduction that agent i can obtain, and thus the cost 

unction, A i (e ∗) , decreases. This decrease is measured by the term 

r i j (e ∗
ji 
) − r ji (e ∗

i j 
) < 0 in the derivative. Second effect: When αi j in-

reases, the effort of agent j decreases in equilibrium, so the cost 

unction of agent i increases. The term −αi j 

∂r i j (e ∗
ji 
) 

∂e ∗
ji 

e ∗
ji 

∂αi j 
> 0 mea- 

ures this second effect. The sum of these two effects determines 

he sign of the derivative. Therefore, an increase in the propor- 

ion of the aggregate cost reduction that an agent obtains could 

ncrease the cost of that agent if the second effect dominates the 

rst. This is an interesting result: Giving too much to a particular 

gent could be not only worse for the aggregate cost but also for 

hat particular agent. 

The second lemma calculates the derivative of the aggregate 

ost function L ∗
i j 
(αi j ) in the effort equilibrium for any i, j ∈ N. 

emma 4. Let (N, { E i } i ∈ N , { A i } i ∈ N ) be the effort game, and e ∗ the ef-

ort equilibrium. Thus, 
∂(L ∗

i j 
(αi j )) 

∂αi j 
= 

(
∂c j (e ∗

j 
) 

∂e ∗
ji 

− ∂r i j (e ∗
ji 
) 

∂e ∗
ji 

)
∂e ∗

ji 

∂αi j 
I j + 

(
∂c i (e ∗

i 
) 

∂e ∗
i j 

− ∂r ji (e ∗
i j 
) 

∂e ∗
i j 

)
∂e ∗

i j 

∂αi j 
I i 

where I i = 

{
1 i f αi j ∈ ( αi j , ᾱi j ) 

0 otherwise 
and I j = 

1 i f αi j ∈ (1 − ᾱ ji , 1 − α ji ) 

0 otherwise 
. 

Therefore, there are four possible cases: 

•
∂(L ∗

i j 
(αi j )) 

∂αi j 
can be positive and/or negative if αi j ∈ ( αi j , ᾱi j ) ∩ (1 −

ᾱ ji , 1 − α ji ) 

•
∂(L ∗

i j 
(αi j )) 

∂αi j 
= 0 if αi j / ∈ ( αi j , ᾱi j ) ∪ (1 − ᾱ ji , 1 − α ji ) 

•
∂(L ∗

i j 
(αi j )) 

∂αi j 
> 0 if αi j ∈ (1 − ᾱ ji , 1 − α ji ) ∩ 

(
(0 , αi j ) ∪ ( ̄αi j , 1) 

)
•

∂(L ∗
i j 
(αi j )) 

< 0 if α ∈ 

((
0 , 1 − ᾱ

)
∪ 

(
1 − α , 1 

)
) ∩ 

(
α , ᾱ

))
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roof. From (6) , we calculate that 
∂(L ∗

i j 
(αi j )) 

∂αi j 
= 

∂c j (e ∗
j 
) 

∂e ∗
ji 

− ∂r i j (e ∗
ji 
) 

∂e ∗
ji 

)
∂e ∗

ji 

∂αi j 
+ 

(
∂c i (e ∗

i 
) 

∂e ∗
i j 

− ∂r ji (e ∗
i j 
) 

∂e ∗
i j 

)
∂e ∗

i j 

∂αi j 
. Simplifying for 

he different subsets of αi j , the following emerges: 

1. if αi j ∈ ( αi j , ᾱi j ) ∩ (1 − ᾱ ji , 1 − α ji ) then, by Theorem 4 ,

e ∗
ji 

∈ (0 , 1) and e ∗
i j 

∈ (0 , 1) , thus, by Corollary 2 , 
∂e ∗

ji 

∂αi j 
< 0

and 

∂e ∗
i j 

∂αi j 
> 0 . In addition, since 

∂c j (e ∗
j 
) 

∂e ∗
ji 

− (1 − αi j ) 
∂r i j (e ∗

ji 
) 

∂e ∗
ji 

= 0 

and 

∂c i (e ∗
i 
) 

∂e ∗
i j 

− αi j 

∂r ji (e ∗
i j 
) 

∂e ∗
i j 

= 0 , it follows that 
∂c j (e ∗

j 
) 

∂e ∗
ji 

−
∂r i j (e ∗

ji 
) 

∂e ∗
ji 

< 0 and 

∂c i (e ∗
i 
) 

∂e ∗
i j 

− ∂r ji (e ∗
i j 
) 

∂e ∗
i j 

< 0 . Therefore, 
∂(L ∗

i j 
(αi j )) 

∂αi j 
= (

∂c j (e ∗
j 
) 

∂e ∗
ji 

− ∂r i j (e ∗
ji 
) 

∂e ∗
ji 

)
∂e ∗

ji 

∂αi j 
+ 

(
∂c i (e ∗

i 
) 

∂e ∗
i j 

− ∂r ji (e ∗
i j 
) 

∂e ∗
i j 

)
∂e ∗

i j 

∂αi j 
, which can be 

positive or negative in this case. 

2. if αi j / ∈ ( αi j , ᾱi j ) ∪ (1 − ᾱ ji , 1 − α ji ) then, by Theorem 4 , e ∗
ji 

∈
{ 0 , 1 } and e ∗

i j 
∈ { 0 , 1 } , and by Corollary, 

∂e ∗
ji 

∂αi j 
= 

∂e ∗
i j 

∂αi j 
= 0 . There-

fore, 
∂(L ∗

i j 
(αi j )) 

∂αi j 
= 0 . 

3. if αi j ∈ (1 − ᾱ ji , 1 − α ji ) ∩ 

(
(0 , αi j ) ∪ ( ̄αi j , 1) 

)
, then, as above, 

∂(L ∗
i j 
(αi j )) 

∂αi j 
= 

(
∂c j (e ∗

j 
) 

∂e ∗
ji 

− ∂r i j (e ∗
ji 
) 

∂e ∗
ji 

)
∂e ∗

ji 

∂αi j 
> 0 . 

4. if αi j ∈ 

((
0 , 1 − ᾱ ji 

)
∪ 

(
1 − α ji , 1 

)
) ∩ 

(
αi j , ᾱi j 

))
then 

∂(L ∗
i j 
(αi j )) 

∂αi j 
= (

∂c i (e ∗
i 
) 

∂e ∗
i j 

− ∂r ji (e ∗
i j 
) 

∂e ∗
i j 

)
∂e ∗

i j 

∂αi j 
< 0 . 

�

The derivative is a piecewise function and there are in- 

ervals where its sign is independent of the particular form 

f the functions of the game. For those cases, it is straight- 

orward to find the optimal αi j that minimizes the func- 

ion L ∗
i j 
(αi j ) . In those intervals, the derivative is either pos- 

tive, negative or zero throughout the interval. These cases 

re respectively 
∂(L ∗

i j 
(αi j )) 

∂αi j 
= 

(
∂c j (e ∗

j 
) 

∂e ∗
ji 

− ∂r i j (e ∗
ji 
) 

∂e ∗
ji 

)
∂e ∗

ji 

∂αi j 
> 0 , 

∂(L ∗
i j 
(αi j )) 

∂αi j 
= 

∂c i (e ∗
i 
) 

∂e ∗
i j 

− ∂r ji (e ∗
i j 
) 

∂e ∗
i j 

)
∂e ∗

i j 

∂αi j 
< 0 , and 

∂(L ∗
i j 
(αi j )) 

∂αi j 
= 0 . However, there is an 

nterval where the sign of the derivative depends on the particular 

orm of functions of the game. In this particular case 
∂(L ∗

i j 
(αi j )) 

∂αi j 
= 

∂c j (e ∗
j 
) 

∂e ∗
ji 

− ∂r i j (e ∗
ji 
) 

∂e ∗
ji 

)
∂e ∗

ji 

∂αi j 
+ 

(
∂c i (e ∗

i 
) 

∂e ∗
i j 

− ∂r ji (e ∗
i j 
) 

∂e ∗
i j 

)
∂e ∗

i j 

∂αi j 
. This occurs when 

i j ∈ ( αi j , ᾱi j ) ∩ (1 − ᾱ ji , 1 − α ji ) , which implies that in equilib-

ium simultaneously 0 < e ∗
i j 

< 1 and 0 < e ∗
ji 

< 1 . Therefore, in this

ase only, the derivative may be zero for some αi j within this in- 

erval. In that case, the second derivative is needed to solve the 

ptimization problem. 

The third Lemma shows that the aggregate cost function L ∗
i j 
(αi j ) 

s convex in αi j . Two additional assumptions about third deriva- 

ives need to be introduced. 

emma 5. Let (N, { E i } i ∈ N , { A i } i ∈ N ) be the effort game, e ∗ the effort

quilibrium, and 
∂ 3 c i (e ∗

i 
) 

∂e ∗3 
i j 

> 0 and 
∂ 3 r ji (e ∗

i j 
) 

∂e ∗3 
i j 

< 0 , for any i, j ∈ N. Thus

∂ 2 L ∗
i j 
(αi j )) 

∂α∗2 
i j 

> 0 for all αi j ∈ ( αi j , ᾱi j ) ∩ (1 − ᾱ ji , 1 − α ji ) . 

roof. Take αi j ∈ ( αi j , ᾱi j ) ∩ (1 − ᾱ ji , 1 − α ji ) . Thus, 

∂ 2 (L ∗
i j 
(αi j )) 

∂α2 
i j 

= 

∂ 2 
[(

∂c j (e ∗
j 
) 

∂e ∗
ji 

−
∂r i j (e ∗

ji 
) 

∂e ∗
ji 

)
∂e ∗

ji 
∂αi j 

+ 
(

∂c i (e ∗
i 
) 

∂e ∗
i j 

−
∂r ji (e ∗

i j 
) 

∂e ∗
i j 

)
∂e ∗

i j 
∂αi j 

]
∂α2 

i j (
∂ 2 c j (e ∗

j 
) 

∂ e ∗
ji 
∂ αi j 

− ∂ 2 r i j (e ∗
ji 
) 

∂ e ∗
ji 
∂ αi j 

)
∂e ∗

ji 

∂αi j 
+ 

(
∂c j (e ∗

j 
) 

∂e ∗
ji 

− ∂r i j (e ∗
ji 
) 

∂e ∗
ji 

)
∂ 2 e ∗

ji 

∂α2 
i j 

+ 

(
∂ 2 c i (e ∗

i 
) 

∂ e ∗
i j 
∂ αi j 

− ∂ 2 r ji (e ∗
i j 
) 

∂ e ∗
i j 
∂ αi j 

)
∂e ∗

i j 

∂αi j 
+ 

(
∂c i (e ∗

i 
) 

∂e ∗
i j 

− ∂r ji (e ∗
i j 
) 

∂e ∗
i j 

)
∂ 2 e ∗

i j 

∂α2 
i j 
14 
= 

(
∂ 2 c j (e ∗

j 
) 

∂ 2 e ∗
ji 

∂e ∗
ji 

∂αi j 
− ∂ 2 r i j (e ∗

ji 
) 

∂ 2 e ∗
ji 

∂e ∗
ji 

∂αi j 

)
∂e ∗

ji 

∂αi j 
+ 

(
∂c j (e ∗

j 
) 

∂e ∗
ji 

− ∂r i j (e ∗
ji 
) 

∂e ∗
ji 

)
∂ 2 e ∗

ji 

∂α2 
i j 

+ 

(
∂ 2 c i (e ∗

i 
) 

∂ 2 e ∗
i j 

∂e ∗
i j 

∂αi j 
− ∂ 2 r ji (e ∗

i j 
) 

∂ 2 e ∗
i j 

∂e ∗
i j 

∂αi j 

)
∂e ∗

i j 

∂αi j 
+ 

(
∂c i (e ∗

i 
) 

∂e ∗
i j 

− ∂r ji (e ∗
i j 
) 

∂e ∗
i j 

)
∂ 2 e ∗

i j 

∂α2 
i j 

= 

(
∂ 2 c j (e ∗

j 
) 

∂ 2 e ∗
ji 

− ∂ 2 r i j (e ∗
ji 
) 

∂ 2 e ∗
ji 

)(
∂e ∗

ji 

∂αi j 

)2 

+ 

(
∂c j (e ∗

j 
) 

∂e ∗
ji 

− ∂r i j (e ∗
ji 
) 

∂e ∗
ji 

)
∂ 2 e ∗

ji 

∂α2 
i j 

+ 

(
∂ 2 c i (e ∗

i 
) 

∂ 2 e ∗
i j 

− ∂ 2 r ji (e ∗
i j 
) 

∂ 2 e ∗
i j 

)(
∂e ∗

i j 

∂αi j 

)2 

+ 

(
∂c i (e ∗

i 
) 

∂e ∗
i j 

− ∂r ji (e ∗
i j 
) 

∂e ∗
i j 

)
∂ 2 e ∗

i j 

∂α2 
i j 

> 0 

Now we prove that 
∂ 2 e ∗

ji 

∂α2 
i j 

< 0 and 

∂ 2 e ∗
i j 

∂α2 
i j 

< 0 , so 
∂ 2 (L ∗

i j 
(αi j )) 

∂α2 
i j 

> 0 . 

We first prove that 
∂ 2 e ∗

ji 

∂α2 
i j 

< 0 . It is known that 

∂A j (e ∗) 

∂e ji 
= 

∂c j (e ∗
j 
) 

∂e ∗
ji 

− (1 − αi j ) 
∂r i j (e ∗

ji 
) 

∂e ∗
ji 

= 0 

We now derive the second term regarding αi j . 
∂ 2 c j (e ∗

j 
) 

∂e ∗2 
ji 

∂e ∗
ji 

∂αi j 
+ 

∂r i j (e ∗
ji 
) 

∂e ∗
ji 

− (1 − αi j ) 
∂ 2 r i j (e ∗

ji 
) 

∂e ∗2 
ji 

∂e ∗
ji 

∂αi j 
= 0 

We now do the same for αi j . (
∂ 3 c j (e ∗

j 
) 

∂e ∗3 
ji 

(
∂e ∗

ji 

∂αi j 

)2 

+ 

∂ 2 c j (e ∗
j 
) 

∂e ∗2 
ji 

∂ 2 e ∗
ji 

∂α2 
ji 

)
+ 

∂ 2 r i j (e ∗
ji 
) 

∂e ∗2 
ji 

∂e ∗
ji 

∂αi j 

−(1 − αi j ) 

(
∂ 3 r i j (e ∗

ji 
) 

∂e ∗3 
ji 

(
∂e ∗

ji 

∂αi j 

)2 

+ 

∂ 2 r i j (e ∗
ji 
) 

∂e ∗2 
ji 

∂ 2 e ∗
ji 

∂α2 
ji 

)
= 0 (

∂ 2 c j (e ∗
j 
) 

∂e ∗2 
ji 

− (1 − αi j ) 
∂ 2 r i j (e ∗

ji 
) 

∂e ∗2 
ji 

)
∂ 2 e ∗

ji 

∂α2 
ji 

+ 

∂ 2 r i j (e ∗
ji 
) 

∂e ∗2 
ji 

∂e ∗
ji 

∂αi j 

+ 

(
∂ 3 c j (e ∗

j 
) 

∂e ∗3 
ji 

− (1 − αi j ) 
∂ 3 r i j (e ∗

ji 
) 

∂e ∗3 
ji 

)(
∂e ∗

ji 

∂αi j 

)2 

= 0 

∂ 2 e ∗
ji 

∂α2 
i j 

= 

−
∂ 2 r i j (e ∗

ji 
) 

∂e ∗2 
ji 

∂e ∗
ji 

∂αi j 
−
( 

∂ 3 c j (e ∗
j 
) 

∂e ∗3 
ji 

−(1 −αi j ) 
∂ 3 r i j (e ∗

ji 
) 

∂e ∗3 
ji 

) (
∂e ∗

ji 
∂αi j 

)2 

∂ 2 c j (e ∗
j 
) 

∂e ∗2 
ji 

−(1 −αi j ) 
∂ 2 r i j (e ∗

ji 
) 

∂e ∗2 
ji 

Clearly, this expression is lower than zero if 
∂ 3 c j (e ∗

j 
) 

∂e ∗3 
ji 

> 0 and 

∂ 3 r i j (e ∗
ji 
) 

∂e ∗3 
ji 

< 0 ; note that 
∂e ∗

ji 

∂αi j 
< 0 by Proposition. 

Analogously, we obtain 

∂ 2 e ∗
i j 

∂α2 
i j 

= 

∂ 2 r ji (e ∗
i j 

) 

∂e ∗2 
i j 

∂e ∗
i j 

∂αi j 
−
( 

∂ 3 c i (e ∗
i 
) 

∂e ∗3 
i j 

−αi j 

∂ 3 r ji (e ∗
i j 

) 

∂e ∗3 
i j 

) (
∂e ∗

i j 
∂αi j 

)2 

∂ 2 c i (e ∗
i 
) 

∂e ∗2 
i j 

−αi j 

∂ 2 r ji (e ∗
i j 

) 

∂e ∗2 
i j 

< 0 . �

Lemma 5 enables us to state that in any interval where 

he piecewise derivative function takes the value 
∂(L ∗

i j 
(αi j )) 

∂αi j 
= 

αi j 

∂r i j (e ∗
ji 
) 

∂e ∗
ji 

∂e ∗
ji 

∂αi j 
− (1 − αi j ) 

∂r ji (e ∗
i j 
) 

∂e ∗
i j 

∂e ∗
i j 

∂αi j 
, the function L ∗

i j 
(αi j ) is con- 

ex (see also Lemma 4 ). 

The following proposition shows that, according to the value 

f the effort equilibrium, the cost function L ∗
i j 
(αi j ) is a continu- 

us piecewise function with four types of piece. This result char- 

cterizes all of those pieces, showing the shape of L ∗
i j 
(αi j ) and the 

ptimal αi j in each type of piece. 

roposition 5. Consider the effort game (N, { E i } i ∈ N , { A i } i ∈ N ) and e ∗

s the effort equilibrium. Let αi j ∈ [ a, b] be a piece of L ∗
i j 
(αi j ) with

 ≤ a < b ≤ 1 , L ∗
i j 
(αi j ) can have only four types of piece: 

1. Constant: (e ∗
i j 
, e ∗

ji 
) is either (0,0), (1 , 0) , (0,1) or (1,1). Thus

∂(L ∗
i j 
(αi j )) 

∂αi j 
= 0 and L ∗

i j 
(αi j ) is always constant. Therefore, any 

αi j ∈ [ a, b] minimizes L ∗
i j 
(αi j ) . 

2. Increasing: e ∗
i j 

is either 0 or 1, and 0 < e ∗
ji 

< 1 . Thus 
∂(L ∗

i j 
(αi j )) 

∂αi j 
=(

∂c j (e ∗
j 
) 

∂e ∗
ji 

− ∂r i j (e ∗
ji 
) 

∂e ∗
ji 

)
∂e ∗

ji 

∂αi j 
> 0 and L ∗

i j 
(αi j ) is always increasing. 

Therefore, αi j = a minimizes L ∗
i j 
(αi j ) . 
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3. Decreasing: 0 < e ∗
i j 

< 1 , and e ∗
ji 

is either 0 or 1. Thus

∂(L ∗
i j 
(αi j )) 

∂αi j 
= 

(
∂c i (e ∗

i 
) 

∂e ∗
i j 

− ∂r ji (e ∗
i j 
) 

∂e ∗
i j 

)
∂e ∗

i j 

∂αi j 
< 0 and L ∗

i j 
(αi j ) is always 

decreasing. Therefore, αi j = b minimizes L ∗
i j 
(αi j ) . 

4. Depending on cost function shape: 0 < e ∗
i j 

< 1 and 0 < e ∗
ji 

<

1 . Thus, 
∂(L ∗

i j 
(αi j )) 

∂αi j 
= 

(
∂c j (e ∗

j 
) 

∂e ∗
ji 

− ∂r i j (e ∗
ji 
) 

∂e ∗
ji 

)
∂e ∗

ji 

∂αi j 
+ 

(
∂c i (e ∗

i 
) 

∂e ∗
i j 

− ∂r ji (e ∗
i j 
) 

∂e ∗
i j 

)
∂e ∗

i j 

∂αi j 
. 

In this case, there is always a unique α̌[ a,b] 
i j 

∈ [ a, b] that mini- 

mizes L ∗
i j 
(αi j ) , which is: 

α̌[ a,b] 
i j 

= 

⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

a if 
∂(L ∗

i j 
(αi j )) 

∂αi j 
> 0 for all αi j ∈ [ a

b if 
∂(L ∗

i j 
(αi j )) 

∂αi j 
< 0 for all αi j ∈ [ a

Solution of 
∂(L ∗

i j 
(αi j )) 

∂αi j 
= 0 otherwise 

roof. The proof of Lemma 4 shows four possible cases for L ∗
i j 
(αi j ) .

he point 2. of the proof of Lemma 4 proves the point 1. (Con-

tant). The point 3. proves the point 2. (Increasing), and point 4. 

roves point 3 (decreasing). Finally, to prove the point 4. (Depend- 

ng on cost function shape) we need the point 1. of Lemma 4 and

emma 5 which proves that L ∗
i j 
(αi j ) is convex in this case. There- 

ore, in this last case, it is also straightforward to show that 
∂(L ∗

i j 
(αi j )) 

∂αi j 
is continuous, so there is always a unique αi j that mini- 

izes L ∗
i j 
(αi j ) in such pieces. The procedure for calculating α̌[ a,b] 

i j 
is 

he following: First, by Theorem, we calculate e ∗
i j 

and e ∗
ji 

as a func- 

ion of αi j from c ′ 
i 
(e i j ) − αi j r 

′ 
ji 
(e i j ) = 0 and c ′ 

j 
(e ji ) − α ji r 

′ 
i j 
(e ji ) = 0 .

econd, we build the function L ∗
i j 
(αi j ) with the e ∗

i j 
(αi j ) and e ∗

ji 
(αi j )

reviously calculated. Finally, we calculate 
∂(L ∗

i j 
(αi j )) 

∂αi j 
and obtain 

ˇ
[ a,b] 
i j 

. �

Finally, Theorem 5 characterizes the optimal α∗
i j 

, for all i, j ∈ N

ith i � = j, which incentivizes an efficient effort equilibrium, which 

s also provided. 

Proof of Theorem 5 

roof. As L ∗
i j 
(αi j ) is a continuous piecewise function, we ana- 

yze the five pieces that define it in each case. Lemma, and 

roposition 5 enable the type of piece to be determined, thus giv- 

ng the value of αi j that minimizes L ∗
i j 
(αi j ) in each piece. Compar- 

ng the pieces gives the α∗
i j 

that minimizes the aggregate cost for 

ach of the six cases. This value need not be unique. Note, in addi-

ion, that αi j , ᾱi j , ᾱ ji and α ji are always greater than zero, but any 

f them may be greater than one, which implies that some pieces 

f certain cases may not exist. We prove the theorem case by case: 

Case A ( αi j < ᾱi j < 1 − ᾱ ji < 1 − α ji ) 

Note that those thresholds are always greater than zero, so 

0 < αi j < ᾱi j < 1 − ᾱ ji < 1 − α ji < 1 . By Lemma 4 , 

if αi j ∈ 

(
0 , αi j 

)
, then L ∗

i j 
(αi j ) is constant in this interval. 

If αi j ∈ 

(
αi j , ᾱi j 

)
, then L ∗

i j 
(αi j ) is decreasing, which implies 

that αi j = 1 − ᾱ ji minimizes L ∗
i j 
(αi j ) . 

If αi j ∈ 

(
ᾱi j , 1 − ᾱ ji 

)
, then L ∗

i j 
(αi j ) is constant in this interval. 

If αi j ∈ 

(
1 − ᾱ ji , 1 − α ji 

)
, then L ∗

i j 
(αi j ) is increasing, which 

implies that 1 − ᾱ ji minimizes L ∗
i j 
(αi j ) . 

If αi j ∈ 

(
1 − α ji , 1 

)
, then L ∗

i j 
(αi j ) is constant in this interval. 

Therefore, α∗
i j 

is equal to any αi j ∈ [ ̄αi j , 1 − ᾱ ji ] . 

Case B ( αi j < 1 − ᾱ ji < ᾱi j < 1 − α ji ) 

Analogously, 0 < αi j < 1 − ᾱ ji < ᾱi j < 1 − α ji < 1 , and by 

Lemma 4 , 5 and Proposition 5 , 

if αi j ∈ 

(
0 , αi j 

)
, then L ∗

i j 
(αi j ) is constant in this interval. 
15 
If αi j ∈ 

(
αi j , 1 − ᾱ ji 

)
, then L ∗

i j 
(αi j ) is decreasing, which im- 

plies that αi j = 1 − ᾱ ji minimizes L ∗
i j 
(αi j ) . 

If αi j ∈ 

(
1 − ᾱ ji , ᾱi j 

)
, then α̌i j minimizes L ∗

i j 
(αi j ) , where α̌i j 

is define in Proposition 5. 

If αi j ∈ 

(
ᾱi j , 1 − α ji 

)
, then L ∗

i j 
(αi j ) is increasing, which im- 

plies that ᾱi j minimizes L ∗
i j 
(αi j ) . 

If αi j ∈ 

(
1 − α ji , 1 

)
, then e ∗

i j 
= 1 , e ∗

ji 
= 0 , and L ∗

i j 
(αi j ) is con-

stant in this interval. 

Therefore, α∗
i j 

= α̌
[ 1 −ᾱ ji , ̄αi j ] 
i j 

. 

Case C ( αi j < 1 − ᾱ ji < 1 − α ji < ᾱi j ) 

It may happen here that either ᾱi j < 1 or ᾱi j ≥ 1 . Thus there 

are two subcases: 

0 < αij < 1 − αji < 1 − αji < αij < 1 ;
0 < αij < 1 − αji < 1 − αji < 1 < αij . 

Starting with the first subcase, by Lemma 4 , 5 and 

Proposition 5 

if αi j ∈ 

(
0 , αi j 

)
, then L ∗

i j 
(αi j ) is constant in this interval. 

If αi j ∈ 

(
αi j , 1 − ᾱ ji 

)
, then L ∗

i j 
(αi j ) is decreasing, which im- 

plies that αi j = 1 − ᾱ ji minimizes L ∗
i j 
(αi j ) . 

If αi j ∈ 

(
1 − ᾱ ji , 1 − α ji 

)
, then α̌i j minimizes L ∗

i j 
(αi j ) . 

If αi j ∈ 

(
1 − α ji , ᾱi j 

)
, then L ∗

i j 
(αi j ) is decreasing, which im- 

plies that ᾱi j minimizes L ∗
i j 
(αi j ) . 

If αi j ∈ 

(
ᾱi j , 1 

)
, then L ∗

i j 
(αi j ) is constant, in this interval. 

However, in the second subcase ᾱi j > 1 , which implies that 

the last interval described above does not exist. The rest of 

the analysis is similar to the first subcase. 

Therefore, α∗
i j 

= arg min { L ∗
i j 
( ̌α

[ 1 −ᾱ ji , 1 −α ji ] 
i j 

) , L ∗
i j 
(�( ̄αi j )) } . Note 

that, if α∗
i j 

= �( ̄αi j ) and ᾱi j < 1 , then α∗
i j 

is equal to any 

αi j ∈ ( ̄αi j , 1) . 

Case D ( 1 − ᾱ ji < αi j < ᾱi j < 1 − α ji ) 

It may happen here that either 1 − ᾱ ji > 0 or 1 − ᾱ ji ≤ 0 . 

Thus there are two subcases: 

0 < 1 − αji < αij < αij < 1 − αji < 1 ;
1 − αji < 0 < αij < αij < 1 − αji < 1 . 

Starting with the first subcase, by Lemma 4 , 5 and 

Proposition 5 

if αi j ∈ 

(
0 , 1 − ᾱ ji 

)
, then e ∗

i j 
= 0 , e ∗

ji 
= 1 , and L ∗

i j 
(αi j ) is con-

stant in this interval. 

If αi j ∈ 

(
1 − ᾱ ji , αi j 

)
, then L ∗

i j 
(αi j ) is increasing, which im- 

plies that αi j = 1 − ᾱ ji minimizes L ∗
i j 
(αi j ) . 

If αi j ∈ 

(
αi j , ᾱi j 

)
, then α̌i j minimizes L ∗

i j 
(αi j ) . 

If αi j ∈ 

(
ᾱi j , 1 − α ji 

)
, then e ∗

i j 
= 1 , 0 < e ∗

ji 
< 1 , and L ∗

i j 
(αi j ) is

increasing, which implies that ᾱi j minimizes L ∗
i j 
(αi j ) . 

If αi j ∈ 

(
ᾱi j , 1 

)
, then e ∗

i j 
= 1 , e ∗

ji 
= 0 , and L ∗

i j 
(αi j ) is constant

in this interval. 

However, if 1 − ᾱ ji < 0 the first interval above does not exist. 

Again, the rest of the analysis is similar to the first subcase. 

Therefore, α∗
i j 

= arg min { L ∗
i j 
(�(1 − ᾱ ji )) , L 

∗
i j 
( ̌α

[ αi j , ̄αi j ] 
i j 

) } . Note 

that if α∗
i j 

= �(1 − ᾱ ji ) and 1 − ᾱ ji > 0 , then α∗
i j 

is equal to

any αi j ∈ [0 , 1 − ᾱ ji ] . 

Case E ( 1 − ᾱ ji < αi j < 1 − α ji < ᾱi j ) 

In this case, it may happen that either 1 − ᾱ ji > 0 or 1 −
ᾱ ji ≤ 0 , and either ᾱi j < 1 or ᾱi j ≥ 1 . Thus there are four 

subcases: 

0 < 1 − αji < αij < 1 − αji < αij < 1 ;
1 − αji < 0 < αij < 1 − αji < αij < 1 ;
0 < 1 − αji < αij < 1 − αji < 1 < αij ;
1 − αji < 0 < αij < 1 − αji < 1 < αij . 

Focusing on the first subcase, by Lemma 4 , 5 and 

Proposition 5 . 



J.A. García-Martínez, A.J. Mayor-Serra and A. Meca Omega 121 (2023) 102920 

 

 

 

 

 

 

 

A

Table 2 

Summary of optimization problems. 

˜ e Efficient effort profile ˜ e = arg min 
e ∈ [0 , 1] n (n −1) 

c(N) 

ˆ e i Optimal effort s of agent i 

given effort s of other 

agents 

ˆ e i = arg min 
e i ∈ [0 , 1] (n −1) 

A i (e ) 

e ∗
i 

Equilibrium strategy of 

agent i 

e ∗
i 

= ̂  e i 

α∗ Optimal weights of WPAR 

allocation 

α∗ = arg min 
α∈ [0 , 1] n (n −1) 

∑ 

i ∈ N A i (e ∗) 

� 

α∗
i j 

= arg min 
αi j ∈ [0 , 1] 

L ∗
i j 
(αi j ) for i � = j ∈ N

with L ∗
i j 
(αi j ) = c i (e ∗

i 
) + c j (e ∗

j 
) 

R

[

if αi j ∈ 

(
0 , 1 − ᾱ ji 

)
, then L ∗

i j 
(αi j ) is constant in this interval. 

If αi j ∈ 

(
1 − ᾱ ji , αi j 

)
, then L ∗

i j 
(αi j ) is increasing, which im- 

plies that αi j = 1 − ᾱ ji minimizes L ∗
i j 
(αi j ) . 

If αi j ∈ 

(
αi j , 1 − α ji 

)
, then α̌i j minimizes L ∗

i j 
(αi j ) . 

If αi j ∈ 

(
1 − α ji , ᾱi j 

)
, then L ∗

i j 
(αi j ) is decreasing, which im- 

plies that ᾱi j minimizes L ∗
i j 
(αi j ) . 

If αi j ∈ 

(
ᾱi j , 1 

)
, then e ∗

i j 
= 1 , e ∗

ji 
= 0 , and L ∗

i j 
(αi j ) is constant

in this interval. 

In the other three subcases, the first and/or last interval may 

not exist. Once again, the rest of the analysis for those sub- 

cases is similar to the first one. 

Therefore, α∗
i j 

= arg min { L ∗
i j 
(�(1 − ᾱ ji )) , α̌

[ αi j , 1 −α ji ] 
i j 

, 

L ∗
i j 
(�( ̄αi j )) } . Note that if α∗

i j 
= �(1 − ᾱ ji ) and 1 − ᾱ ji > 0

then α∗
i j 

is equal to any αi j ∈ [0 , 1 − ᾱ ji ] , and if αE 
i j 

= �( ̄αi j )

and ᾱi j < 1 , then α∗
i j 

is equal to any αi j ∈ [ ̄αi j , 1] . 

Case F ( 1 − ᾱ ji < 1 − α ji < αi j < ᾱi j ) 

This is the most general case and anything could happen 

with thresholds greater than one. Thus there are nine sub- 

cases. First consider the case 0 < 1 − ᾱ ji < 1 − α ji < αi j < 

ᾱi j < 1 : 

If αi j ∈ 

(
0 , 1 − ᾱ ji 

)
, then L ∗

i j 
(αi j ) is constant in this interval. 

If αi j ∈ 

(
1 − ᾱ ji , 1 − α ji 

)
, then L ∗

i j 
(αi j ) is increasing, which 

implies that αi j = 1 − ᾱ ji minimizes L ∗
i j 
(αi j ) . 

If αi j ∈ 

(
1 − α ji , αi j 

)
, then L ∗

i j 
(αi j ) is constant in this interval. 

If αi j ∈ 

(
αi j , ᾱi j 

)
, then L ∗

i j 
(αi j ) is decreasing, which implies 

that αi j = ᾱi j minimizes L ∗
i j 
(αi j ) . 

If αi j ∈ 

(
ᾱi j , 1 

)
, then L ∗

i j 
(αi j ) is constant in this interval. 

In any other subcase, the first, second, to last, and last inter- 

vals considered above, may not exist. The rest of the analysis 

for those subcases is similar to the first one. 

Therefore, α∗
i j 

= arg Min { L ∗
i j 
(�(1 − ᾱ ji )) , L 

∗
i j 
(�( ̄αi j )) } . Note

that, if α∗
i j 

= �(1 − ᾱ ji ) and 1 − ᾱ ji > 0 , then α∗
i j 

is equal to

any αi j ∈ [0 , 1 − ᾱ ji ] , but if α∗
i j 

= �( ̄αi j ) and ᾱi j < 1 , then α∗
i j 

is equal to any αi j ∈ [ ̄αi j , 1] . Additionally, if 1 − α ji < 0 and

ᾱi j > 1 , then L ∗
i j 
(�(1 − ᾱ ji )) = L ∗

i j 
(�( ̄αi j ) , so α∗

i j 
is equal to

any αi j ∈ [0 , 1] . 
�

ppendix D 

Table 1 and 2 . 
Table 1 

Notation summary. 

N = { 1 , 2 , .n } Ag

E i = [0 , 1] n −1 Str

E = 

∏ 

i ∈ N E i = [0 , 1] n (n −1) Str

e i j ∈ [0 , 1] Eff

e i = (e i j ) j � = i ∈ E i Eff

e ∈ E Eff

c i : E i → R + Co

r i j : [0 , 1] → R + Co

r i j (e ji ) Co

c : 2 N → R Ch

S ⊆ N Co

c S ({ i } ) = c i (e i ) −
∑ 

j∈ S\{ i } r i j (e ji ) Th

c(S) = 

∑ 

i ∈ S c 
S ({ i } ) Th

ψ i : E → R All

ψ(e ) = ( ψ i (e ) ) i ∈ N All

�i (e ) = c i (e i ) −
∑ 

j∈ N\{ i } [ ω 

i 
i j 

r i j (e ji ) + ω 

i 
ji 
r ji (e i j )] WP

A i (e ) = c i (e i ) −
∑ 

j∈ N\{ i } αi j [ r i j (e ji ) + r ji (e i j )] WP

α = (αi ) i ∈ N with αi = (αi j ) j∈ N\{ i } We

φ(c) Sha

ν(e ) Nu
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