UNIVERSIDAD MIGUEL HERNÁNDEZ DE ELCHE ESCUELA POLITÉCNICA SUPERIOR DE ELCHE GRADO EN INGENIERÍA ELÉCTRICA

"DISEÑO Y DIMENSIONAMIENTO DE UNA INSTALACIÓN DE AUTOCONSUMO FOTOVOLTAICO CON CONEXIÓN DIRECTA PARA VIVIENDA UNIFAMILIAR UBICADA EN BENFERRI (ALICANTE)"

TRABAJO FIN DE GRADO

Febrero - 2025

AUTOR: Santiago Verdú Mateo

DIRECTOR/ES: Sergio Valero Verdú

ÍNDICE

DOCUMENTO I: MEMORIA DESCRIPTIVA	6
CAPÍTULO 1: INTRODUCCIÓN Y OBJETIVOS	7
1.1 INTRODUCCIÓN	7
1.2 OBJETIVOS	8
CAPÍTULO 2: ANTECENDENTES	9
2.1 EVOLUCIÓN HISTÓRICA DE LA ENERGÍA SOLAR	9
2.2 ENERGÍA SOLAR EN ESPAÑA	11
2.3 INSTALACIONES DE AUTOCONSUMO EN ESPAÑA	12
CAPÍTULO 3: EL SOL COMO RECURSO ENERGÉTICO	16
3.1 LA RADIACIÓN SOLAR	16
3.1.1 La radiación solar sobre la superficie terrestre	17
3.2 LA CÉLULA SOLAR	
3.2.1 Materiales semiconductores	
3.2.2 Unión PN	20
3.2.3 Estructura de una célula solar	
3.2.4 Parámetros característicos de las células solares	22
3.2.5 Factores que influyen en el funcionamiento de la célula solar	23
3.3 MÓDULOS FOTOVOLTAICOS	26
3.3.1 Conexionado de los módulos fotovoltaicos	27
CAPÍTULO 4: NORMATIVA APLICABLE	29
4.1 NORMATIVA EUROPEA	29
4.2 NORMATIVA ESTATAL	29
CAPÍTULO 5: ESTUDIO DEL EMPLAZAMIENTO	31
5.1 LOCALIZACIÓN	31
5.2 ESTUDIO DE LA RADIACIÓN	33
5.2.1 Entorno de trabajo en PVGIS	33
5.2.2 Geometría de la instalación	34
5.2.3 Radiación incidente	37
5.3.3 Consumo eléctrico de la vivienda	43
CAPÍTULO 6: DISEÑO DE LA INSTALACIÓN	46
6.1 DIMENSIONAMIENTO DE LA INSTALACIÓN	46
6.1.1 Análisis económico	54
6.1.3 Estudio y selección de la potencia de instalación	58
CAPÍTULO 7: DESCRIPCIÓN DE LOS COMPONENTES	62
7.1 MÓDULO FOTOVOLTAICO	62

7.2 INVERSOR	64
7.3 ESTRUCTURA DE MONTAJE	65
7.4 EQUIPOS DE MEDIDA	67
7.4.1 Smart meter	67
7.4.2 Contador bidireccional	68
7.5 CABLEADO	69
7.5.1 Cableado del circuito en continua	69
7.5.2 Cableado del circuito en alterna	70
7.6 CANALIZACIONES	71
7.6.1 Canalización del circuito en continua	71
7.6.2 Canalización del circuito en alterna	73
7.7 PROTECCIONES	74
7.7.1 Protecciones del circuito en continua	74
7.7.2 Protecciones del circuito en alterna	76
7.8 PUESTA A TIERRA	78
ANEJOS	80
ANEJO I: CÁLCULO DE LAS PÉRDIDAS POR ORIENTACIÓN E INCLINACIÓN	
ANEJO II: CÁLCULO DE PÉRDIDAS DE RADIACIÓN SOLAR POR SOMBRAS	83
ANEJO III: CÁLCULO Y VERIFICACIÓN DEL CONEXIONADO	85
ANEJO IV: CÁLCULO DE LA SECCIÓN DE LOS CONDUCTORES	95
4.1 Secciones del circuito en continua	96
4.2 Secciones del circuito en alterna	99
ANEJO V: CÁLCULO DE PROTECCIONES ELÉCTRICAS	101
5.1 Protecciones del circuito en continua	101
5.2 Protecciones del circuito en alterna	102
ANEJO VI: CÁLCULO DE PUESTA A TIERRA	104
ANEJO VII: FICHAS TÉCNICAS	105
DOCUMENTO II: PLANOS	123
DOCUMENTO III: PLIEGO DE CONDICIONES	128
1 OBJETO	129
2 GENERALIDADES	129
3 DEFINICIONES	130
3.1 RADIACIÓN SOLAR	
3.2 INSTALACIÓN	
3.3 MÓDULOS	132
3.4 INTEGRACIÓN ARQUITECTÓNICA	
4 DISEÑO	133

4.1 DISEÑO DEL GENERADOR FOTOVOLTAICO	133
4.1.1 Generalidades	133
4.1.2 Orientación e inclinación y sombras	134
4.2 DISEÑO DEL SISTEMA DE MONITORIZACIÓN	134
4.3 INTEGRACIÓN ARQUITECTÓNICA	135
5 COMPONENTES Y MATERIALES	136
5.1 GENERALIDADES	136
5.2 SISTEMAS GENERADORES FOTOVOLTAICOS	137
5.3 ESTRUCTURAS DE SOPORTE	139
5.4 INVERSORES	140
5.5 CABLEADO	143
5.6 CONEXIÓN A RED	143
5.7 MEDIDAS	143
5.8 PROTECCIONES	144
5.9 PUESTA A TIERRA DE LAS INSTALACIONES FOTOVOLTAICAS	144
5.10 ARMÓNICOS Y COMPATIBILIDAD ELECTROMAGNÉTICA	145
5.11 MEDIDAS DE SEGURIDAD	145
6 RECEPCIÓN Y PRUEBAS	146
7 REQUERIMIENTOS TÉCNICOS DEL CONTRATO DE MANTENIMIENTO	147
7.1 GENERALIDADES	147
7.2 PROGRAMA DE MANTENIMIENTO	147
7.3 GARANTÍAS	149
7.3.1 Ámbito general de la garantía	149
7.3.2 Plazos	149
7.3.3 Condiciones económicas	149
7.3.4 Anulación de la garantía	150
7.3.5 Lugar y tiempo de la prestación	150
DOCUMENTO IV: PRESUPUESTO	152

DOCUMENTO I: MEMORIA DESCRIPTIVA

CAPÍTULO 1: INTRODUCCIÓN Y OBJETIVOS

1.1 INTRODUCCIÓN

En el contexto actual, la demanda mundial de energía sigue en aumento, lo que plantea la necesidad urgente de explorar nuevas fuentes de generación para cubrir nuestras necesidades energéticas. Al mismo tiempo, enfrentamos la urgencia de combatir el cambio climático y reducir las emisiones de CO2.

En este escenario, la energía solar fotovoltaica se alza como una opción atractiva y económicamente viable. Sus costes de instalación han experimentado una marcada disminución en los últimos años, lo que la hace competitiva en diversas aplicaciones. Además, su flexibilidad permite su integración en una variedad de entornos, incluyendo edificaciones y áreas cercanas a los puntos de consumo.

En el presente proyecto, nos sumergimos en el diseño y análisis detallado de una instalación de autoconsumo fotovoltaico destinada a una vivienda unifamiliar en Alicante. Nuestro enfoque principal radica en ajustar la instalación fotovoltaica de manera precisa al consumo real de energía de la vivienda, basándonos en datos concretos recopilados durante un año completo.

Para comenzar, realizamos un exhaustivo análisis del emplazamiento, evaluando la superficie disponible para el generador fotovoltaico y teniendo en cuenta las condiciones climáticas locales. Luego, procedemos con la selección de componentes, asegurándonos de la compatibilidad eléctrica entre los módulos solares y el inversor. Definimos la ubicación óptima de cada componente y realizamos cálculos detallados para determinar las secciones de cableado, las protecciones eléctricas necesarias y las estructuras de fijación requeridas.

Como fase final, llevamos a cabo simulaciones del diseño final para proyectar la producción anual de energía estimada por el sistema fotovoltaico. Este proceso nos proporciona una perspectiva clara sobre el rendimiento esperado de la instalación, garantizando su eficiencia y adaptación a las necesidades energéticas específicas de la vivienda.

1.2 OBJETIVOS

El objetivo principal de este trabajo es el diseño y dimensionamiento de una instalación de autoconsumo fotovoltaico conectada a red para vivienda unifamiliar ubicada en Benferri (Alicante).

Como consecuencia de este objetivo principal subyacen los siguientes objetivos concretos:

- Evaluación y estudio de la demanda energética de la vivienda.
- Estudio de la localización y orientación de la instalación.
- Estudio y selección de los paneles solares y componentes adecuados para la instalación.
- Estudio de aspectos normativos y de seguridad eléctrica.
- Estudio de la viabilidad económica del proyecto.

CAPÍTULO 2: ANTECENDENTES

2.1 EVOLUCIÓN HISTÓRICA DE LA ENERGÍA SOLAR

La energía solar ha desempeñado un papel fundamental a lo largo de la historia de la humanidad, desde sus primeras manifestaciones en la antigüedad hasta su prominencia como una fuente de energía limpia y renovable en la actualidad. La exploración de su evolución histórica revela un viaje fascinante que abarca milenios de innovación, descubrimiento y avance tecnológico.

Los orígenes de la energía solar se remontan a la antigüedad, donde las civilizaciones tempranas reconocieron y aprovecharon el poder del sol para calentar, secar alimentos y obtener luz. Desde los espejos de bronce utilizados por los antiguos egipcios hasta los hornos solares de los griegos y romanos, la humanidad ha experimentado con diversas formas de capturar y utilizar la energía solar mucho antes de que se comprendiera su verdadero potencial.

Sin embargo, el verdadero punto de inflexión en la historia de la energía solar llegó en el siglo XIX con los avances en la tecnología fotovoltaica. En 1839, Alexandre Edmond Becquerel descubrió el efecto fotovoltaico, colocó una lámina de cloruro de plata en una solución ácida y mientras estaba conectada a electrodos de platino sumergidos en la disolución, la iluminó. Al iluminarla, se generó una caída de tensión y una corriente entre los electrodos.

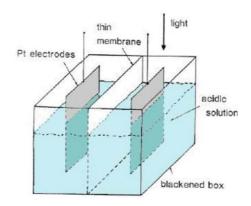


Figura 1. Descubrimiento del efecto fotovoltaico.

Fuente: PVEducation

En 1877, Adams y Day, estudiando las propiedades del selenio, observaron que mediante la luz solar se generaban diferentes voltajes internos. En ningún caso fueron aprovechables para cualquier aplicación, pero fue la primera vez que se demostró el efecto fotovoltaico en materiales.

A medida que avanzaba el siglo XX, la investigación y el desarrollo en el campo de la energía solar ganaron impulso. En la década de 1950, Bell Laboratories produjo la primera célula solar de silicio eficiente, allanando el camino para aplicaciones prácticas de la energía solar en el espacio y en la Tierra. Durante las siguientes décadas, los avances tecnológicos continuaron, impulsados por la necesidad de encontrar fuentes de energía alternativas y sostenibles.

Figura 2. Primera célula solar. Fuente: Wikipedia

La crisis del petróleo de la década de 1970 destacó la importancia de diversificar las fuentes de energía y aceleró la adopción de la energía solar en todo el mundo. A medida que los costes de los paneles solares disminuyeron y la eficiencia aumentó, la energía solar se convirtió en una opción cada vez más viable para la generación de electricidad a gran escala y el autoconsumo residencial.

En las últimas décadas, la energía solar ha experimentado un crecimiento explosivo en todo el mundo. La combinación de avances tecnológicos, políticas favorables y una creciente conciencia sobre el cambio climático ha impulsado la adopción de la energía solar a niveles sin precedentes. Hoy en día, la energía solar no solo es una fuente de

energía limpia y renovable, sino también una fuerza impulsora detrás de la transición hacia un futuro energético más sostenible y resiliente.

En conclusión, la evolución histórica de la energía solar es un testimonio del ingenio humano y la capacidad de adaptación. Desde sus modestos comienzos en la antigüedad hasta su prominencia en el siglo XXI, la energía solar ha demostrado ser una fuente de luz y esperanza en la búsqueda de un mundo más verde y próspero.

2.2 ENERGÍA SOLAR EN ESPAÑA

La energía solar en España ha experimentado un notable desarrollo en las últimas décadas, convirtiéndose en una de las principales fuentes de energía renovable del país. Gracias a su clima soleado y condiciones geográficas favorables, España es un lugar idóneo para la generación de energía solar.

El sector solar español comenzó a expandirse significativamente a principios del siglo XXI, impulsado por políticas gubernamentales favorables e inversiones en tecnología solar. La aprobación del Real Decreto 436/2004 estableció un régimen de tarifas de alimentación para la energía solar fotovoltaica, estimulando así la inversión en proyectos solares a gran escala.

Desde un punto de vista técnico, el sector solar español ha experimentado avances significativos en la eficiencia y la fiabilidad de los sistemas fotovoltaicos y térmicos. La investigación y el desarrollo en el diseño de paneles solares, inversores y sistemas de almacenamiento de energía han permitido mejorar el rendimiento y la durabilidad de las instalaciones solares en todo el país.

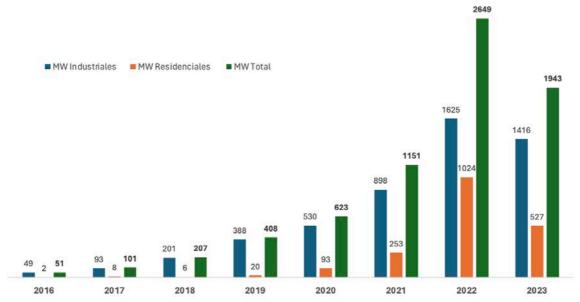
La implementación de tecnologías de seguimiento solar, como los seguidores solares de un eje y dos ejes, ha optimizado el rendimiento de los paneles solares al maximizar la captación de la luz solar a lo largo del día. Además, los avances en el diseño y la fabricación de células solares de película delgada y tecnologías de silicio cristalino han contribuido a reducir los costes y aumentar la eficiencia de los sistemas fotovoltaicos. La integración de sistemas de almacenamiento de energía, como baterías y sistemas de

bombeo de agua solares, ha permitido mejorar la estabilidad y la confiabilidad de las

instalaciones solares, proporcionando una fuente constante de energía incluso en condiciones climáticas variables.

Sin embargo, el desarrollo de la energía solar en España también ha enfrentado desafíos técnicos, como la gestión de la intermitencia y la variabilidad de la energía solar, así como la integración de las instalaciones solares en la red eléctrica existente. La implementación de tecnologías de gestión de la energía, como sistemas de control y supervisión avanzados, ha sido fundamental para garantizar la estabilidad y la seguridad de las instalaciones solares a gran escala.

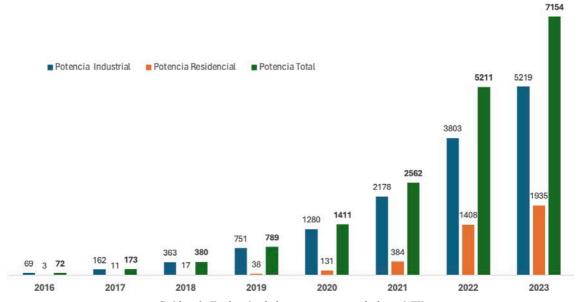
A pesar de estos desafíos, la energía solar continúa desempeñando un papel crucial en la transición hacia un sistema energético más sostenible y respetuoso con el medio ambiente en España. Con un creciente interés en las energías renovables y tecnologías solares cada vez más competitivas, se espera que el sector solar en España siga evolucionando y creciendo en los próximos años, contribuyendo así al desarrollo sostenible del país y a la lucha contra el cambio climático a nivel global.


2.3 INSTALACIONES DE AUTOCONSUMO EN ESPAÑA

La tendencia de crecimiento en la potencia instalada en autoconsumo en España alcanzó su punto máximo en 2022, marcando un hito histórico con 2.649 MW instalados. De esta capacidad, 1.625 MW correspondieron a industrias y 1.024 MW a hogares.

En 2023, la potencia instalada en autoconsumo ascendió a 1.943 MW, distribuidos en 527 MW en el ámbito residencial y 1.416 MW en el comercial e industrial. Esto representa un 27% de las instalaciones en viviendas y un 73% en empresas.

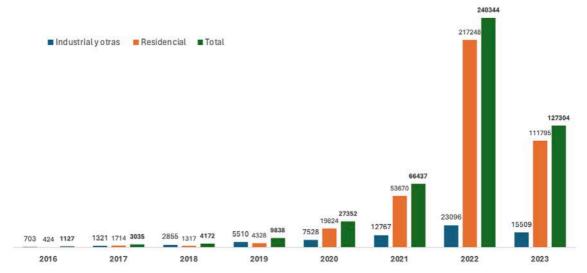
Aunque hubo una disminución del 27% en la potencia instalada respecto al año anterior, el incremento fue significativo en comparación con 2021, registrando un aumento del 69%, como se refleja en la gráfica adjunta.


Gráfica 1. Evolución de la potencia instalada en MW.

Sin embargo, para evaluar cómo la potencia instalada en autoconsumo supera la capacidad de energía nuclear, es necesario analizar la evolución de la potencia acumulada a lo largo de los últimos años. Como se observa en la Gráfica 2, el excepcional rendimiento del año 2022 ha llevado a que la potencia acumulada al final de 2023 alcance los 7.154 MW en autoconsumo.

De esta cantidad, 1.935 MW corresponden al sector residencial, mientras que los restantes 5.219 MW están destinados al sector industrial. Este notable crecimiento en la potencia acumulada refleja la creciente adopción y expansión del autoconsumo fotovoltaico en España.

Es importante destacar que este aumento ha posicionado al autoconsumo como una opción energética competitiva y en crecimiento, superando en potencia acumulada a la energía nuclear en el país. Este fenómeno indica un cambio significativo en el panorama energético español hacia fuentes de energía más sostenibles y descentralizadas.



Gráfica 2. Evolución de la potencia acumulada en MW.

A pesar de que la potencia instalada en autoconsumo industrial sea mayor que la residencial, el número de instalaciones presenta una dinámica diferente. Este fenómeno es comprensible, dado que el tamaño medio de un sistema de autoconsumo en una vivienda fue de 4,7 kW, mientras que en una industria ascendió en promedio a 91 kW. Por lo tanto, para alcanzar las cifras mencionadas, se requerirán muchas más instalaciones en viviendas que en empresas.

Concretamente, de las 127.304 instalaciones de autoconsumo realizadas en 2023, 111.795 correspondieron al sector residencial, mientras que 15.509 fueron en el ámbito industrial. Este contraste en el número de instalaciones refleja la prevalencia de sistemas de menor escala en hogares en comparación con las instalaciones de mayor capacidad en entornos industriales y comerciales.

Gráfica 3. Número de instalaciones anuales.

Esto implica que más de 410,000 hogares y cerca de 70,000 empresas ya han implementado una instalación de autoconsumo solar en España. Esta cifra representa un importante avance en la adopción de energías renovables a nivel doméstico y empresarial en el país.

CAPÍTULO 3: EL SOL COMO RECURSO ENERGÉTICO

3.1 LA RADIACIÓN SOLAR

La radiación solar, es la energía electromagnética emitida por el sol. Puede ser capturada y transformada en formas útiles, como calor y electricidad, mediante diversas tecnologías. La cantidad de radiación solar que llega a la Tierra varía según la ubicación geográfica, la hora del día, la estación del año, el paisaje local y el clima.

Debido a la forma esférica de la Tierra, los rayos solares inciden con diferentes ángulos, desde 0° hasta 90°. Cuando son perpendiculares, la superficie terrestre recibe la máxima energía posible. La órbita elíptica de la Tierra alrededor del sol significa que su distancia varía a lo largo del año, afectando la cantidad de radiación recibida. La inclinación del eje terrestre, aproximadamente 23°5°, determina la duración de los días y las noches, siendo más largos en el hemisferio donde el eje se inclina hacia el sol.

Países como España, situados en latitudes medias, reciben más energía solar en verano debido a días más largos y un sol más cercano a la vertical. La rotación de la Tierra provoca variaciones diarias en la intensidad de la luz solar, siendo mayor al mediodía.

La radiación solar es fundamental para el funcionamiento de los ecosistemas terrestres y es un recurso renovable clave para la generación de energía sostenible. Su aprovechamiento ha dado lugar al desarrollo de diversas tecnologías, como los paneles solares fotovoltaicos y los sistemas de concentración solar, que contribuyen a la transición hacia una economía más limpia y menos dependiente de los combustibles fósiles. Además de su importancia en la generación de energía, la radiación solar también influye en fenómenos climáticos y meteorológicos, como la evaporación del agua, la formación de nubes y la circulación atmosférica. Por lo tanto, comprender los patrones de radiación solar es crucial no solo para el desarrollo de infraestructuras energéticas, sino también para la predicción y mitigación de eventos climáticos extremos.

3.1.1 La radiación solar sobre la superficie terrestre

La radiación solar experimenta diversos procesos que alteran su trayectoria desde el sol hasta la superficie terrestre. Mientras atraviesa la atmósfera, parte de esta energía es absorbida, dispersada y reflejada, generando así la radiación solar difusa. Además, una porción de la radiación incidente sobre la superficie terrestre es reflejada de vuelta hacia la atmósfera, conocida como radiación reflejada. Por último, la radiación solar directa llega a la superficie terrestre sin sufrir una dispersión atmosférica significativa.

La combinación de estas formas de radiación constituye la radiación solar global, que representa la totalidad de la energía solar que alcanza un lugar específico en un momento determinado. Esta radiación puede variar dependiendo de las condiciones atmosféricas, siendo reducida hasta en un 10% en días despejados y secos, y hasta en un 100% en días nublados y densamente cubiertos.

Comprender estos procesos y cómo son influenciados por las condiciones atmosféricas es fundamental para evaluar su impacto en el clima, el medio ambiente y la generación de energía solar. Esto proporciona información valiosa para diseñar estrategias efectivas en el aprovechamiento de la energía solar y para abordar los desafíos asociados al cambio climático y la sostenibilidad ambiental.

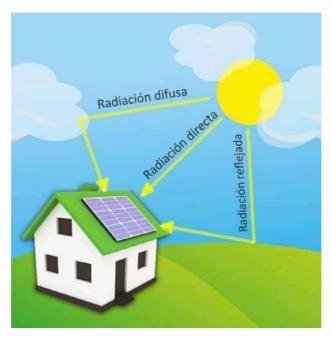


Figura 3. Componentes de la radiación solar.

Fuente: HelioEsfera

3.2 LA CÉLULA SOLAR

La célula solar es un dispositivo diseñado para transformar directamente la energía lumínica del sol en electricidad. Este proceso consta de dos etapas fundamentales. En primer lugar, el material de la célula absorbe la luz solar, lo que excita los electrones y los carga de energía. En segundo lugar, estos electrones excitados son transportados hacia un circuito externo para su uso.

Aunque varios materiales pueden cumplir esta función, los materiales semiconductores, especialmente en la configuración de unión PN, son comúnmente utilizados. Entre las células solares más populares para la generación de electricidad se encuentran las de silicio cristalino.

3.2.1 Materiales semiconductores

Los átomos en un semiconductor provienen de los grupos IV de la tabla periódica, de combinaciones de los grupos III y V (conocidos como semiconductores III-V) o de combinaciones de los grupos II y VI (llamados semiconductores II-VI).

El silicio, que pertenece al grupo IV, es el material semiconductor más ampliamente utilizado, y es la base de la mayoría de las células solares.

Los semiconductores, como el silicio (Si), consisten en átomos unidos en una estructura regular y periódica. Cada átomo en el semiconductor tiene ocho electrones a su alrededor. Los electrones forman enlaces covalentes, donde cada átomo comparte cuatro electrones con sus átomos vecinos. Esto resulta en ocho electrones compartidos entre cada átomo y sus vecinos.

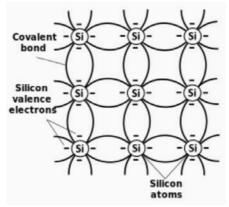


Figura 4. Estructura atómica del silicio sin impurezas.

Fuente: Wikipedia

A temperatura 0 K, los átomos en el semiconductor están estacionarios y no hay electrones libres. Sin embargo, cuando se incrementa la temperatura, los átomos empiezan a vibrar, generando electrones libres y huecos en el material. Estos electrones libres y huecos se mueven aleatoriamente y no son útiles para aplicaciones prácticas.

Para aprovechar estos electrones libres y huecos, se necesita aplicar un campo eléctrico externo, pero la energía requerida sería mayor que la energía obtenida. Una alternativa es dopar el semiconductor, introduciendo impurezas de manera controlada. Estas impurezas, como el fósforo (P) o el antimonio (Sb), tienen un electrón adicional en su última capa en comparación con el silicio, lo que les permite ceder electrones. Este proceso convierte el semiconductor en un semiconductor extrínseco, lo que facilita la creación de pares electrón-hueco aprovechables para aplicaciones en circuitos electrónicos.

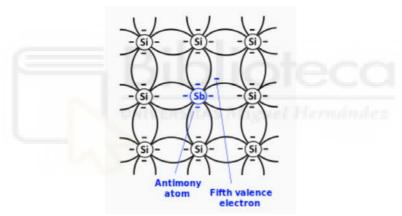


Figura 5. Semiconductor extrínseco tipo N.

Fuente: Wikipedia

Cuando se introducen impurezas en el silicio, estas impurezas comparten 4 de los 5 electrones que tienen en su última capa, dejando un electrón libre. En este escenario, el semiconductor se clasifica como tipo N.

Sin embargo, cuando se introducen impurezas que tienen una deficiencia de electrones, como el boro (B), se agregan átomos que tienen tres electrones de valencia en su última capa, uno menos que el silicio. Estas impurezas se integran en la estructura del silicio y comparten los tres electrones, dejando una vacante en los enlaces, lo que se conoce como un hueco (h+).

En estas condiciones, el semiconductor se clasifica como tipo P, donde la densidad de huecos es mayor que la de los electrones.

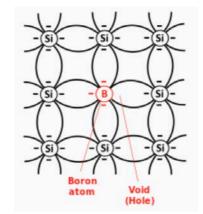


Figura 6. Semiconductor extrínseco tipo P.

Fuente: Wikipedia

3.2.2 Unión PN

Cuando se unen un semiconductor tipo P y un semiconductor tipo N para formar una unión PN, se genera un desequilibrio debido a las diferentes concentraciones de electrones y huecos en cada semiconductor.

Para restaurar el equilibrio, los portadores mayoritarios se difunden a través de la unión. Los huecos se mueven del semiconductor P al semiconductor N, lo que carga al semiconductor P negativamente, mientras que los electrones se desplazan del semiconductor N al semiconductor P, cargando al semiconductor N positivamente.

Este proceso crea una región en la unión PN con una distribución de carga específica, que es la base para muchas aplicaciones en dispositivos electrónicos.

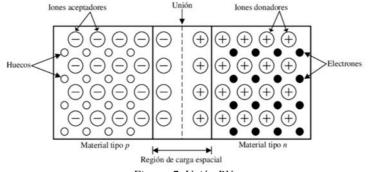


Figura 7. Unión PN.

Fuente: ResearchGate

En la unión PN, el equilibrio se alcanza cuando los movimientos de difusión y arrastre se compensan, creando una región llamada zona de carga espacial. En esta zona, la corriente es nula ya que los electrones y huecos se neutralizan entre sí. El campo eléctrico generado por la zona de carga espacial crea una barrera de potencial que impide el flujo de corriente.

Para permitir que circule la corriente, es necesario romper este equilibrio. Esto se logra aplicando una diferencia de potencial externa, lo que disminuye la barrera de potencial y permite que los electrones se muevan desde el semiconductor N hacia el semiconductor P y los huecos desde el semiconductor P hacia el semiconductor N, generando una corriente aprovechable.

El dispositivo electrónico más básico basado en una unión PN es el diodo, que aprovecha esta propiedad para permitir el flujo de corriente en una dirección mientras que lo bloquea en la otra.

3.2.3 Estructura de una célula solar

Se compone de varias capas diseñadas específicamente para convertir la energía solar en electricidad utilizable.

En su núcleo, la célula solar consta de un material semiconductor, comúnmente silicio cristalino. Esta capa semiconductora se divide en dos regiones: una con exceso de electrones (tipo N) y otra con deficiencia de electrones (tipo P). Esta configuración, como ya hemos visto en el apartado anterior, se denomina una unión PN.

La estructura de la célula solar se complementa con otras capas que optimizan su rendimiento:

- Capa Anti-Reflexiva. Diseñada con el propósito de disminuir las pérdidas causadas por la reflexión.
- Malla de Metalización. Se representa como un peine pero puede tener varias formas (Figura 8). La estructura debe asegurar una recolección eficiente de electrones sin generar resistencia eléctrica significativa y permitir la máxima transmisión de luz.

- Contacto Métalico-Posterior. Usualmente se lleva a cabo mediante la metalización de toda la superficie del dispositivo.

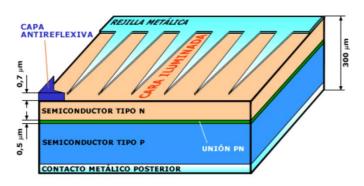
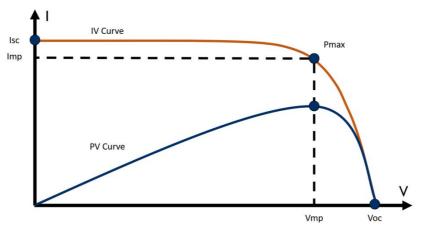


Figura 8. Estructura célula solar.

Fuente: PVEducation

3.2.4 Parámetros característicos de las células solares


Los parámetros eléctricos empleados para la caracterizacion de una célula solar son los siguientes:

- Tensión de circuito abierto (V_{oc}): Es la tensión máxima que se registra en los terminales de la célula solar cuando no está conectada a ninguna carga externa.
- Corriente de cortocircuito (I_{sc}): Es la corriente máxima que fluye a través de una célula fotovoltaica cuando se encuentra en cortocircuito.
- Potencia máxima (P_{max}): Es la máxima potencia que genera una célula solar, viene definida por la intensidad del punto de máxima potencia (I_{mpp}) y la tensión del punto de máxima potencia (V_{mpp}).

$$P_{MAX} = I_{MPP} \cdot V_{MPP}$$

Con estos parametros podremos obtener la curva I-V y P-V, la cuales representan a continuación:

Gráfica 4. Curvas IV y PV de una célula solar.

Fuente: Atonometrics

Estos parámetros se obtienen en unas condiciones estándar de medición (STC en inglés) de uso universal según la norma EN61215. Los parámetros fijados por las STC son:

- Irradiancia normal: 1000 W/m².

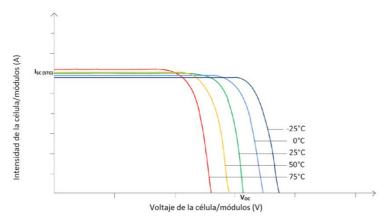
- Distribucuión espectral de la radiación incidente: AM 1.5 (masa de aire)

Incidencia normal.

- Temperatura de la célula: 25°C.

Cuando estos parámetros son alterados, principalmente por variaciones en la irradiación o en la temperatura de operación, el comportamiento de la célula, y por ende el panel, varía significativamente.

3.2.5 Factores que influyen en el funcionamiento de la célula solar


El comportamiento eléctrico de las células solares puede ser influenciado por diversos factores, como la temperatura y la intensidad de la luz incidente.

Efectos de la Temperatura

Las células solares, al ser dispositivos semiconductores, muestran sensibilidad a la temperatura. Cuando la temperatura aumenta, el gap del semiconductor disminuye, lo que tiene un impacto en todos los parámetros del material.

Sin embargo, el efecto en la tensión (V_{oc}) es más significativo. El aumento en la temperatura reduce la tensión de circuito abierto, como se muestra a continuación:

Gráfica 5. Efecto de la temperatura en una célula solar.

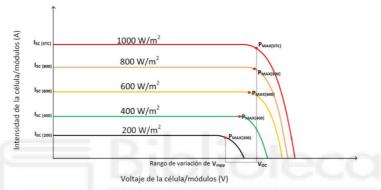
Fuente: Ingelibre

Concretamente, un incremento en la temperatura resulta en una reducción de la tensión de circuito abierto (V_{oc}) y un aumento en la corriente de cortocircuito (I_{sc}) . Sin embargo, los cambios en la corriente son tan pequeños que se consideran constantes para propósitos prácticos.

La temperatura de operación de una célula depende de la temperatura ambiente y la irradiación según la siguiente expresión:

$$T_c = T_{amb} + G \times \frac{TONC - 20}{800}$$

Donde:


- T_c es la temperatura de trabajo de la célula (°C).
- T_{amb} es la temperatura ambiente (°C).
- **G** es la irradiancia (W/m²).
- TONC es la temperatura de operación nominal de la célula (generalmente, TONC = 45°C).

Efecto de la Intensidad de Luz Incidente

Los cambios en la intensidad de la luz que llega a la célula solar alteran todos los parámetros que hemos discutido anteriormente.

La fotocorriente, que es la corriente generada por la célula solar cuando está expuesta a la luz, es proporcional a la intensidad de la radiación incidente. Por lo tanto, la corriente de cortocircuito (I_{sc}), varía considerablemente según la cantidad de radiación que llega a la célula. Cuando la irradiancia disminuye, la corriente de cortocircuito también disminuye.

Gráfica 6. Efecto de la incidencia de la intensidad de la luz en una célula solar.

Fuente: Ingelibre

Por otro lado, la tensión de circuito abierto (V_{oc}) , varía muy poco con los cambios en la irradiancia. Por lo tanto, a efectos prácticos, se puede considerar que la tensión de circuito abierto es constante.

La intensidad de cortocircuito (I_{sc}) varía con la irradiancia de manera lineal, como se puede observar en la siguiente expresión:

$$I_{sc}(G) = G \times \frac{I_{sc}(STC)}{1000}$$

Donde:

- **Isc** (G) es la intensidad de cortocircuito para una irradiancia G (A).

- \mathbf{G} es la irradiancia (W/m²).
- **Isc** (G) es la intensidad de cortocircuito en condiciones estándares de medida STC (A).

3.3 MÓDULOS FOTOVOLTAICOS

Una célula solar típica (de una superficie de 100 cm²) produce 1,5 W con una tensión de 0,5 V y una corriente de 3 A, no es adecuada para casi ninguna aplicación. La mayoría de paneles solares están compuestos por un número de células fotovoltaicas que generalmente varía entre 36 y 96.

Además, es importante proporcionar protección contra los elementos atmosféricos, así como un aislamiento eléctrico adecuado y una estructura mecánica que permita su manipulación de manera segura. A continuación, se muestra los elementos que conforman un módulo fotovoltaico:

Figura 9. Elementos de los paneles fotovoltaicos.

Fuente: Eolica.info

Marco: Estructura periférica de aluminio o acero que proporciona soporte y protección al panel solar.

Vidrio frontal: Capa de vidrio templado transparente en la parte frontal del panel para proteger las células solares de impactos y condiciones climáticas adversas.

Encapsulante frontal (EVA): Material polimérico transparente que se encuentra entre el vidrio frontal y las células solares, proporcionando protección contra la humedad y amortiguación mecánica.

Células solares: Dispositivos semiconductores que convierten la luz solar en electricidad.

Encapsulante trasero (EVA): Material polimérico que se encuentra entre las células solares y el recubrimiento trasero, que proporciona protección adicional y amortiguación mecánica.

Recubrimiento trasero: Capa protectora en la parte posterior del panel solar que proporciona aislamiento eléctrico y protección contra la humedad.

Caja de conexiones: Caja hermética que alberga las conexiones eléctricas del panel solar, protegiéndolas de los elementos y permitiendo la conexión del panel al sistema eléctrico.

3.3.1 Conexionado de los módulos fotovoltaicos

Al conectar los paneles fotovoltaicos, es crucial considerar las demandas específicas del sistema. Esto implica tener en cuenta varios factores:

Primero, es importante observar los niveles de tensión admisible de los dispositivos presentes en el sistema, como los inversores y reguladores. Estos dispositivos tienen límites de tensión que deben respetarse al conectar los paneles.

Además de la tensión, también debemos tener en cuenta la corriente admisible de los dispositivos. Asegurarnos de que la corriente generada por los paneles esté dentro de los límites permitidos por los dispositivos es fundamental para el correcto funcionamiento del sistema.

Por último, la potencia necesaria para satisfacer las necesidades de la instalación es un factor clave. Esta potencia se determina multiplicando la tensión y la corriente en el punto de máxima potencia de los paneles. Es esencial que esta potencia sea suficiente para cubrir todas las demandas energéticas del sistema. En resumen, al conectar los paneles fotovoltaicos, debemos considerar estos elementos para garantizar un funcionamiento óptimo y seguro del sistema.

Cuando los módulos se conectan en serie, la corriente que fluye a través de ellos es uniforme y la tensión total del conjunto de paneles en serie es la suma de las tensiones

individuales de cada módulo. Esta agrupación de paneles en serie se denomina "rama" o "string".

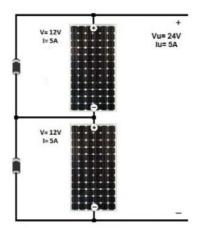


Figura 10. Conexionado en serie de módulos fotovoltaicos.

Fuente: MpptSolar

Por otro lado, la conexión en paralelo resulta en que cada string presente una corriente igual a la suma de las corrientes generadas en cada rama. La tensión total será equivalente al de un solo string.

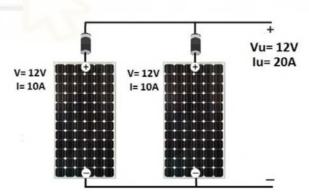


Figura 11. Conexionado en paralelo de módulos fotovoltaicos.

Fuente: MpptSolar

CAPÍTULO 4: NORMATIVA APLICABLE

4.1 NORMATIVA EUROPEA

Reglamento (UE) 2016/631 de la Comisión, de 14 de abril de 2016, que establece un código de red sobre requisitos de conexión de generadores a la red.

4.2 NORMATIVA ESTATAL

Ley 40/1994, de 30 de diciembre, de ordenación del Sistema Eléctrico Nacional.

Real Decreto 1955/2000, de 1 de diciembre, por el que se regulan las actividades de transporte, distribución, comercialización, suministro y procedimientos de autorización de instalaciones de energía eléctrica.

Real Decreto 842/2002, de 2 de agosto, por el que se aprueba el Reglamento electrotécnico para baja tensión.

Real Decreto 314/2006, de 17 de marzo, por el que se aprueba el Código Técnico de la Edificación.

Real Decreto 1110/2007, de 24 de agosto, por el que se aprueba el Reglamento unificado de puntos de medida del sistema eléctrico.

PCT-C-REV de julio 2011, Pliego de Condiciones Técnicas de Instalaciones Conectadas a Red.

Real Decreto 1699/2011, de 18 de noviembre, por el que se regula la conexión a red de instalaciones de producción de energía eléctrica de pequeña potencia.

Ley 24/2013, de 26 de diciembre, del Sector Eléctrico.

Real Decreto 413/2014, de 6 de junio, por el que se regula la actividad de producción de energía eléctrica a partir de fuentes de energía renovables, cogeneración y residuos.

Real Decreto-ley 15/2018, de 5 de octubre, de medidas urgentes para la transición energética y la protección de los consumidores.

Real Decreto 244/2019, de 5 de abril, por el que se regulan las condiciones administrativas, técnicas y económicas del autoconsumo de energía eléctrica.

Real Decreto-ley 23/2020, de 23 de junio, por el que se aprueban medidas en materia de energía y en otros ámbitos para la reactivación económica.

Decreto-ley 14/2020, de 7 de agosto, de medidas para acelerar la implantación de instalaciones para el aprovechamiento de las energías renovables por la emergencia climática y la necesidad de la urgente reactivación económica.

Real Decreto 1183/2020, de 29 de diciembre, de acceso y conexión a las redes de transporte y distribución de energía eléctrica

Real Decreto 477/2021, de 29 de junio, por el que se aprueba la concesión directa a las comunidades autónomas y a las ciudades de Ceuta y Melilla de ayudas para la ejecución de diversos programas de incentivos ligados al autoconsumo y al almacenamiento, con fuentes de energía renovable, así como a la implantación de sistemas térmicos renovables en el sector residencial, en el marco del Plan de Recuperación, Transformación y Resiliencia.

Real Decreto-ley 29/2021, de 21 de diciembre, por el que se adoptan medidas urgentes en el ámbito energético para el fomento de la movilidad eléctrica, el autoconsumo y el despliegue de energías renovables.

Real Decreto-ley 14/2022, de 1 de agosto, de medidas de sostenibilidad económica en el ámbito del transporte, en materia de becas y ayudas al estudio, así como de medidas de ahorro, eficiencia energética y de reducción de la dependencia energética del gas natural.

CAPÍTULO 5: ESTUDIO DEL EMPLAZAMIENTO

5.1 LOCALIZACIÓN

El proyecto planteado se desarrollará en el tejado de la estructura colindante a la vivienda unifamiliar localizada en Camino Abanilla, en el municipio de Benferri, Alicante. Las coordenadas geográficas son 38°08'36.2"N 0°57'50.5"W.

Figura 12. Emplazamiento de la instalación.

A continuación, se presenta una vista aérea de la vivienda donde se destaca en color rosa el polígono que representa la superficie disponible para la instalación de paneles fotovoltaicos:

Figura 13. Vista aérea de la vivienda.

También se proporciona una vista del alzado de la estructura donde se instalarán los módulos fotovoltaicos:

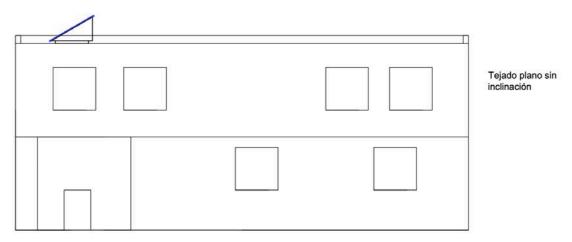


Figura 14. Vista en alzado de la estructura.

5.2 ESTUDIO DE LA RADIACIÓN

Para evaluar el potencial de radiación solar disponible, se requiere un análisis de la radiación incidente. Este análisis determinará cuál orientación e inclinación es más óptima en términos de generación energética.

En este proyecto, se ha optado por utilizar la base de datos de PVGIS.

5.2.1 Entorno de trabajo en PVGIS

PVGIS (Sistema de Información Geográfica Fotovoltaica) es un proyecto desarrollado por el Centro Común de Investigación de la Comisión Europea, que ha estado en funcionamiento desde 2001.

El propósito principal de PVGIS es investigar y evaluar los recursos solares, así como estudiar el rendimiento de la energía fotovoltaica. Además, busca difundir conocimientos y datos relacionados con la energía solar. Aunque la aplicación web de PVGIS es la función más reconocida de este proyecto, se han llevado a cabo numerosas investigaciones adicionales sobre energía solar dentro de su marco.

Dentro de la aplicación, se destacan tres herramientas principales: PV Performance tool, Solar Radiation tool y TMY tool.

La PV Performance tool permite estimar el rendimiento de un sistema fotovoltaico, ya sea conectado a la red, autónomo o con seguimiento.

La Solar Radiation tool ofrece datos sobre la radiación solar de una ubicación específica, con opciones para recopilar datos mensuales, diarios u horarios.

Por último, la TMY tool proporciona datos meteorológicos para un período de tiempo determinado.

Independientemente de la herramienta seleccionada, el entorno de la aplicación permanece constante.

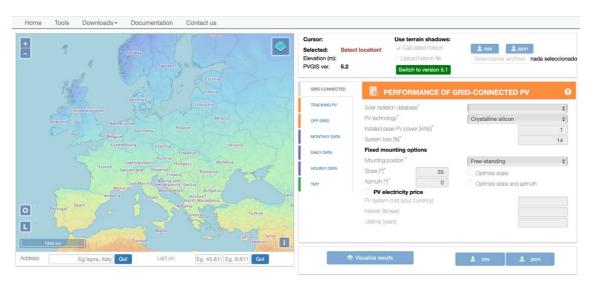


Figura 15. Entorno de trabajo en PVGIS.

La aplicación se divide en dos partes distintas: en la parte izquierda, se encuentra un mapa donde se puede seleccionar la ubicación del lugar de estudio de tres maneras diferentes. Puedes elegir en el mapa mismo, escribir la dirección en la zona inferior izquierda del mapa o ingresar la latitud y longitud en la parte inferior derecha del mapa.

En la parte derecha de la interfaz, se muestra la herramienta seleccionada. Además, en el menú de la izquierda, puedes seleccionar otras herramientas disponibles en el sistema PVGIS. Cada herramienta tiene marcados con asteriscos rojos los datos necesarios para realizar los cálculos y obtener los resultados deseados. Estos resultados se pueden visualizar directamente en pantalla seleccionando "Visualize results", o se pueden descargar en formato .csv o json.

5.2.2 Geometría de la instalación

La geometría de una instalación fotovoltaica constituye un factor fundamental que incide directamente en su rendimiento y eficacia. Dos conceptos claves en la geometría de una instalación fotovoltaica son el azimut y la inclinación:

Azimut

Representado por el ángulo α, se define como el ángulo formado por la proyección del módulo sobre el plano horizontal con respecto a la dirección sur.

Es importante considerar que la orientación sur de un módulo se representa como 0 grados, la orientación oeste como 90 grados, la orientación norte como 180 grados y la orientación este como 270 grados. Además, el azimut puede medirse en sentido negativo hacia el este y en sentido positivo hacia el oeste.

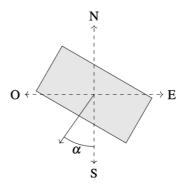


Figura 16. Ángulo de azimut.

A continuación se presenta en la Figura 17, el ángulo de azimut de la cubierta donde se llevará a cabo la instalación. Se observa que el ángulo de azimut es de -122°, indicando una orientación hacia el este.

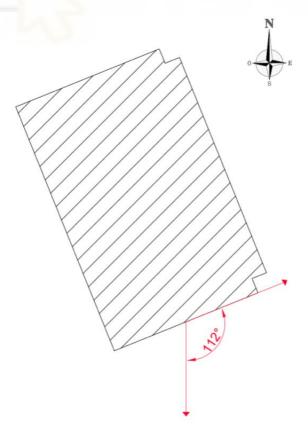


Figura 17. Ángulo de azimut cubierta.

La máxima cantidad de energía solar se absorbe cuando los rayos solares inciden de manera perpendicular sobre un módulo fotovoltaico. En general, en el hemisferio norte los módulos deben orientarse hacia el sur ($\alpha_{opt} = 0^{\circ}$), mientras que en el hemisferio sur, la orientación óptima es hacia el norte ($\alpha_{opt} = 180^{\circ}$).

Inclinación

Representa el ángulo formado entre la superficie del módulo fotovoltaico y el plano horizontal. En otras palabras, es la medida del ángulo de inclinación que el panel fotovoltaico forma con respecto a la superficie plana del suelo.

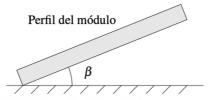


Figura 18. Ángulo de inclinación.

La inclinación del módulo fotovoltaico es un factor crucial que se ajusta según las condiciones climáticas locales para optimizar su rendimiento y durabilidad:

En primer lugar, se recomienda una inclinación mínima de al menos 15 grados para permitir que la suciedad acumulada sobre la superficie del panel sea eliminada por el agua de lluvia.

En áreas con nevadas frecuentes, se aconseja una inclinación cercana a los 90 grados para facilitar el deslizamiento de la nieve y evitar acumulaciones que puedan afectar la eficiencia del panel.

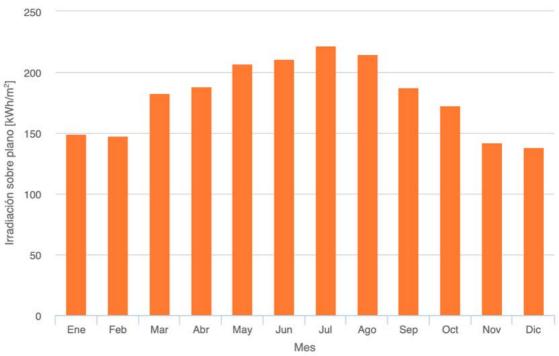
En regiones tropicales con lluvias intensas, se sugiere una inclinación mínima de al menos 30 grados para prevenir la acumulación de agua y posibles problemas de escurrimiento.

Por último, en zonas desérticas donde la presencia de arena es común, se recomienda una inclinación superior a los 45 grados para evitar la acumulación de arena sobre la superficie del panel, lo que podría afectar su eficacia y durabilidad.

Ajustar la inclinación del panel de acuerdo con estas consideraciones climáticas ayuda a maximizar su rendimiento y a prolongar su vida útil bajo diferentes condiciones ambientales.

5.2.3 Radiación incidente

Mediante PVGIS, buscaremos determinar los ángulos de azimut e inclinación óptimos para nuestra instalación fotovoltaica ya que nuestra proyecto se llevara acabo en un tejado plano, sin inclinación. Estos ángulos nos permitirán posicionar los paneles solares de manera adecuada para maximizar la captación de energía solar disponible en nuestro lugar de instalación.


Además, obtendremos información detallada sobre la radiación solar incidente en el área específica donde planeamos llevar a cabo nuestra instalación. Este análisis nos proporcionará datos sobre la cantidad de energía solar que podemos esperar recibir en el lugar de la instalación a lo largo del año, lo cual es fundamental para dimensionar correctamente nuestro sistema fotovoltaico y estimar su rendimiento esperado.

Los resultados obtenidos, reflejados en la Gráfica 7, muestran los siguientes resultados para las coordenadas de nuestra instalación en un supuesto de instalación con potencia pico instalada de 1kWp y unas perdidas del sistema del 14%:

Datos Proporcionados							
Localización [Lat/Lon]	38.143, -0.964						
Horizonte	Calculado						
Base de datos	PVGIS-SARAH2						
Tecnologiía FV	Silicio Cristalino						
FV instalada (kW _p)	1						
Pérdidas sistema (%)	14						

Resultados de la simulación						
Ángulo de inclinación (°)	36 (opt)					
Ángulo de azimut (°)	1 (opt)					
Producción anual FV (kWh)	1638,95					
Irradiación anual (kWh/m2)	2162,73					
Variación interanual (kWh)	43,9					
Pérdidas totales (%)	-24,22					
Cambios en la producción debic	lo a:					
Ángulo de incidencia (%)	-2,52					
Efectos espectrales (%)	0,56					
Temperatura y baja irradiancia (%)	-10,12					

Gráfica 7. Irradiancia mensual sobre plano fijo (Caso óptimo).

Además, se incluye en el Gráfico 8, la representación de la producción mensual de energía por kW_p instalado:

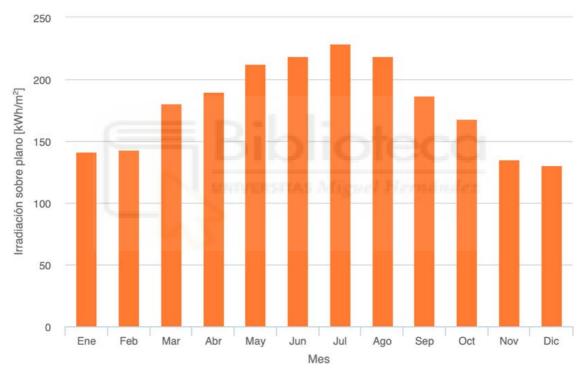
Gráfica 8. Producción de energía mensual del sistema FV fijo (Caso óptimo)

Según los resultados obtenidos, se ha determinado que al utilizar un ángulo de inclinación de los módulos de 36 grados y un ángulo de azimut de 1 grado, se alcanzaría una irradiación anual óptima estimada de aproximadamente 2162,73 kWh/m² y una producción anual óptima de 1638,95 kWh.

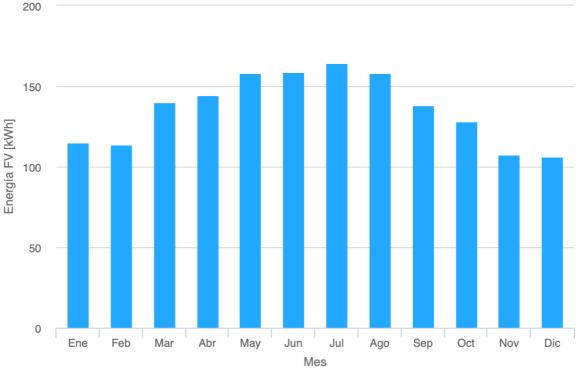
Para lograr el ángulo de inclinación deseado de 36 grados en nuestra instalación, se requeriría la implementación de estructuras regulables para los paneles solares. Estas estructuras permiten ajustar la inclinación de los paneles según las necesidades específicas del proyecto y las condiciones cambiantes del entorno.

En la actualidad, se observa una tendencia donde las estructuras regulables para paneles solares han experimentado una disminución significativa en su popularidad y uso, en gran parte atribuible al marcado descenso de los precios de los propios paneles solares.

Esta disminución ha hecho que resulte más práctico y económico instalar paneles solares adicionales para compensar posibles pérdidas energéticas, en lugar de optar por estructuras regulables, cuyo coste además suele ser más elevado que el de las estructuras fijas. Por lo tanto, obtaremos por la utilización de estructuras fijas en nuestra instalación.


En virtud de un análisis exhaustivo y considerando diversas variables, se ha tomado la determinación de optar por una inclinación de 30 grados para la instalación de paneles solares. Esta elección se fundamenta en su condición de ser la opción más económica y ampliamente utilizada en la industria solar. La inclinación de 30 grados no solo ofrece un equilibrio óptimo entre eficiencia y costes, sino que también cuenta con un respaldo sustancial en términos de su aplicación práctica y efectividad comprobada en numerosos proyectos solares a nivel internacional. Por consiguiente, se confía en que esta decisión contribuirá significativamente a la viabilidad y efectividad de nuestra instalación solar.

En el siguiente análisis se presentan los valores de irradiación anual y potencial anual, los cuales han sido calculados para los ángulos de azimut e inclinación elegidos: 1 grado para el azimut y 30 grados para la inclinación.

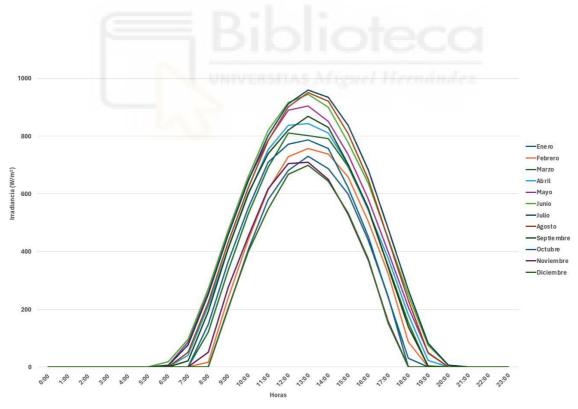

Datos Proporcionados							
Localización [Lat/Lon]	38.143, -0.964						
Horizonte	Calculado						
Base de datos	PVGIS-SARAH2						
Tecnologiía FV	Silicio Cristalino						
FV instalada (kW _p)	1						
Pérdidas sistema (%)	14						

Resultados de la simulación						
Ángulo de inclinación (°)	30					
Ángulo de azimut (°)	1					
Producción anual FV (kWh)	1631,58					
Irradiación anual (kWh/m2)	2155,48					
Variación interanual (kWh)	42,53					
Pérdidas totales (%)	-24,31					
Cambios en la producción debid	do a:					
Ángulo de incidencia (%)	-2,59					
Efectos espectrales (%)	0,54					
Temperatura y baja irradiancia (%)	-10,13					

Gráfica 9. Irradiancia mensual sobre plano fijo (Caso escogido).

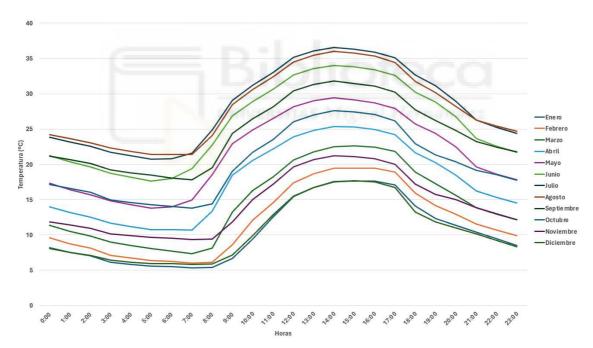
Gráfica 10. Producción de energía mensual del sistema FV fijo (Caso escogido).

Los resultados revelan que con un ángulo de inclinación de los módulos de 30 grados y un ángulo de azimut de 1 grado, la irradiación anual estimada alcanza aproximadamente 2155,48 kWh/m² y la producción anual FV alcanza un valor de 1631,58 kWh/m². Dada la escasa disparidad con la irradiación y producción anual óptima, se ha optado por adoptar estos valores para el diseño y dimensionamiento de nuestra instalación.


Después de haber establecido los valores correspondientes de ángulo de inclinación y azimut, procedemos a calcular la irradiancia y la temperatura horaria para un día promedio de cada mes.

Para la obtención de la irradiancia y la temperatura horaria de un día medio de cada mes, emplearemos la herramienta integrada en PVGIS denominada "perfil diario de radiación solar". Esta herramienta de PVGIS proporciona la irradiancia horaria media para cada hora de un día del mes seleccionado, siendo este valor promedio la media de todos los días de dicho mes dentro una serie temporal de varios años.

A continuación, se exponen de manera detallada todos los datos recopilados con respecto a la irradiancia y la temperatura:


					IRRAI	DIANCIA (W/r	n²)					
Hora	Enero	Febrero	Marzo	Abril	Mayo	Junio	Julio	Agosto	Septiembre	Octubre	Noviembre	Diciembre
0:00	0	0	0	0	0	0	0	0	0	0	0	0
1:00	0	0	0	0	0	0	0	0	0	0	0	0
2:00	0	0	0	0	0	0	0	0	0	0	0	0
3:00	0	0	0	0	0	0	0	0	0	0	0	0
4:00	0	0	0	0	0	0	0	0	0	0	0	0
5:00	0	0	0	0	0	0	0	0	0	0	0	0
6:00	0	0	0	0	6,12	18,65	5,5	0	0	0	0	0
7:00	0	0	0,69	41,19	87,27	95,13	75,98	50,85	20,64	0	0	0
8:00	0	16,58	120,22	211,08	258,52	271,85	252,61	223,72	191,93	147,84	50,75	0
9:00	200,57	238,57	334,48	410,41	458,84	472,52	457,98	430,82	409,78	363,47	274,67	202,7
10:00	407,39	440,51	529,97	597,94	648,19	659,83	645,15	620,86	601,86	550,95	453,01	399,79
11:00	579,73	613,34	690,94	751,96	785,03	818,86	800,81	783,69	738,42	709,18	616,83	547,35
12:00	680,44	728,95	810,74	837,3	888,67	915,49	912,05	901,45	821,36	771,39	704,5	666,85
13:00	730,08	756,18	801,24	842,54	904,74	945,18	959,81	950,72	868,8	786,73	709,29	698,71
14:00	686,65	738,12	791,72	810,63	849,94	899,77	934,4	921,32	829,55	756,84	649,36	643,21
15:00	599,42	658,13	693,82	700,05	736,33	778,33	837,28	809,59	701,83	621,35	528,55	532,86
16:00	438,3	504,15	544,09	542,13	581,36	635,48	681,61	649,37	549,64	451,19	369,46	373,59
17:00	243,97	322,99	349,91	376,36	399,34	445,28	479,26	441,86	346,36	241	158,63	152,56
18:00	0,37	86,14	154,05	181,08	207,68	249,69	266,19	230,6	138,75	29,56	0	0
19:00	0	0	0,59	22,54	49,53	74,71	81,47	48,4	3,81	0	0	0
20:00	0	0	0	0	0,2	6,26	5,74	0	0	0	0	0
21:00	0	0	0	0	0	0	0	0	0	0	0	0
22:00	0	0	0	0	0	0	0	0	0	0	0	0
23:00	0	0	0	0	0	0	0	0	0	0	0	0

Gráfica 11. Curvas de irradiancia promedio diaria por meses.

					TEM	PERATURA (º	C)					
Hora	Enero	Febrero	Marzo	Abril	Mayo	Junio	Julio	Agosto	Septiembre	Octubre	Noviembre	Diciembre
0:00	8,17	9,57	11,32	13,97	17,31	21,19	23,85	24,2	21,16	17,11	11,82	8,04
1:00	7,51	8,73	10,47	13,19	16,41	20,35	23,15	23,62	20,65	16,59	11,4	7,53
2:00	7,04	8,1	9,79	12,52	15,67	19,65	22,57	23,05	20,09	16,05	10,91	7,09
3:00	6,08	7,09	8,97	11,63	14,8	18,72	21,72	22,29	19,21	14,96	10,15	6,38
4:00	5,78	6,69	8,47	11,17	14,26	18,15	21,18	21,82	18,8	14,59	9,85	6,12
5:00	5,53	6,37	8,06	10,76	13,77	17,64	20,71	21,41	18,45	14,26	9,62	5,92
6:00	5,47	6,23	7,66	10,75	13,97	17,99	20,79	21,38	18,03	14	9,49	5,95
7:00	5,3	6,01	7,35	10,7	14,95	19,36	21,6	21,4	17,78	13,76	9,33	5,8
8:00	5,37	6,12	8,12	13,36	18,52	22,73	24,84	24,08	19,5	14,4	9,38	5,86
9:00	6,66	8,62	13,21	18,47	22,89	26,88	29,05	28,44	24,37	18,99	11,83	7,16
10:00	9,41	12,06	16,29	20,52	24,84	28,9	31,17	30,57	26,45	21,69	14,98	9,91
11:00	12,59	14,58	18,25	22,19	26,48	30,64	33	32,39	28,16	23,54	17,21	12,89
12:00	15,43	17,39	20,61	23,88	28,16	32,65	35,13	34,47	30,39	26,03	19,63	15,5
13:00	16,73	18,64	21,77	24,83	29,02	33,57	36,09	35,47	31,32	27,02	20,64	16,73
14:00	17,57	19,45	22,51	25,37	29,42	33,98	36,54	35,98	31,83	27,59	21,22	17,49
15:00	17,63	19,46	22,59	25,29	29,12	33,84	36,33	35,77	31,47	27,41	21,07	17,68
16:00	17,64	19,42	22,44	24,94	28,69	33,37	35,89	35,33	31,07	27,05	20,81	17,52
17:00	17,07	18,87	21,79	24,17	27,92	32,57	35,07	34,45	30,24	26,13	20,02	16,72
18:00	14,07	15,93	18,87	21,66	25,74	30,22	32,67	31,72	27,71	22,94	17,16	13,26
19:00	12,34	14,16	17,23	20,25	24,38	28,82	31,14	30,18	26,19	21,35	15,73	11,8
20:00	11,34	12,93	15,61	18,47	22,46	26,78	28,97	28,23	24,82	20,33	14,98	10,97
21:00	10,35	11,55	13,84	16,23	19,64	23,62	26,24	26,25	23,23	19,16	13,83	10,15
22:00	9,44	10,7	12,94	15,29	18,59	22,57	25,24	25,4	22,43	18,5	13,01	9,2
23:00	8,47	9,85	12,12	14,48	17,78	21,69	24,4	24,7	21,77	17,75	12,15	8,31

Gráfica 12. Curvas de temperatura promedio diaria por meses.

5.3.3 Consumo eléctrico de la vivienda

Entender cómo utiliza la energía el cliente es vital para determinar el tamaño adecuado de una instalación solar. Analizar sus patrones de consumo ayuda a identificar los picos de demanda y los momentos de menor uso. Esta información permite diseñar un sistema

solar que se ajuste a sus necesidades específicas y reduzca la dependencia de la red eléctrica convencional.

Se ha realizado un análisis del consumo residencial utilizando la base de datos anual de consumo eléctrico por hora del año 2023, obtenida directamente del contador en línea proporcionado por la distribuidora. A partir de estos datos horarios reales, se ha calculado el consumo promedio diario por mes para desarrollar un modelo de consumo eléctrico a nivel horario. Las curvas resultantes se muestran en la Gráfica 13:

Gráfica 13. Curvas consumo promedio diario de la vivienda por meses.

Podemos observar como el consumo varía de manera considerable especialmente en los meses de verano, será crucial realizar un análisis detallado de cada mes para determinar el dimensionamiento óptimo de nuestra instalación solar y maximizar su rentabilidad.

En términos acumulados, se observa que mayo registra el menor consumo energético diario con 8.135 kWh, mientras que agosto presenta el consumo más alto con 15.16 kWh.

La tabla adjunta ofrece el consumo diario promedio por hora para cada mes del año, desempeñando un papel fundamental en el óptimo desarrollo del proyecto.

				CONSUM	O HORARIO I	DE UN DIA PR	OMEDIO DEL	MES (Wh)				
Hora	Enero	Febrero	Marzo	Abril	Mayo	Junio	Julio	Agosto	Septiembre	Octubre	Noviembre	Diciembre
0:00	258,710	219,929	210,839	225,567	271,742	274,7	607,548	521,613	333,133	276,516	209,5	271,581
1:00	203,129	132,036	135,806	155,533	198,903	191,467	413,065	427,677	245,067	219,71	167,3	192,677
2:00	176,581	115,643	129,161	138,1	178,355	174,433	378,032	403,452	210,967	194,29	146,333	173,419
3:00	149,419	118,286	139,097	134,467	169,323	166,933	369,129	394,161	188,6	173,323	132,167	143,71
4:00	128,290	116,643	134,129	128,567	162,839	158,733	343,129	392,903	185,333	159,548	128,967	131,645
5:00	117,871	124	132,581	127,3	156,581	163,567	326,968	365,29	175,9	143,032	118,367	129,387
6:00	110,871	118,643	168,645	131,067	148,677	194,4	304,419	335,258	161,1	132,903	114,1	124,871
7:00	309,774	347,25	334,097	309,533	287,742	246,067	269,226	269,839	194,033	364,065	297,667	255
8:00	416,871	594	377,387	528,2	387,258	338,7	388,581	414,065	373,633	421,613	393,767	441,839
9:00	726,323	552,25	533,484	513,633	350,71	371,6	398,484	334,161	360,967	329,71	430,033	603,452
10:00	483,710	631,357	598,548	425,333	422,387	472,567	432,677	561,065	480,867	338,194	432,5	664,387
11:00	498,065	525,643	591,871	450,567	386,065	440,9	447,742	548,935	498,767	485,935	405,167	522,194
12:00	579,129	449,464	511,065	458,767	423,032	495,3	602,129	571,581	549,667	544,419	533,867	516,516
13:00	529,710	566,286	595,161	667,9	481,452	585,5	672,323	810,097	590,267	437,516	485,9	564,419
14:00	584,516	533,75	487,839	533,467	483,226	600,067	819,258	882,355	587,333	440,968	443,667	715,065
15:00	417,161	445,429	368,548	334,033	352,903	508,667	934	768,871	413,633	310,129	321,467	555,613
16:00	430,613	442,286	339,484	342,1	239,387	404,6	1077,839	911,452	535,433	438,355	261,133	605,903
17:00	201,710	373,357	194,677	317,9	311,548	311,767	1072,71	991,129	345,133	345,548	416,167	391,065
18:00	301,613	413,464	264,871	282,1	250,484	314,567	799,71	1073,161	261,4	308,774	335,933	320,258
19:00	376,613	515,929	309,484	223,2	208,484	254,633	707,129	951,548	307,433	367,29	237,567	506,032
20:00	494,129	600,821	466,581	373,867	440,097	254,8	770,194	756,774	377,333	565,419	651,167	656,032
21:00	713,032	884,036	686,387	765,3	712,935	499,033	941,065	1026,871	684,333	668,097	695,433	814,516
22:00	681,516	625,571	551,613	610,6	601,226	495,567	952,129	752,226	508,867	468,194	521,767	547,452
23:00	573,097	405	409,774	487,6	509,774	419,9	922,032	695,839	500,267	398,806	436	484,677

CAPÍTULO 6: DISEÑO DE LA INSTALACIÓN

6.1 DIMENSIONAMIENTO DE LA INSTALACIÓN

El proyecto está sujeto a una serie de requisitos establecidos por el futuro propietario de la instalación, los cuales deben ser cumplidos.

El futuro propietario de la instalación fotovoltaica tiene como objetivo principal alcanzar un ahorro en su consumo energético actual, aspirando a una reducción mínima del 60%.

Además, el cliente busca minimizar el período de tiempo necesario para recuperar la inversión realizada en la instalación fotovoltaica. Esto implica un enfoque centrado en la optimización de la rentabilidad a corto plazo del proyecto.

Por último, el cliente tiene la intención de aprovechar los beneficios del sistema de compensación simplificada al integrar la instalación fotovoltaica en su red eléctrica local.

Conforme a estas premisas, planificaremos la instalación para cumplir con los requisitos del cliente y garantizar su completa satisfacción.

Para iniciar el proceso, es crucial examinar el consumo del cliente, ya que este factor determina la cantidad de módulos requeridos para la instalación.

A continuación se presenta el análisis del consumo eléctrico del cliente, este análisis proporciona una comprensión completa de las necesidades energéticas del cliente:

	CONSUMOS											
	Enero	Febrero	Marzo	Abril	Mayo	Junio	Julio	Agosto	Septiembre	Octubre	Noviembre	Diciembre
Mensual (kWh/mes)	293,336	275,83	268,805	259,941	252,189	250,154	463,435	469,97	272,084	264,503	249,478	320,283
Dias	31	28	31	30	31	30	31	31	30	31	30	31
Diario (kWh/dia)	9,462	9,851	8,671	8,665	8,135	8,338	14,950	15,160	9,069	8,532	8,316	10,332
										Total Anua	l (kWh/año)	3640.008

				CONSUM	O HORARIO E	DE UN DIA PR	OMEDIO DEL	MES (Wh)				
Hora	Enero	Febrero	Marzo	Abril	Mayo	Junio	Julio	Agosto	Septiembre	Octubre	Noviembre	Diciembre
0:00	258,710	219,929	210,839	225,567	271,742	274,7	607,548	521,613	333,133	276,516	209,5	271,581
1:00	203,129	132,036	135,806	155,533	198,903	191,467	413,065	427,677	245,067	219,71	167,3	192,677
2:00	176,581	115,643	129,161	138,1	178,355	174,433	378,032	403,452	210,967	194,29	146,333	173,419
3:00	149,419	118,286	139,097	134,467	169,323	166,933	369,129	394,161	188,6	173,323	132,167	143,71
4:00	128,290	116,643	134,129	128,567	162,839	158,733	343,129	392,903	185,333	159,548	128,967	131,645
5:00	117,871	124	132,581	127,3	156,581	163,567	326,968	365,29	175,9	143,032	118,367	129,387
6:00	110,871	118,643	168,645	131,067	148,677	194,4	304,419	335,258	161,1	132,903	114,1	124,871
7:00	309,774	347,25	334,097	309,533	287,742	246,067	269,226	269,839	194,033	364,065	297,667	255
8:00	416,871	594	377,387	528,2	387,258	338,7	388,581	414,065	373,633	421,613	393,767	441,839
9:00	726,323	552,25	533,484	513,633	350,71	371,6	398,484	334,161	360,967	329,71	430,033	603,452
10:00	483,710	631,357	598,548	425,333	422,387	472,567	432,677	561,065	480,867	338,194	432,5	664,387
11:00	498,065	525,643	591,871	450,567	386,065	440,9	447,742	548,935	498,767	485,935	405,167	522,194
12:00	579,129	449,464	511,065	458,767	423,032	495,3	602,129	571,581	549,667	544,419	533,867	516,516
13:00	529,710	566,286	595,161	667,9	481,452	585,5	672,323	810,097	590,267	437,516	485,9	564,419
14:00	584,516	533,75	487,839	533,467	483,226	600,067	819,258	882,355	587,333	440,968	443,667	715,065
15:00	417,161	445,429	368,548	334,033	352,903	508,667	934	768,871	413,633	310,129	321,467	555,613
16:00	430,613	442,286	339,484	342,1	239,387	404,6	1077,839	911,452	535,433	438,355	261,133	605,903
17:00	201,710	373,357	194,677	317,9	311,548	311,767	1072,71	991,129	345,133	345,548	416,167	391,065
18:00	301,613	413,464	264,871	282,1	250,484	314,567	799,71	1073,161	261,4	308,774	335,933	320,258
19:00	376,613	515,929	309,484	223,2	208,484	254,633	707,129	951,548	307,433	367,29	237,567	506,032
20:00	494,129	600,821	466,581	373,867	440,097	254,8	770,194	756,774	377,333	565,419	651,167	656,032
21:00	713,032	884,036	686,387	765,3	712,935	499,033	941,065	1026,871	684,333	668,097	695,433	814,516
22:00	681,516	625,571	551,613	610,6	601,226	495,567	952,129	752,226	508,867	468,194	521,767	547,452
23:00	573,097	405	409,774	487,6	509,774	419,9	922,032	695,839	500,267	398,806	436	484,677

Una vez recopilados estos datos, se lleva a cabo una proyección para calcular la capacidad necesaria en kilovatios pico (kW_p) que debería instalarse para satisfacer los requerimientos energéticos del proyecto.

Para llevar a cabo este análisis, utilizamos nuevamente la plataforma PVGIS para calcular la producción anual esperada de un sistema fotovoltaico de 1 kW_p instalado en la ubicación específica de la vivienda. Este cálculo tiene en cuenta las características individuales del sitio, como la inclinación de los paneles solares (30°), el ángulo de azimut (1°) y una estimación de pérdidas del 14%.

Datos Proporcionados							
Localización [Lat/Lon]	38.143, -0.964						
Horizonte	Calculado						
Base de datos	PVGIS-SARAH2						
Tecnologiía FV	Silicio Cristalino						
FV instalada (kW _p)	1						
Pérdidas sistema (%)	14						

Resultados de la simulación						
Ángulo de inclinación (°)	30					
Ángulo de azimut (°)	1					
Producción anual FV (kWh)	1631,58					
Irradiación anual (kWh/m2)	2155,48					
Variación interanual (kWh)	42,53					
Pérdidas totales (%)	-24,31					
Cambios en la producción deb	ido a:					
Ángulo de incidencia (%)	-2,59					
Efectos espectrales (%)	0,54					
Temperatura y baja irradiancia (%)	-10,13					

Obtenemos que la producción anual esperada por cada kW_p instalado es aproximadamente de 1631,58 kWh. En consecuencia, si nuestro objetivo es dimensionar una instalación que pueda cubrir por completo el consumo de energía de la vivienda, se requeriría instalar:

$$P_{a instalar} = \frac{Consumo \ anual}{Producción \ anual} = \frac{3640,008}{1631.58} = 2,23 \ kWh$$

En este punto, para calcular la potencia pico de la instalación, es necesario elegir el tipo de panel solar que se empleará. El modelo seleccionado es el LONGi LR5-72HPH 550W HiMO5, el cual posee una potencia nominal de 550W (en el "Capítulo 7: Descripción de los componentes" se trataran todas las características asociadas al mismo). Por lo tanto, se necesitará el siguiente número de paneles solares:

$$N_{m\'odulos} = \frac{P_{a\ instalar}}{P_{nom\ m\'odulo}} = \frac{2,23}{0,55} = 4,05 \approx 4\ m\'odulos$$

Se estima que se requerirán de 4 módulos fotovoltaicos para satisfacer por completo el consumo energético de la vivienda.

Con el fin de identificar la mejor opción para el proyecto, llevaremos a cabo un análisis detallado que incluirá varios escenarios distintos. Este enfoque nos permitirá evaluar diferentes configuraciones y determinar cuál de ellas se ajusta de manera óptima a las necesidades y preferencias del cliente, así como a las características específicas del proyecto. El análisis de dichos escenarios será realizado en la sección 6.1.2 del presente Capítulo.

Ahora, procederemos a explicar el método empleado para estimar la potencia producida por nuestro sistema, enfocándonos en uno de los escenarios analizados, que contempla la instalación de 2,2 kW_p.

Comenzaremos por identificar y definir los parámetros que serán utilizados en los siguientes cálculos:

Variable	Parámetro	Unidad
P _{cc,fov}	Potencia de CC inmediatamente a la salida de los paneles FV.	W
L _{cab}	Pérdidas de potencia en los cableados de corriente continua (CC) entre los paneles fotovoltaicos (FV) y la entrada del inversor, incluyendo además las pérdidas en fusibles, interruptores, conexiones, diodos antiparalelo si los hay, etc.	W
E	Irradiancia solar, medida con la CTE calibrada.	W/m ²
g	Coeficiente de temperatura de la potencia	1/°C
T _c	Temperatura de las células solares	°C
T _{amb}	Temperatura ambiente en la sombra, medida con el termómetro.	°C
TONC	Temperatira de operación nominal del módulo	٥C
P _o	Potencia nominal del generador en CEM	W
R _{to,var}	Rendimiento, que incluye los porcentajes de pérdidas debidas a que los módulos fotovoltaicos operan, normalmente, en condiciones diferentes de las CEM.	-
L _{tem}	Pérdidas medias anuales por temperatura	W
L_{pol}	Pérdidas de potencia debidas al polvo sobre los módulos FV.	W
L _{dis}	Pérdidas por dispersión de parámetros entre módulos	W
L _{ref}	Pérdidas de potencia por reflectancia angular espectral, cuando se utiliza un piranómetro como referencia de medidas. Si se utiliza una célula de tecnología equivalente (CTE), el término L _{ref} es cero.	W
P _{cc,inv}	Potencia de CC a la entrada del inversor	W
P _{ca,inv}	Potencia de CA a la salida del inversor	W
L _{inv}	Pérdidas generadas por el inversor	W
η _{inv}	Rendimiento del inversor	-

Seguidamente, proporcionamos de nuevo los datos de irradiancia y temperatura obtenidos a través de la herramienta PVGIS:

IRRADIANCIA (W/m²)												
Hora	Enero	Febrero	Marzo	Abril	Mayo	Junio	Julio	Agosto	Septiembre	Octubre	Noviembre	Diciembre
0:00	0	0	0	0	0	0	0	0	0	0	0	0
1:00	0	0	0	0	0	0	0	0	0	0	0	0
2:00	0	0	0	0	0	0	0	0	0	0	0	0
3:00	0	0	0	0	0	0	0	0	0	0	0	0
4:00	0	0	0	0	0	0	0	0	0	0	0	0
5:00	0	0	0	0	0	0	0	0	0	0	0	0
6:00	0	0	0	0	6,12	18,65	5,5	0	0	0	0	0
7:00	0	0	0,69	41,19	87,27	95,13	75,98	50,85	20,64	0	0	0
8:00	0	16,58	120,22	211,08	258,52	271,85	252,61	223,72	191,93	147,84	50,75	0
9:00	200,57	238,57	334,48	410,41	458,84	472,52	457,98	430,82	409,78	363,47	274,67	202,7
10:00	407,39	440,51	529,97	597,94	648,19	659,83	645,15	620,86	601,86	550,95	453,01	399,79
11:00	579,73	613,34	690,94	751,96	785,03	818,86	800,81	783,69	738,42	709,18	616,83	547,35
12:00	680,44	728,95	810,74	837,3	888,67	915,49	912,05	901,45	821,36	771,39	704,5	666,85
13:00	730,08	756,18	801,24	842,54	904,74	945,18	959,81	950,72	868,8	786,73	709,29	698,71
14:00	686,65	738,12	791,72	810,63	849,94	899,77	934,4	921,32	829,55	756,84	649,36	643,21
15:00	599,42	658,13	693,82	700,05	736,33	778,33	837,28	809,59	701,83	621,35	528,55	532,86
16:00	438,3	504,15	544,09	542,13	581,36	635,48	681,61	649,37	549,64	451,19	369,46	373,59
17:00	243,97	322,99	349,91	376,36	399,34	445,28	479,26	441,86	346,36	241	158,63	152,56
18:00	0,37	86,14	154,05	181,08	207,68	249,69	266,19	230,6	138,75	29,56	0	0
19:00	0	0	0,59	22,54	49,53	74,71	81,47	48,4	3,81	0	0	0
20:00	0	0	0	0	0,2	6,26	5,74	0	0	0	0	0
21:00	0	0	0	0	0	0	0	0	0	0	0	0
22:00	0	0	0	0	0	0	0	0	0	0	0	0
23:00	0	0	0	0	0	0	0	0	0	0	0	0

TEMPERATURA (°C)												
Hora	Enero	Febrero	Marzo	Abril	Mayo	Junio	Julio	Agosto	Septiembre	Octubre	Noviembre	Diciembre
0:00	8,17	9,57	11,32	13,97	17,31	21,19	23,85	24,2	21,16	17,11	11,82	8,04
1:00	7,51	8,73	10,47	13,19	16,41	20,35	23,15	23,62	20,65	16,59	11,4	7,53
2:00	7,04	8,1	9,79	12,52	15,67	19,65	22,57	23,05	20,09	16,05	10,91	7,09
3:00	6,08	7,09	8,97	11,63	14,8	18,72	21,72	22,29	19,21	14,96	10,15	6,38
4:00	5,78	6,69	8,47	11,17	14,26	18,15	21,18	21,82	18,8	14,59	9,85	6,12
5:00	5,53	6,37	8,06	10,76	13,77	17,64	20,71	21,41	18,45	14,26	9,62	5,92
6:00	5,47	6,23	7,66	10,75	13,97	17,99	20,79	21,38	18,03	14	9,49	5,95
7:00	5,3	6,01	7,35	10,7	14,95	19,36	21,6	21,4	17,78	13,76	9,33	5,8
8:00	5,37	6,12	8,12	13,36	18,52	22,73	24,84	24,08	19,5	14,4	9,38	5,86
9:00	6,66	8,62	13,21	18,47	22,89	26,88	29,05	28,44	24,37	18,99	11,83	7,16
10:00	9,41	12,06	16,29	20,52	24,84	28,9	31,17	30,57	26,45	21,69	14,98	9,91
11:00	12,59	14,58	18,25	22,19	26,48	30,64	33	32,39	28,16	23,54	17,21	12,89
12:00	15,43	17,39	20,61	23,88	28,16	32,65	35,13	34,47	30,39	26,03	19,63	15,5
13:00	16,73	18,64	21,77	24,83	29,02	33,57	36,09	35,47	31,32	27,02	20,64	16,73
14:00	17,57	19,45	22,51	25,37	29,42	33,98	36,54	35,98	31,83	27,59	21,22	17,49
15:00	17,63	19,46	22,59	25,29	29,12	33,84	36,33	35,77	31,47	27,41	21,07	17,68
16:00	17,64	19,42	22,44	24,94	28,69	33,37	35,89	35,33	31,07	27,05	20,81	17,52
17:00	17,07	18,87	21,79	24,17	27,92	32,57	35,07	34,45	30,24	26,13	20,02	16,72
18:00	14,07	15,93	18,87	21,66	25,74	30,22	32,67	31,72	27,71	22,94	17,16	13,26
19:00	12,34	14,16	17,23	20,25	24,38	28,82	31,14	30,18	26,19	21,35	15,73	11,8
20:00	11,34	12,93	15,61	18,47	22,46	26,78	28,97	28,23	24,82	20,33	14,98	10,97
21:00	10,35	11,55	13,84	16,23	19,64	23,62	26,24	26,25	23,23	19,16	13,83	10,15
22:00	9,44	10,7	12,94	15,29	18,59	22,57	25,24	25,4	22,43	18,5	13,01	9,2
23:00	8,47	9,85	12,12	14,48	17,78	21,69	24,4	24,7	21,77	17,75	12,15	8,31

Para determinar las pérdidas, emplearemos los valores anuales promedio sugeridos en el Pliego de Condiciones Técnicas del IDAE.

Parámetro	Valor estimado, media anual
$L_{ m cab}$	0,02
g (1/°C)	
TONC (°C)	-
$L_{ m tem}$	0,08
$L_{ m pol}$	0,03
$L_{ m dis}$	0,02
$L_{ m ref}$	0,03

Con estos valores, podremos calcular la variable 'Rto,var':

$$R_{to,var} = (1 - L_{pol}) \times (1 - L_{dis}) \times (1 - L_{ref})$$
$$= (1 - 0.03) \times (1 - 0.02) \times (1 - 0.03) = 0.922082$$

El próximo procedimiento implica calcular la "Temperatura de la célula" (T_c), una medida fundamental que determinaremos utilizando la expresión que se muestra a continuación:

$$T_c = T_{amb} + (TONC - 20) \times \frac{E}{800}$$

TEMPERATURA DE LA CÉLULA (°C)												
Hora	Enero	Febrero	Marzo	Abril	Mayo	Junio	Julio	Agosto	Septiembre	Octubre	Noviembre	Diciembre
0:00	8,17	9,57	11,32	13,97	17,31	21,19	23,85	24,2	21,16	17,11	11,82	8,04
1:00	7,51	8,73	10,47	13,19	16,41	20,35	23,15	23,62	20,65	16,59	11,4	7,53
2:00	7,04	8,1	9,79	12,52	15,67	19,65	22,57	23,05	20,09	16,05	10,91	7,09
3:00	6,08	7,09	8,97	11,63	14,8	18,72	21,72	22,29	19,21	14,96	10,15	6,38
4:00	5,78	6,69	8,47	11,17	14,26	18,15	21,18	21,82	18,8	14,59	9,85	6,12
5:00	5,53	6,37	8,06	10,76	13,770	17,640	20,710	21,41	18,45	14,26	9,62	5,92
6:00	5,47	6,23	7,660	10,750	14,161	18,573	20,962	21,380	18,030	14	9,49	5,95
7:00	5,3	6,010	7,372	11,987	17,677	22,333	23,974	22,989	18,425	13,76	9,330	5,8
8:00	5,370	6,638	11,877	19,956	26,599	31,225	32,734	31,071	25,498	19,020	10,966	5,860
9:00	12,928	16,075	23,663	31,295	37,229	41,646	43,362	41,903	37,176	30,348	20,413	13,494
10:00	22,141	25,826	32,852	39,206	45,096	49,520	51,331	49,972	45,258	38,907	29,137	22,403
11:00	30,707	33,747	39,842	45,689	51,012	56,229	58,025	56,880	51,236	45,702	36,486	29,995
12:00	36,694	40,170	45,946	50,046	55,931	61,259	63,632	62,640	56,058	50,136	41,646	36,339
13:00	39,545	42,271	46,809	51,159	57,293	63,107	66,084	65,180	58,470	51,605	42,805	38,565
14:00	39,028	42,516	47,251	50,702	55,981	62,098	65,740	64,771	57,753	51,241	41,513	37,590
15:00	36,362	40,027	44,272	47,167	52,130	58,163	62,495	61,070	53,402	46,827	37,587	34,332
16:00	31,337	35,175	39,443	41,882	46,858	53,229	57,190	55,623	48,246	41,150	32,356	29,195
17:00	24,694	28,963	32,725	35,931	40,399	46,485	50,047	48,258	41,064	33,661	24,977	21,488
18:00	14,082	18,622	23,684	27,319	32,230	38,023	40,988	38,926	32,046	23,864	17,16	13,26
19:00	12,34	14,16	17,248	20,954	25,928	31,155	33,686	31,693	26,309	21,35	15,73	11,8
20:00	11,34	12,93	15,61	18,47	22,466	26,976	29,149	28,23	24,82	20,33	14,98	10,97
21:00	10,35	11,55	13,84	16,23	19,64	23,62	26,24	26,25	23,23	19,16	13,83	10,15
22:00	9,44	10,7	12,94	15,29	18,59	22,57	25,24	25,4	22,43	18,5	13,01	9,2
23:00	8,47	9,85	12,12	14,48	17,78	21,69	24,4	24,7	21,77	17,75	12,15	8,31

Ya recopilados los datos de temperatura operativa de las células, procedemos a calcular la potencia de corriente continua (CC) en la salida de los paneles solares (P_{cc,fov}) mediante la aplicación de la siguiente fórmula:

$$P_{cc,fov} = P_o \times R_{to,var} \times [1 - g \times (T_c - 25)] \times \frac{E}{1000}$$

Potencia de CC a la salida de los paneles FV (W)												
Hora	Enero	Febrero	Marzo	Abril	Mayo	Junio	Julio	Agosto	Septiembre	Octubre	Noviembre	Diciembre
0:00	0	0	0	0	0	0	0	0	0	0	0	0
1:00	0	0	0	0	0	0	0	0	0	0	0	0
2:00	0	0	0	0	0	0	0	0	0	0	0	0
3:00	0	0	0	0	0	0	0	0	0	0	0	0
4:00	0	0	0	0	0	0	0	0	0	0	0	0
5:00	0	0	0	0	0	0	0	0	0	0	0	0
6:00	0	0	0	0	11,957	37,006	11,004	0	0	0	0	0
7:00	0	0	1,316	79,860	172,626	191,229	153,594	102,448	40,934	0	0	0
8:00	0	31,534	232,995	420,850	527,279	563,142	525,915	463,202	390,004	293,808	98,038	0
9:00	390,172	469,273	675,434	850,370	969,494	1012,796	987,050	924,180	865,684	750,736	548,501	395,108
10:00	818,390	896,119	1103,787	1271,555	1404,748	1450,106	1425,904	1366,398	1305,016	1170,494	931,892	803,846
11:00	1198,847	1281,212	1472,357	1632,711	1733,339	1837,501	1806,917	1762,099	1631,563	1539,889	1300,155	1129,199
12:00	1435,207	1555,002	1761,775	1843,169	1992,324	2086,095	2093,181	2062,691	1842,137	1698,560	1510,017	1404,911
13:00	1554,267	1624,047	1745,901	1861,176	2036,852	2165,795	2219,027	2192,083	1962,992	1740,311	1525,957	1482,759
14:00	1459,360	1586,510	1727,574	1788,130	1905,786	2055,480	2158,063	2121,698	1870,209	1672,292	1391,234	1360,658
15:00	1262,945	1403,279	1499,693	1527,136	1631,488	1756,932	1915,018	1843,727	1561,203	1354,000	1118,093	1115,246
16:00	908,283	1058,088	1157,930	1162,877	1266,978	1412,849	1534,033	1454,453	1203,115	965,532	768,223	768,666
17:00	494,398	664,041	728,463	791,852	852,508	969,270	1055,011	967,230	740,994	503,285	321,769	305,784
18:00	0,723	170,953	311,105	370,231	431,652	528,944	569,342	489,940	288,208	59,733	0	0
19:00	0	0	1,165	45,095	100,793	154,727	170,149	100,417	7,763	0	0	0
20:00	0	0	0	0	0,402	12,784	11,808	0	0	0	0	0
21:00	0	0	0	0	0	0	0	0	0	0	0	0
22:00	0	0	0	0	0	0	0	0	0	0	0	0
23:00	0	0	0	0	0	0	0	0	0	0	0	0

Una vez que hemos evaluado las potencias generadas por los módulos fotovoltaicos, continuaremos con el cálculo de la potencia que llega al inversor, considerando las pérdidas causadas por la resistencia del cable. Este procedimiento se realizará utilizando la siguiente ecuación:

$$P_{cc,inv} = P_{cc,fov} \times (1 - L_{cab})$$

Potencia de CC a la entrada del inversor (W)												
Hora	Enero	Febrero	Marzo	Abril	Mayo	Junio	Julio	Agosto	Septiembre	Octubre	Noviembre	Diciembre
0:00	0	0	0	0	0	0	0	0	0	0	0	0
1:00	0	0	0	0	0	0	0	0	0	0	0	0
2:00	0	0	0	0	0	0	0	0	0	0	0	0
3:00	0	0	0	0	0	0	0	0	0	0	0	0
4:00	0	0	0	0	0	0	0	0	0	0	0	0
5:00	0	0	0	0	0	0	0	0	0	0	0	0
6:00	0	0	0	0	11,718	36,266	10,784	0	0	0	0	0
7:00	0	0	1,290	78,263	169,174	187,404	150,522	100,399	40,115	0	0	0
8:00	0	30,903	228,335	412,433	516,734	551,879	515,396	453,938	382,204	287,931	96,077	0
9:00	382,369	459,888	661,925	833,362	950,104	992,540	967,309	905,696	848,370	735,721	537,531	387,206
10:00	802,022	878,197	1081,711	1246,124	1376,653	1421,104	1397,386	1339,070	1278,915	1147,084	913,254	787,769
11:00	1174,870	1255,587	1442,910	1600,057	1698,672	1800,751	1770,779	1726,857	1598,931	1509,091	1274,152	1106,615
12:00	1406,503	1523,902	1726,540	1806,306	1952,477	2044,374	2051,318	2021,437	1805,295	1664,589	1479,817	1376,813
13:00	1523,182	1591,566	1710,983	1823,953	1996,115	2122,479	2174,647	2148,242	1923,732	1705,505	1495,438	1453,104
14:00	1430,172	1554,780	1693,022	1752,368	1867,670	2014,370	2114,902	2079,264	1832,805	1638,846	1363,410	1333,445
15:00	1237,686	1375,213	1469,699	1496,593	1598,859	1721,794	1876,718	1806,853	1529,979	1326,920	1095,731	1092,941
16:00	890,118	1036,927	1134,771	1139,620	1241,639	1384,592	1503,353	1425,364	1179,052	946,221	752,859	753,293
17:00	484,510	650,760	713,894	776,015	835,458	949,885	1033,911	947,885	726,174	493,219	315,333	299,669
18:00	0,708	167,533	304,883	362,827	423,019	518,365	557,955	480,141	282,444	58,539	0	0
19:00	0	0	1,142	44,193	98,777	151,632	166,746	98,409	7,608	0	0	0
20:00	0	0	0	0	0,394	12,529	11,572	0	0	0	0	0
21:00	0	0	0	0	0	0	0	0	0	0	0	0
22:00	0	0	0	0	0	0	0	0	0	0	0	0
23:00	0	0	0	0	0	0	0	0	0	0	0	0

Finalmente, calcularemos la potencia generada por la instalación. Este procedimiento implica la aplicación de:

$$P_{ca} = P_{cc,inv} \times (1 - L_{inv})$$

Para aplicar la expresión mencionada, es necesario el parámetro 'L_{inv}'. En este momento, el modelo de inversor del cual se hará uso en la instalación no ha sido definido. En consecuencia, se optará por una estimación del rendimiento del 97%, ya que la mayoría de los inversores del mercado actual ofrecen un rendimiento cercano a este valor.

$$L_{inv} = 1 - \eta_{inv} = 1 - 0.97 = 0.03$$

Potencia de CA a la salida del inversor (W)												
Hora	Enero	Febrero	Marzo	Abril	Mayo	Junio	Julio	Agosto	Septiembre	Octubre	Noviembre	Diciembre
0:00	0	0	0	0	0	0	0	0	0	0	0	0
1:00	0	0	0	0	0	0	0	0	0	0	0	0
2:00	0	0	0	0	0	0	0	0	0	0	0	0
3:00	0	0	0	0	0	0	0	0	0	0	0	0
4:00	0	0	0	0	0	0	0	0	0	0	0	0
5:00	0	0	0	0	0	0	0	0	0	0	0	0
6:00	0	0	0	0	11,367	35,178	10,460	0	0	0	0	0
7:00	0	0	1,251	75,915	164,099	181,782	146,007	97,3871019	38,912	0	0	0
8:00	0	29,976	221,485	400,060	501,232	535,323	499,935	440,320	370,738	279,294	93,195	0
9:00	370,898	446,091	642,068	808,361	921,601	962,764	938,290	878,525	822,919	713,650	521,405	375,589
10:00	777,961	851,851	1049,259	1208,740	1335,353	1378,471	1355,464	1298,898	1240,548	1112,671	885,856	764,136
11:00	1139,624	1217,920	1399,622	1552,055	1647,712	1746,729	1717,655	1675,051	1550,963	1463,818	1235,927	1073,417
12:00	1364,308	1478,185	1674,744	1752,116	1893,903	1983,042	1989,778	1960,794	1751,136	1614,651	1435,422	1335,509
13:00	1477,486	1543,819	1659,654	1769,234	1936,231	2058,805	2109,407	2083,795	1866,020	1654,340	1450,575	1409,511
14:00	1387,267	1508,136	1642,231	1699,797	1811,640	1953,939	2051,455	2016,886	1777,821	1589,680	1322,507	1293,441
15:00	1200,556	1333,957	1425,608	1451,695	1550,893	1670,140	1820,416	1752,647	1484,080	1287,113	1062,859	1060,153
16:00	863,414	1005,819	1100,728	1105,431	1204,390	1343,055	1458,252	1382,603	1143,681	917,835	730,273	730,694
17:00	469,975	631,237	692,477	752,735	810,394	921,388	1002,893	919,449	704,389	478,423	305,873	290,679
18:00	0,687	162,507	295,736	351,942	410,328	502,814	541,216	465,737	273,971	56,782	0	0
19:00	0	0	1,108	42,868	95,813	147,083	161,744	95,457	7,380	0	0	0
20:00	0	0	0	0	0,382	12,153	11,225	0	0	0	0	0
21:00	0	0	0	0	0	0	0	0	0	0	0	0
22:00	0	0	0	0	0	0	0	0	0	0	0	0
23:00	0	0	0	0	0	0	0	0	0	0	0	0

Tras calcular la producción fotovoltaica prevista de la instalación, resulta fundamental contrastarla con las curvas de consumo para evaluar el grado de autoconsumo y la canatidad de excedentes que se verterá red. En la siguiente tabla, donde los valores positivos representan la energía consumida de la red eléctrica y los negativos indican los excedentes energéticos, se recopila toda la información pertinente.

COMPARACIÓN CONSUMO-GENERACIÓN (Wh)												
Hora	Enero	Febrero	Marzo	Abril	Mayo	Junio	Julio	Agosto	Septiembre	Octubre	Noviembre	Diciembre
0:00	258,710	219,929	210,839	225,567	271,742	274,700	607,548	521,613	333,133	276,516	209,5	271,581
1:00	203,129	132,036	135,806	155,533	198,903	191,467	413,065	427,677	245,067	219,710	167,3	192,677
2:00	176,581	115,643	129,161	138,1	178,355	174,433	378,032	403,452	210,967	194,290	146,333	173,419
3:00	149,419	118,286	139,097	134,467	169,323	166,933	369,129	394,161	188,6	173,323	132,167	143,71
4:00	128,290	116,643	134,129	128,567	162,839	158,733	343,129	392,903	185,333	159,548	128,967	131,645
5:00	117,871	124	132,581	127,3	156,581	163,567	326,968	365,290	175,900	143,032	118,367	129,387
6:00	110,871	118,643	168,645	131,067	137,311	159,222	293,959	335,258	161,100	132,903	114,1	124,871
7:00	309,774	347,250	332,846	233,618	123,643	64,285	123,219	172,452	155,122	364,065	297,667	255
8:00	416,871	564,024	155,902	128,140	-113,974	-196,623	-111,354	-26,255	2,895	142,319	300,572	441,839
9:00	355,425	106,159	-108,584	-294,728	-570,891	-591,164	-539,806	-544,364	-461,952	-383,940	-91,372	227,862
10:00	-294,252	-220,494	-450,711	-783,407	-912,966	-905,904	-922,787	-737,834	-759,681	-774,478	-453,356	-99,749
11:00	-641,559	-692,277	-807,751	-1101,489	-1261,648	-1305,829	-1269,913	-1126,116	-1052,197	-977,883	-830,761	-551,223
12:00	-785,179	-1028,721	-1163,679	-1293,350	-1470,871	-1487,742	-1387,649	-1389,213	-1201,469	-1070,232	-901,555	-818,993
13:00	-947,777	-977,533	-1064,492	-1101,334	-1454,780	-1473,305	-1437,085	-1273,698	-1275,753	-1216,824	-964,675	-845,092
14:00	-802,751	-974,386	-1154,393	-1166,330	-1328,414	-1353,873	-1232,197	-1134,532	-1190,488	-1148,713	-878,841	-578,377
15:00	-783,394	-888,528	-1057,060	-1117,662	-1197,990	-1161,473	-886,416	-983,776	-1070,447	-976,983	-741,392	-504,540
16:00	-432,801	-563,533	-761,244	-763,331	-965,003	-938,455	-380,413	-471,152	-608,247	-479,480	-469,140	-124,791
17:00	-268,265	-257,880	-497,800	-434,835	-498,846	-609,622	69,816	71,681	-359,255	-132,874	110,293	100,386
18:00	300,926	250,957	-30,865	-69,842	-159,844	-188,247	258,493	607,424	-12,571	251,992	335,933	320,258
19:00	376,613	515,929	308,376	180,332	112,670	107,550	545,385	856,092	300,054	367,290	237,567	506,032
20:00	494,129	600,821	466,581	373,867	439,714	242,647	758,969	756,774	377,333	565,419	651,167	656,032
21:00	713,032	884,036	686,387	765,300	712,935	499,033	941,065	1026,871	684,333	668,097	695,433	814,516
22:00	681,516	625,571	551,613	610,6	601,226	495,567	952,129	752,226	508,867	468,194	521,767	547,452
23:00	573,097	405	409,774	487,6	509,774	419,900	922,032	695,839	500,267	398,806	436	484,677

6.1.1 Análisis económico

Una vez alcanzado este punto, procederemos a evaluar la viabilidad económica de la instalación fotovoltaica, lo cual implica analizar la rentabilidad del proyecto. Para ello, resulta necesario recopilar información detallada sobre las facturas eléctricas del cliente.

En este caso, el cliente se encuentra suscrito al Plan Noche de Iberdrola, una modalidad tarifaria que incorpora discriminación horaria, dividiendo el día en dos franjas con precios diferenciados para la electricidad.

Según las especificaciones del Plan Noche, los tramos horarios aplicables a cada periodo tarifario son los siguientes:

- Horas no promocionadas: Se refieren a los consumos realizados entre las 12:00 y las 21:59 horas.
- Horas promocionadas: Corresponden a los consumos realizados entre las 22:00 y las 11:59 horas del día siguiente.

Con el propósito de visualizar de manera más clara y analítica el consumo eléctrico y los excedentes que se generarían con este plan a lo largo de un año, se llevará a cabo la elaboración de una serie de tablas comparativas:

COMPARACIÓN CONSUMO-GENERACIÓN (Wh)												
Hora	Enero	Febrero	Marzo	Abril	Mayo	Junio	Julio	Agosto	Septiembre	Octubre	Noviembre	Diciembre
0:00	258,710	219,929	210,839	225,567	271,742	274,700	607,548	521,613	333,133	276,516	209,5	271,581
1:00	203,129	132,036	135,806	155,533	198,903	191,467	413,065	427,677	245,067	219,710	167,3	192,677
2:00	176,581	115,643	129,161	138,1	178,355	174,433	378,032	403,452	210,967	194,290	146,333	173,419
3:00	149,419	118,286	139,097	134,467	169,323	166,933	369,129	394,161	188,6	173,323	132,167	143,71
4:00	128,290	116,643	134,129	128,567	162,839	158,733	343,129	392,903	185,333	159,548	128,967	131,645
5:00	117,871	124	132,581	127,3	156,581	163,567	326,968	365,290	175,900	143,032	118,367	129,387
6:00	110,871	118,643	168,645	131,067	137,311	159,222	293,959	335,258	161,100	132,903	114,1	124,871
7:00	309,774	347,250	332,846	233,618	123,643	64,285	123,219	172,452	155,122	364,065	297,667	255
8:00	416,871	564,024	155,902	128,140	-113,974	-196,623	-111,354	-26,255	2,895	142,319	300,572	441,839
9:00	355,425	106,159	-108,584	-294,728	-570,891	-591,164	-539,806	-544,364	-461,952	-383,940	-91,372	227,862
10:00	-294,252	-220,494	-450,711	-783,407	-912,966	-905,904	-922,787	-737,834	-759,681	-774,478	-453,356	-99,749
11:00	-641,559	-692,277	-807,751	-1101,489	-1261,648	-1305,829	-1269,913	-1126,116	-1052,197	-977,883	-830,761	-551,223
12:00	-785,179	-1028,721	-1163,679	-1293,350	-1470,871	-1487,742	-1387,649	-1389,213	-1201,469	-1070,232	-901,555	-818,993
13:00	-947,777	-977,533	-1064,492	-1101,334	-1454,780	-1473,305	-1437,085	-1273,698	-1275,753	-1216,824	-964,675	-845,092
14:00	-802,751	-974,386	-1154,393	-1166,330	-1328,414	-1353,873	-1232,197	-1134,532	-1190,488	-1148,713	-878,841	-578,377
15:00	-783,394	-888,528	-1057,060	-1117,662	-1197,990	-1161,473	-886,416	-983,776	-1070,447	-976,983	-741,392	-504,540
16:00	-432,801	-563,533	-761,244	-763,331	-965,003	-938,455	-380,413	-471,152	-608,247	-479,480	-469,140	-124,791
17:00	-268,265	-257,880	-497,800	-434,835	-498,846	-609,622	69,816	71,681	-359,255	-132,874	110,293	100,386
18:00	300,926	250,957	-30,865	-69,842	-159,844	-188,247	258,493	607,424	-12,571	251,992	335,933	320,258
19:00	376,613	515,929	308,376	180,332	112,670	107,550	545,385	856,092	300,054	367,290	237,567	506,032
20:00	494,129	600,821	466,581	373,867	439,714	242,647	758,969	756,774	377,333	565,419	651,167	656,032
21:00	713,032	884,036	686,387	765,300	712,935	499,033	941,065	1026,871	684,333	668,097	695,433	814,516
22:00	681,516	625,571	551,613	610,6	601,226	495,567	952,129	752,226	508,867	468,194	521,767	547,452
23:00	573,097	405	409,774	487,6	509,774	419,900	922,032	695,839	500,267	398,806	436	484,677

ENERO											
Periodo	Consumo sin FV	Consumo con FV	Excedentes								
Punta	143,475	58,426	124,625								
Valle	149,861	107,928	29,010								
Total	293,336	166,354	153,635								

MARZO											
Periodo	Consumo sin FV	Consumo con FV	Excedentes								
Punta	130,947	45,302	177,616								
Valle	137,858	77,512	42,378								
Total	268,805	122,814	219,994								

	1	MAYO	
Periodo	Consumo sin FV	Consumo con FV	Excedentes
Punta	121,01	39,225	219,348
Valle	131,179	77,801	88,644
Total	252,189	117,026	307,992

JULIO					
Periodo	Consumo sin FV	Consumo con FV	Excedentes		
Punta	260,287	79,786	165,037		
Valle	203,148	146,606	88,160		
Total	463,435	226,391	253,196		

SEPTIEMBRE					
Periodo	Consumo sin FV	Consumo con FV	Excedentes		
Punta	139,559	40,852	171,547		
Valle	132,525	80,018	68,215		
Total	272,084	120,869	239,762		

NOVIEMBRE					
Periodo Consumo sin FV Consumo con FV Excedente					
131,469	60,912	118,668			
118,009	77,182	41,265			
249,478	138,094	159,933			
	Consumo sin FV 131,469 118,009	Consumo sin FV Consumo con FV 131,469 60,912 118,009 77,182			

FEBRERO						
Periodo Consumo sin FV Consumo con FV Excedentes						
Punta	146,295	63,049	131,336			
Valle	129,535	83,809	25,558			
Total	275,83	146,858	156,894			

ABRIL						
Periodo	Consumo sin FV	Consumo con FV	Excedentes			
Punta	128,959	39,585	178,401			
Valle	130,982	75,017	65,389			
Total	259,941	114,602	243,789			

JUNIO					
Periodo Consumo sin FV Consumo con FV Excedentes					
Punta	126,868	25,477	216,381		
Valle	123,286	68,064	89,986		
Total	250 154	02 541	206 267		

AGOSTO					
Periodo	Consumo sin FV	Consumo con FV	Excedentes		
Punta	271,059	102,884	162,823		
Valle	198,911	138,287	75,472		
Total	469,97	241,171	238,295		

OCTUBRE					
Periodo	Consumo sin FV	Consumo con FV	Excedentes		
Punta	137,222	57,437	155,778		
Valle	127,281	82,854	66,225		
Total	264,503	140,291	222,004		

DICIEMBRE						
Periodo Consumo sin FV Consumo con FV Excedent						
Punta	175,008	74,314	89,026			
Valle	145,275	96,848	20,180			
Total	320,283	171,162	109,206			

El siguiente paso consistirá en comparar el Plan Noche con una alternativa diseñada específicamente para el autoconsumo, como lo es el Plan Solar de Iberdrola. Este plan de tarifación eléctrica, diseñado para hogares que cuentan con instalaciones de placas solares pero carecen de sistemas de almacenamiento, opera bajo un esquema de discriminación horaria con dos periodos distintos.

55

El Plan Solar de Iberdrola establece los siguientes tramos horarios aplicables a cada periodo tarifario:

- Periodo promocionado: Se refiere a los consumos realizados entre las 19:00 y las 08:59 horas.
- Periodo no promocionado: Corresponde a los consumos realizados entre las 09:00 y las 18:59 horas del día.

Con el fin de proporcionar una comparación detallada y visual entre ambos planes, se procederá a elaborar tablas similares a las utilizadas previamente para el Plan Noche. Esta comparación permitirá evaluar con mayor precisión las ventajas y desventajas de cada opción.

				COI	MPARACIÓN (CONSUMO-G	ENERACIÓN (Wh)				
Hora	Enero	Febrero	Marzo	Abril	Mayo	Junio	Julio	Agosto	Septiembre	Octubre	Noviembre	Diciembre
0:00	258,710	219,929	210,839	225,567	271,742	274,700	607,548	521,613	333,133	276,516	209,5	271,581
1:00	203,129	132,036	135,806	155,533	198,903	191,467	413,065	427,677	245,067	219,710	167,3	192,677
2:00	176,581	115,643	129,161	138,1	178,355	174,433	378,032	403,452	210,967	194,290	146,333	173,419
3:00	149,419	118,286	139,097	134,467	169,323	166,933	369,129	394,161	188,6	173,323	132,167	143,71
4:00	128,290	116,643	134,129	128,567	162,839	158,733	343,129	392,903	185,333	159,548	128,967	131,645
5:00	117,871	124	132,581	127,3	156,581	163,567	326,968	365,290	175,900	143,032	118,367	129,387
6:00	110,871	118,643	168,645	131,067	137,331	159,318	293,970	335,258	161,100	132,903	114,1	124,871
7:00	309,774	347,250	332,848	234,079	125,373	66,242	124,452	173,017	155,238	364,065	297,667	255
8:00	416,871	564,140	159,255	137,743	-99,957	-181,362	-98,272	-15,961	10,646	147,100	301,252	441,839
9:00	364,377	118,574	-84,901	-259,700	-527,569	-545,588	-497,189	-506,621	-427,498	-356,451	-75,217	236,978
10:00	-259,022	-179,636	-392,274	-709,636	-826,862	-817,197	-838,276	-659,523	-685,631	-711,933	-410,434	-65,838
11:00	-571,311	-613,968	-709,038	-985,228	-1135,604	-1169,335	-1139,754	-1001,396	-940,928	-874,637	-751,878	-488,562
12:00	-689,060	-918,780	-1028,319	-1149,527	-1309,604	-1317,371	-1218,997	-1224,364	-1064,098	-948,467	-799,135	-726,659
13:00	-837,403	-859,449	-932,458	-955,861	-1287,768	-1291,826	-1250,386	-1090,424	-1122,159	-1090,315	-861,000	-743,951
14:00	-705,165	-861,968	-1025,584	-1031,751	-1181,127	-1189,555	-1055,387	-962,566	-1050,585	-1031,729	-791,972	-492,679
15:00	-708,925	-799,080	-958,107	-1017,291	-1087,488	-1038,678	-744,611	-851,166	-970,401	-898,170	-683,753	-445,612
16:00	-392,819	-510,914	-700,321	-703,107	-896,168	-856,739	-286,655	-386,047	-546,993	-437,948	-440,874	-95,655
17:00	-255,697	-236,123	-472,497	-405,752	-466,396	-569,648	115,947	110,878	-335,026	-121,026	115,601	105,398
18:00	300,927	252,628	-25,821	-63,007	-151,037	-175,725	272,617	618,021	-8,699	252,183	335,933	320,258
19:00	376,613	515,929	308,377	180,457	113,179	108,639	546,649	856,523	300,056	367,290	237,567	506,032
20:00	494,129	600,821	466,581	373,867	439,715	242,653	758,971	756,774	377,333	565,419	651,167	656,032
21:00	713,032	884,036	686,387	765,300	712,935	499,033	941,065	1026,871	684,333	668,097	695,433	814,516
22:00	681,516	625,571	551,613	610,6	601,226	495,567	952,129	752,226	508,867	468,194	521,767	547,452
23:00	573,097	405	409,774	487,6	509,774	419,900	922,032	695,839	500,267	398,806	436	484,677

ENERO						
Periodo Consumo sin FV Consumo con FV Excedentes						
Punta	147,329	20,347	153,635			
Valle	146,007	146,007	0			
Total	293,336	166,354	153,635			

MARZO						
Periodo Consumo sin FV Consumo con FV Excedentes						
Punta	139,052	0	219,994			
Valle	129,753	122,814	0			
Total	268,805	122,814	219,994			

Consumo sin FV	Consumo con FV	Excedentes
114,737	0	304,459
137,452	117,026	3,533181831
252,189	117,026	307,992
	114,737 137,452	114,737 0 137,452 117,026

FEBRERO				
Periodo	Consumo sin FV	Consumo con FV	Excedentes	
Punta	138,132	9,999	156,894	
Valle	137,698	136,859	0	
Total	275,83	146,858	156,894	

ABRIL				
Periodo	Consumo sin FV	Consumo con FV	Excedentes	
Punta	129,774	0	243,789	
Valle	130,167	114,602	0	
Total	259,941	114,602	243,789	

JUNIO				
Periodo	Consumo sin FV	Consumo con FV	Excedentes	
Punta	135,166	0	300,468	
Valle	114,988	93,541	5,899	
Total	250,154	93,541	306,367	

JULIO				
Periodo	Consumo sin FV	Consumo con FV	Excedentes	
Punta	224,963	10,178	249,744	
Valle	238,472	216,213	3,452	
Total	463,435	226,391	253,196	

SEPTIEMBRE					
Periodo	Consumo sin FV	Consumo con FV	Excedentes		
Punta	138,704	0	239,762		
Valle	Valle 133,38 120,869				
Total	272,084	120,869	239,762		

NOVIEMBRE				
Periodo	Consumo sin FV	Consumo con FV	Excedentes	
Punta	121,975	13,387	159,933	
Valle	127,503	124,707	0	
Total	249,478	138,094	159,933	

AGOSTO				
Periodo	Consumo sin FV	Consumo con FV	Excedentes	
Punta	231,037	21,052	237,481	
Valle	238,933	220,119	0,814	
Total	469,97	241,171	238,295	

OCTUBRE				
Periodo	Consumo sin FV	Consumo con FV	Excedentes	
Punta	123,366	7,812	222,004	
Valle	141,137	132,479	0	
Total	264,503	140,291	222,004	

DICIEMBRE				
Periodo	Consumo sin FV	Consumo con FV	Excedentes	
Punta	169,225	20,104	109,206	
Valle	151,058	151,058	0	
Total	320,283	171,162	109,206	

Estos resultados nos habilitan para proyectar la factura del cliente en cada mes, considerando una instalación de 2,2 kW_p y la adopción del sistema de compensación simplificada.

A continuación se presentan dos facturas: la factura actual correspondiente al mes de enero, la cual refleja el consumo eléctrico bajo el Plan Noche contratado; y la proyección de la factura para el mismo mes una vez que la instalación esté operativa bajo el Plan Solar contratado.

Ambas facturas incluirán información detallada sobre los precios aplicables, así como el precio de venta de los excedentes energéticos, del cual nos beneficiaremos con el Plan Solar.

	FACTURA PLAN NOCHE (ENERO)				
		ENERGÍA			
Potencia factui	rada:				
Periodo	Potencia (kW)	Días	Precio (€/kW)	Total (€)	
Punta	3,3	31	0,09723	9,94692	
Valle	3,3	31	0,03693	3,77809	
				13,72502	
Energía factura	da				
Periodo	Energía (kWh)	Precio (€/kWh)	Total(€)		
Punta	143,475	0,240409	34,49268		
Valle	149,861	0,108049	16,19233		
			50,68501		
Impuesto sobre	mpuesto sobre la electricidad :				
Energía (kWh)	Precio (€/kWh)	Total(€)			
293,336	0,001	0,29334 ENERGÍA			
	64,7033649				
	SERVICIO	SYOTROS CONC	EPTOS		
Alquiler equipo	s de medida:				
Días	Precio (€/día)	Total(€)			
31	0,02663	0,82553			
Protección eléc	ctrica:				
Total(€)					
5				5.82553	
TC	TOTAL SERVIVIOS Y OTROS CONCEPTOS				
IMPORTE TOTAL					
IVA:					
Tasa	Importe (€)	Total (€)			
21%	70,5288949	14,81106793			
	TOTAL IMPO	RTE FACTURA		85,3399	

	FACTUR	A PLAN SOLAR (E	NERO)	
		ENERGÍA		
Potencia factu	rada:			
Periodo	Potencia (kW)	Días	Precio (€/kW)	Total(€)
Punta	3,3	31	0,09723	9,94692
Valle	3,3	31	0,04148	4,24335
				14,19027
Energía factura				
Periodo	Energía (kWh)	Precio (€/kWh)	Total (€)	
Punta	20,347	0,20321	4,13469	
Valle	146,007	0,099999	14,60055	
			18,73524	
Venta de exced				
Energía (kWh)	Precio (€/kWh)	Total(€)		
153,635	0,08	12,29082619		
	e la electricidad :			
Energía (kWh)	Precio (€/kWh)	Total(€)		
166,3538767	0,001	0,16635		
		ENERGÍA		20,801
		DS Y OTROS CONC	EPTOS	
Alquiler equipo				
Días	Precio (€/día)	Total (€)		
31	0,02663	0,82553		
Protección elé	ctrica:			
Total (€)				
5	<u> </u>			
TC		OTROS CONCEPT	OS	5,8255
		IMPORTE TOTAL	,	
IVA:				
Tasa	Importe (€)	Total (€)		
21%	26,62657173	5,591580063		
	TOTAL IMPO	RTE FACTURA		32,2181

Al obtener las facturas correspondientes a todos los meses del año, realizamos una proyección del ahorro anual. Esto se logra al comparar el coste de nuestra factura actual con el que podríamos tener si contáramos con el sistema fotovoltaico instalado.

COMPARACIÓN FACTURAS (2,2 kW _p)				
Mes	Factura Plan Noche (€)	Factura Plan Solar (€)	Ahorro (€)	
Enero	85,340	32,218	53,122	
Febrero	81,778	26,470	55,308	
Marzo	80,097	17,933	62,164	
Abril	78,041	14,040	64,001	
Mayo	76,313	8,707	67,606	
Junio	76,414	5,408	71,006	
Julio	126,493	28,648	97,845	
Agosto	129,080	33,254	95,825	
Septiembre	81,341	15,195	66,145	
Octubre	80,534	20,849	59,685	
Noviembre	77,062	26,700	50,363	
Diciembre	93,946	37,076	56,870	
TOTAL	1066,438	266,498	799,940	
		Ahorro (%)	75,010	

Conocidos el ahorro anual obtenido y el coste de la instalación, es posible calcular el período de amortización de la misma.

En la siguiente sección, realizaremos un análisis económico con el fin de determinar cuál de los posibles escenarios se ajusta de manera más óptima a los requisitos establecidos por el cliente.

6.1.3 Estudio y selección de la potencia de instalación

En esta sección, se analizarán diversos escenarios con el objetivo de determinar la opción más adecuada, considerando los requisitos establecidos por el cliente. Dichos requisitos incluyen:

- Lograr un ahorro mínimo en el consumo eléctrico actual de un 60%.
- Minimizar el período de recuperación de la inversión (payback).

CASO 1 $(1,65 \text{ kW}_p)$

En el Caso 1 la instalación contaría con 3 módulos fotovoltaicos. A continuación, se muestran los datos correspondientes al ahorro anual:

COMPARACIÓN FACTURAS (1,65 kW _p)				
Mes	Factura Plan Noche (€)	Factura Plan Solar (€)	Ahorro (€)	
Enero	85,340	39,442	45,898	
Febrero	81,778	34,033	47,745	
Marzo	80,097	26,834	53,263	
Abril	78,041	23,555	54,485	
Mayo	76,313	19,485	56,828	
Junio	76,414	16,684	59,730	
Julio	126,493	42,375	84,118	
Agosto	129,080	46,210	82,870	
Septiembre	81,341	24,736	56,604	
Octubre	80,534	29,349	51,185	
Noviembre	77,062	33,628	43,434	
Diciembre	93,946	44,104	49,842	
TOTAL	1066,438	380,435	686,003	
		Ahorro (%)	64,327	

Como se puede apreciar, se alcanzaría un ahorro anual del 64'327%. Este resultado cumple con el requisito de ahorro establecido por el cliente. Por lo tanto, es necesario proceder con el análisis del período de recuperación de la inversión (payback).

Para el calculo del payback deberemos tener en cuenta el coste de la instalación, la posible subvención recibida y el ahorro anual de la instalación. A continuación se muestran los valores de dichos factores:

- Estimación coste de la instalción: 5085,77 €.

- Subvención RD 477/2021: 990 €.

- Ahorro anual: 686,003 €.

$$Payback = \frac{Coste\ final\ instalación}{Ahorro\ anual} = \frac{5085,77-990}{686,003} = 5,97\ años$$

CASO 2 (2,2 kW_p)

Para el Caso 2, se prevé una instalación con 4 módulos fotovoltaicos. A continuación, se presentan los datos relativos al ahorro anual:

COMPARACIÓN FACTURAS (2,2 kW _p)				
Mes	Factura Plan Noche (€)	Factura Plan Solar (€)	Ahorro (€)	
Enero	85,340	32,218	53,122	
Febrero	81,778	26,470	55,308	
Marzo	80,097	17,933	62,164	
Abril	78,041	14,040	64,001	
Mayo	76,313	8,707	67,606	
Junio	76,414	5,408	71,006	
Julio	126,493	28,648	97,845	
Agosto	129,080	33,254	95,825	
Septiembre	81,341	15,195	66,145	
Octubre	80,534	20,849	59,685	
Noviembre	77,062	26,700	50,363	
Diciembre	93,946	37,076	56,870	
TOTAL	1066,438	266,498	799,940	
		Ahorro (%)	75,010	

Con este escenario, se lograría un ahorro anual del 75'01%, satisfaciendo así el requisito de ahorro establecido por el cliente. En consecuencia, es crucial continuar con la evaluación del período de recuperación de la inversión (payback).

Calculo payback:

- Estimación coste de la instalación: 5344,74 €.

- Subvención RD 477/2021: 1320 €.

- Ahorro anual: 799,940 €.

$$Payback = \frac{Coste\ final\ instalaci\'on}{Ahorro\ anual} = \frac{5344,74-1320}{799,940} = 5,03\ a\~nos$$

CASO 3 (2,75 kWp)

El escenario del Caso 3 contempla una instalación que consta de 5 módulos fotovoltaicos.

A continuación, se detallan los datos correspondientes al ahorro anual:

COMPARACIÓN FACTURAS (2,75 kW _p)				
Mes	Factura Plan Noche (€)	Factura Plan Solar (€)	Ahorro (€)	
Enero	85,340	24,994	60,346	
Febrero	81,778	18,906	62,872	
Marzo	80,097	9,032	71,065	
Abril	78,041	4,524	73,517	
Mayo	76,313	0	76,313	
Junio	76,414	0	76,414	
Julio	126,493	14,921	111,572	
Agosto	129,080	20,299	108,781	
Septiembre	81,341	5,654	75,686	
Octubre	80,534	12,350	68,184	
Noviembre	77,062	19,771	57,291	
Diciembre	93,946	30,049	63,897	
TOTAL	1066,438	160,500	905,938	
		Ahorro (%)	84,950	

El ahorro anual previsto del 84'95% satisface las expectativas del cliente en términos de ahorro. En consecuencia, se debe avanzar con el análisis del período de recuperación de la inversión (payback).

Cálculo payback:

- Estimación coste de la instalción: 5639,72 €.

- Subvención RD 477/2021: 0 € (incumplimiento de requistos).

- Ahorro anual: 905,938 €.

$$Payback = \frac{Coste\ final\ instalaci\'on}{Ahorro\ anual} = \frac{5639,72-0}{905,938} = 6,25\ a\~nos$$

CONCLUSIÓN

Se ha seleccionado el modelo de instalación correspondiente al Caso 2, que consiste en una instalación de 2,2 kW_p. Este modelo supera holgadamente el requisito de ahorro mínimo en el consumo eléctrico actual del 60%, y además ofrece el período de amortización de la inversión más corto.

CAPÍTULO 7: DESCRIPCIÓN DE LOS COMPONENTES

En el presente capítulo se exponen los diversos elementos que integran la instalación fotovoltaica. Además, se procede a la selección de los modelos específicos de los distintos dispositivos a ser empleados en la instalación.

7.1 MÓDULO FOTOVOLTAICO

Para el presente proyecto, se ha optado por el módulo fotovoltaico denominado "LR5-72HPH 550W HIMO5", perteneciente a la reconocida marca Longi Solar. Este módulo ofrece una potencia nominal de 550 W. A continuación, se detallan las características principales de este módulo seleccionado:

- Tamaño de 2278 x 1134 x 35 mm.
- Peso de 27'5 kg.
- Eficiencia de los paneles de 21'3%.
- 72 células monocristalinas.

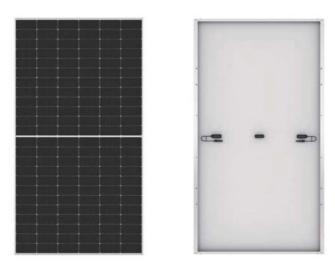


Figura 19. Panel solar LONGI.

Este panel fabricado por Longi Solar, una empresa líder en el sector fotovoltaico establecida en el año 2000, destaca por su excelencia en innovación y calidad. Con más de dos décadas de experiencia en el mercado, Longi Solar se ha consolidado como una referencia en la industria, ofreciendo productos de vanguardia respaldados por tecnología de punta.

El panel de 550W se distingue por la incorporación de células de silicio monocristalino de tipo PERC, que ofrecen una eficiencia de hasta el 21,3%. La utilización de medias células y la tecnología PERC permiten una mayor producción y eficiencia en comparación con paneles estándar de 72 células, representando un avance significativo en el rendimiento de los módulos fotovoltaicos.

La tecnología PERC ha revolucionado el sector fotovoltaico al mejorar la eficiencia de captación de las células solares, lo que se traduce en un aumento del rendimiento y una reducción del coste de producción de los paneles solares. Esto los hace especialmente adecuados para aplicaciones residenciales, donde se busca maximizar la producción de energía solar de manera eficiente y confiable.

Fabricados con silicio monocristalino y un marco de aluminio anodizado, destacan por su durabilidad y resistencia. Además, Longi Solar respalda su producto con una garantía integral de 12 años que cubre tanto el producto, la fabricación y los materiales, así como una garantía de producción de 25 años, lo que proporciona tranquilidad y confianza a los usuarios durante toda la vida útil del sistema solar.

Asimismo, el panel solar está en total conformidad con la legislación pertinente, tal como se especifica en el pliego de condiciones.

Según lo discutido en el "Capítulo 6: Diseño de la instalación", se ha determinado que se requerirán 4 paneles para satisfacer nuestras necesidades energéticas.

7.2 INVERSOR

La energía generada por los paneles solares se presenta en forma de corriente continua (CC), la cual no es apta para su uso directo en hogares o para ser entregada a la red eléctrica, que requiere corriente alterna (CA). El inversor desempeña un papel vital al facilitar la conexión de la energía solar con la red eléctrica, transformando la corriente continua en corriente alterna. Además de esta conversión, el inversor ajusta parámetros esenciales como la frecuencia, la tensión y la corriente de salida para garantizar una integración fluida y segura con la red eléctrica y para satisfacer las necesidades de energía de los hogares.

Los inversores pueden llevar a cabo un seguimiento del punto de máxima potencia (MPPT), lo cual implica ajustar la tensión de entrada de los módulos solares con el objetivo de maximizar la potencia generada. Este proceso implica algoritmos que controlan la tensión de entrada de manera dinámica para lograr la máxima eficiencia en la producción de energía.

Una vez determinada la potencia de instalación, como ya vimos en el Capítulo anterior, procederemos a la selección de un inversor que se ajuste adecuadamente a dicha potencia. Además, en el "Anejo III: Cálculo y verificación del conexionado", se llevará a cabo un análisis para determinar la conexión óptima de los módulos fotovoltaicos con respecto al inversor seleccionado. Este proceso garantizará que se cumplan todos los requisitos necesarios para el correcto funcionamiento del inversor.

La elección para la instalación es el Inversor FRONIUS Primo GEN24 3kW, un inversor híbrido de conexión a red con una potencia de salida monofásica de 3kW. Dotado de diversas funcionalidades adicionales en comparación con la gama estándar monofásica Primo, este nuevo modelo de Fronius GEN24 incorpora características técnicas avanzadas desarrolladas mediante tecnología de vanguardia en el mercado de instalaciones de autoconsumo directo, ya sea con o sin acumulación.

Figura 20. Inversor FRONIUS GEN24.

Entre las características técnicas más destacadas, se encuentra el sistema de refrigeración activa controlada, el cual emplea ventilación forzada para prolongar la vida útil de los componentes. Además, su clasificación de protección IP66 permite su instalación tanto en entornos interiores como exteriores.

El PV Point es una función integrada en el inversor que proporciona energía de emergencia. En caso de suspensión del suministro eléctrico, el inversor puede generar una salida de hasta 3kW en monofásica incluso sin la necesidad de tener baterías instaladas.

El inversor es altamente eficiente, logrando un rendimiento europeo del 96'8%, con la capacidad de alcanzar incluso un máximo del 97'6%. Integra dos MPPT (Maximum Power Point Tracking) que ofrecen una versatilidad significativa al permitir la distribución de paneles en dos orientaciones o inclinaciones diferentes. Esta característica es especialmente beneficiosa en escenarios como tejados de dos aguas o sistemas con dos series de paneles con características eléctricas distintas.

7.3 ESTRUCTURA DE MONTAJE

El objetivo principal de una estructura de montaje para una instalación fotovoltaica es asegurar la correcta orientación y sujeción de los paneles solares para maximizar la captación de energía solar. Además de esto, también garantiza la seguridad y durabilidad del sistema fotovoltaico al proporcionar un soporte adecuado para los paneles,

protegiéndolos de las condiciones climáticas adversas y asegurando su estabilidad estructural a lo largo del tiempo.

La elección de la estructura dependerá de factores como la inclinación y material del tejado. En este proyecto, con un tejado plano, seleccionaremos una estructura que pueda fijarse directamente al hormigón del tejado y pueda ajustarse para alcanzar la inclinación necesaria de 30° respecto a la horizontal.

Con base en criterios técnicos y de calidad, se ha determinado la elección de estructuras para soporte inclinado "Sunfer 09V".

Estos conjuntos han sido seleccionados específicamente para la disposición vertical de los paneles, admitiendo modelos de hasta 72 células y dimensiones máximas de 2279 x 1150mm.

Los materiales utilizados en la confección de estas estructuras son de primera calidad, empleando aluminio de alta resistencia para los perfiles y acero inoxidable A2-70 para la tornillería y los accesorios. La aleación de la perfilería corresponde a EN AW 6005A T6, ampliamente reconocida por su durabilidad y robustez.

Además, la empresa cuenta con certificación ISO:9001 en diseño, fabricación, venta e instalación de estructuras de energía solar, así como el marcado CE, garantizando así el cumplimiento con las normativas y estándares de calidad más rigurosos.

7.4 EQUIPOS DE MEDIDA

7.4.1 Smart meter

El Smart Meter es un dispositivo utilizado para la medición de la energía eléctrica generada por un sistema fotovoltaico, así como la energía consumida en una propiedad.

Su función abarca la capacidad de medir la energía en dos direcciones: hacia la red eléctrica, cuando el sistema de autoconsumo genera un excedente de energía, y hacia la vivienda, cuando esta última consume más energía de la que se está generando.

Esta herramienta permite a los propietarios de sistemas fotovoltaicos tener un control y un monitoreo continuo de la cantidad de energía que están generando y consumiendo en sus hogares.

El Smart Meter seleccionado para la instalación es el Fronius Smart Meter Monofásico 63A-1.

Figura 22. Smart meter Fronius.

El Smart Meter Fronius Smart Meter 63A es una opción confiable para la medición de energía en instalaciones fotovoltaicas. Con una capacidad máxima de corriente de 63 A y una precisión certificada según los estándares EN50470 y EN/IEC 62053-23, garantiza mediciones exactas tanto de energía activa como reactiva. Su diseño compacto, adecuado para montaje en interiores en carril DIN, lo hace versátil y fácil de instalar en una variedad de configuraciones. Además, su bajo consumo de energía de 1,5 W y su alta protección

IP 51 lo convierten en una opción eficiente y duradera para cualquier aplicación fotovoltaica.

7.4.2 Contador bidireccional

El contador bidireccional es un dispositivo esencial en las instalaciones fotovoltaicas residenciales, ya que registra con precisión la energía que fluye en ambos sentidos: desde la red eléctrica hacia el usuario y viceversa. Este componente juega un papel fundamental en los sistemas de autoconsumo con excedentes, permitiendo una gestión eficiente de la energía generada por paneles solares. Los datos recopilados por el contador son utilizados por la comercializadora para calcular la compensación adecuada al usuario.

En la actualidad, la mayoría de los contadores inteligentes son digitales y bidireccionales. Los usuarios pueden optar por adquirir el contador en propiedad o alquilarlo a la empresa distribuidora. Si se elige la compra, el usuario asume la responsabilidad del correcto funcionamiento del dispositivo, mientras que el alquiler implica únicamente la custodia por parte del usuario, siendo la distribuidora responsable de su instalación, mantenimiento y posibles sustituciones en caso de averías.

El coste de adquisición del contador varía entre 100 y 300 euros, dependiendo del modelo y las características específicas del dispositivo. Por otro lado, la tarifa de alquiler es considerablemente más baja, con un coste mensual aproximado de 0.80 a 0.90 euros, lo que se traduce en unos 10 euros anuales. En resumen, el alquiler resulta más económico y conveniente tanto por el coste inicial como por los costes administrativos asociados con la verificación y mantenimiento del dispositivo.

Por todo esto, hemos decidido optar por la opción del alquiler del contador bidireccional en nuestro proyecto, en lugar de por la compra del mismo.

7.5 CABLEADO

El cableado que se emplea en una instalación solar fotovoltaica debe cumplir con la normativa vigente en España, la cual está recogida en el REBT y en las diferentes ITC.

En una instalación fotovoltaica, los conductores cumplen dos roles claramente definidos según el tipo de corriente que transportan. En primer lugar, está el circuito de corriente continua (CC), que conecta los paneles solares entre sí y los vincula con la entrada del inversor. Este circuito se encarga de transportar la electricidad generada por los paneles hacia el inversor para su posterior conversión.

Por otro lado, encontramos el circuito de corriente alterna (CA), que parte de la salida del inversor y se enlaza con el sistema eléctrico de la vivienda. Este circuito tiene la función de llevar la electricidad convertida por el inversor a corriente alterna, permitiendo así alimentar los diversos dispositivos eléctricos y aparatos presentes en la vivienda.

Esta distinción entre los tramos de corriente continua y corriente alterna es esencial para comprender cómo se distribuye y utiliza la energía en una instalación fotovoltaica de manera eficiente y segura.

7.5.1 Cableado del circuito en continua

Según el IDAE, los conductores utilizarán cobre y contarán con la sección adecuada para prevenir caídas de tensión y sobrecalentamientos. Específicamente, en cualquier situación de funcionamiento, los conductores deberán tener la sección suficiente para que la caída de tensión sea inferior al 1,5 %.

El cableado deberá tener una longitud apropiada para evitar tensiones en los distintos componentes y minimizar la posibilidad de enredos debido al tráfico normal de personas.

Todo el cableado de corriente continua estará provisto de doble aislamiento y será apto para su uso en exteriores, al aire libre o enterrado, conforme a la normativa UNE 21123.

Como se detalla en el "Anejo IV: Cálculo de la sección de los conductores", se usarán 25 metros de cable solar Prysmian PRYSOLAR H1Z2Z2-K de 10mm², se trata de un cable

muy flexible especialmente indicado para la conexión entre paneles fotovoltaicos, y desde los paneles al inversor. Es compatible con la mayoría de conectores. Gracias a las prestaciones de sus materiales, puede ser instalado a la intemperie o directamente enterrado en plenas garantías.

Figura 23. Cable H1Z2Z2-K.

Para efectuar la conexión en el sistema fotovoltaico, emplearemos conectores MC4, los cuales desempeñan un papel crucial al unir los cables que conectan los paneles solares entre sí y con otros componentes del sistema, como el inversor. Estos conectores permiten establecer una conexión eléctrica segura y confiable, asegurando que la energía generada por los paneles solares se transmita de manera eficiente al resto del sistema.

Figura 24. Conectores MC4.

7.5.2 Cableado del circuito en alterna

Los conductores serán de cobre y tendrán una sección adecuada para prevenir caídas de tensión y calentamientos. Se garantizará que la sección de los conductores sea suficiente para mantener la caída de tensión por debajo del 1,5% en la parte de corriente alterna (AC) en cualquier condición de operación.

El cableado se limitará al interior de la vivienda y se protegerá mediante un conducto rígido en cumplimiento con la normativa UNE-EN 50086-2-1.

En la instalción se hará uso de 10 metros de cable Afumex Class 1000V (AS), con conductores de cobre flexible y una tensión asignada de 0,6/1 kV, garantiza un funcionamiento seguro en diversas condiciones. Su aislamiento de polietileno reticulado (XLPE) y cubierta Afumex proporcionan una excelente resistencia eléctrica y térmica, junto con una mayor protección contra incendios. Cumpliendo con la clasificación CPR Cca-s1b,d1,a1, asegura su seguridad contra incendios, mientras que su diseño según UNE 21123-4 garantiza su cumplimiento con los estándares de calidad y seguridad requeridos.

7.6 CANALIZACIONES

En esta sección, se detallan los métodos y materiales utilizados para canalizar y proteger los conductores eléctricos tanto en el tramo de corriente continua (CC) como en el tramo de corriente alterna (CA) de la instalación fotovoltaica.

7.6.1 Canalización del circuito en continua

Tramo exterior

Utilizaremos una canal protectora aislante estanca (montaje tipo B1). Esto se debe a que el reglamento considera las intemperies como locales mojados (ITC-BT 30) y exige que las canalizaciones sean estancas. Por lo tanto, la canal protectora aislante proporciona esa estanqueidad necesaria para proteger los cables contra condiciones climáticas adversas.

En lugar de utilizar el tubo corrugado de PVC convencional, optaremos por emplear un tubo flexible helicoidal, fabricado en PVC con espiral interior de PVC rígido. Esta

elección se fundamenta en sus características superiores, ya que proporciona aislamiento, estanqueidad y resistencia a los rayos UV, garantizando una protección óptima para los conductores eléctricos en entornos edificados. Con un índice de protección EN 60529: IP65, cumple con estándares internacionales de seguridad. Además, su conformidad CE respecto a la directiva 2014/35 y la norma IEC 61386 respalda su calidad y fiabilidad en aplicaciones eléctricas.

Figura 26. Tubo flexible helicoidal.

Los tubos deberán tener un diámetro tal que permitan un fácil alojamiento y extracción de los cables o conductores aislados. En la siguiente tabla figuran los diámetros exteriores mínimos de los tubos en función del número y la sección de los conductores o cables a conducir.

Sección nominal de	Diámetro exterior de los tubos (mm)				
los conductores unipolares (mm²)	Número de conductores				
unipolares (IIIII)	1	2	3	4	5
1,5	12	12	16	16	16
2,5	12	12	16	16	20
4	12	16	20	20	20
6	12	16	20	20	25
10	16	20	25	32	32
16	16	25	32	32	32
25	20	32	32	40	40
35	25	32	40	40	50
50	25	40	50	50	50
70	32	40	50	63	63
95	32	50	63	63	75
120	40	50	63	75	75
150	40	63	75	75	
185	50	63	75		
240	50	75			

Como nuestra sección de cableado en el circuito de corriente continua es de 10mm² (Anejo IV: Cálculo de la sección de los conductores), y tendremos 3 conductores (2 de fase y 1 de puesta a tierra), tendremos que escoger un tubo con un diametro exterior mínimo de 25mm².

Por otro lado, necesitaremos grapas para fijar el tubo, asegurando su sujeción. Las grapas se clavan en la superficie y se pasan por el tubo para mantenerlo en su lugar. Además, se hará uso de bridas para sujetar el tubo a las estructuras de los paneles solares u otras partes del sistema.

Tramo interior

En este tramo utilizaremos canaletas para asi no afectar a la apariencia estetica del interior de la vivienda (montaje tipo B1). La canaleta contará con grado de proteccion IP4X y estará clasificada como "canal con tapa de acceso que solo puede abrirse con herramientas".

Figura 27. Canaleta eléctrica.

El trazado de las canalizaciones se hará siguiendo preferentemente líneas verticales y horizontales o paralelas a las artista de las paredes que limitan al local donde se efectúa la instalación.

7.6.2 Canalización del circuito en alterna

En esta parte de la instalación, se hará uso del mismo tipo de tubo que en el tramo exterior del circuito de corriente continua. Que ofrecerá la proteccion necesaria al cable RZ1-K (AS).

La canalización irá empotrada en la pared para así garantizar una apariencia estética y limpia en el hogar (montaje tipo B2). Además, de proporcionar una mayor protección contra daños mecánicos y ambientales.

7.7 PROTECCIONES

Los dispositivos de protección desempeñan un papel fundamental al salvaguardar las instalaciones y garantizar la seguridad de las personas. Es esencial proteger las instalaciones contra posibles situaciones de sobreintensidad, sobretensión y contactos eléctricos.

En una instalación solar fotovoltaica, se deben implementar medidas de protección tanto en el sistema de corriente continua como en el de corriente alterna.

7.7.1 Protecciones del circuito en continua

Para garantizar la seguridad de la instalación, se incluyen fusibles en la salida de la serie de módulos para asegurar la seguridad de la instalación.

En línea con lo analizado en el "Anejo V: Cálculo de protecciones eléctricas", serán unicamente necesarios la instalación de 2 fusibles de 25A 1000VDC 10x38, especificos para instalaciones solares fotovoltaicas.

Figura 28. Fusible 25A.

También haremos uso de 2 portafusibles, encargados de salvaguardar en su interior el fusible protegiendolo de manera segura. Los portafusibles que hemos seleccionado son

seguros para la instalación solar y de fácil manejo, siendo compatibles con fusibles de hasta 30A de alto voltaje o 1000V, y siempre que las dimensiones del fusible sean 10x38.

Figura 29. Portafusibles.

Además, las instalaciones fotovoltaicas requieren protección contra sobretensiones transitorias provocadas por descargas atmosféricas. Para abordar este riesgo, es necesario instalar descargadores en los circuitos de corriente continua y alterna. Sin embargo, el inversor elegido ya está equipado con estos dispositivos de protección. Lleva incorporadas protecciones contra sobretensiones tanto en el lado DC así como en el lado AC según la norma IEC 62109-2, por lo que no será necesaria la compra de ningun otro elemento adicional.

Otro componente crucial en este tipo de instalaciones es el interruptor seccionador. Este dispositivo permite segmentar el circuito eléctrico, asegurando el aislamiento completo entre la sección del array fotovoltaico y el área del inversor y corriente alterna. Esta medida no solo simplifica las tareas de mantenimiento, sino que también las hace considerablemente más seguras. Cabe destacar que, al igual que con la protección contra descargas atmosféricas, nuestro inversor ya cuenta con este seccionador.

Por consiguiente, no se requerirá de la adquisición de un interruptor seccionador adicional en nuestra instalación, la inclusión de elementos de protección adicionales sería redundante y prescindible.

7.7.2 Protecciones del circuito en alterna

El sistema de protección para el circuito de corriente alterna estará compuesto, conforme a lo expuesto en el "Anejo V: Cálculo de protecciones eléctricas", por un interruptor automático magnetotérmico 2P iC60N 6KA Schneider Electric de 20A. La función de este dispositivo consistirá en salvaguardar la integridad de la instalación eléctrica ante eventuales sobrecargas de corriente provenientes de la red eléctrica. De este modo, se garantizará la protección de la instalación ante posibles excesos de corriente originados en la red eléctrica.

Además, se incluirá un interruptor diferencial tipo C, bipolar, con una corriente nominal de 25A y una sensibilidad de 30mA, también de la marca Schneider Electric. Este dispositivo está principalmente diseñado para proporcionar protección contra contactos indirectos a las personas.

Figura 31. Interruptor diferencial.

Al igual que discutimos la importancia de un protector de sobretensiones en el circuito de corriente continua, también es un elemento fundamental en el circuito de corriente alterna para salvaguardar toda esta sección de la instalación ante picos de sobretensiones transitorios que podrían causar daños. Sin embargo, como se mencionó previamente, nuestro inversor ya incluye este tipo de protección en el lado de corriente alterna. Por lo tanto, no será necesario adquirir ningún elemento adicional de protección de este tipo.

Para concluir, es importante destacar que las protecciones mencionadas habitualmente no se colocan directamente a la intemperie debido a la falta de protección IP para tales condiciones. En su lugar, se instalan dentro de lo que se conoce como un cuadro de protecciones, donde se agrupan todas estas protecciones con el objetivo de tenerlas accesibles, resguardadas y protegidas de los elementos externos.

Es fundamental que este cuadro de protecciones tenga un alto grado de protección IP para salvaguardar contra posibles condiciones climáticas adversas, como lluvia y polvo, especialmente si se instala en exteriores. En nuestra instalación, contaremos con un cuadro de protecciones, tanto para las protecciones del lado de corriente continua como para las protecciones del lado de corriente alterna. El cuadro estará ubicado en el interior de la vivienda.

Figura 32. Cuadro de protecciones.

7.8 PUESTA A TIERRA

La toma de tierra, también conocida como puesta a tierra, establece una conexión segura entre una instalación eléctrica y el suelo, permitiendo que cualquier corriente de fuga o descarga atmosférica, como un rayo, se disipe hacia la tierra, protegiendo así la instalación y a las personas.

En el desarrollo del proyecto, se consideró la posibilidad de instalar dos tomas de tierra separadas con picas independientes, una para corriente continua (DC) y otra para corriente alterna (AC). Sin embargo, es importante señalar que conforme al REBT, que es la legislación vigente en materia de fotovoltaica, no se contempla la instalación de una segunda toma a tierra independiente. De hecho, esta práctica puede resultar peligrosa ya que podría generar una diferencia de potencial entre las dos picas, aumentando el riesgo eléctrico para las personas.

Para la correcta puesta a tierra de una instalación de autoconsumo conectada a la red eléctrica, es crucial seguir las pautas establecidas en la ITC-BT-40 del REBT. En el caso de una instalación de autoconsumo convencional conectada a la red, el apartado 8.2.3 de dicha normativa establece que: "cuando la instalación receptora esté acoplada a una Red de Distribución Pública que tenga el neutro puesto a tierra, el esquema de puesta a tierra será el TT y se conectarán las masas de la instalación y receptores a una tierra independiente de la del neutro de la Red de Distribución Pública."

Es importante destacar que el esquema TT implica la existencia de dos tierras separadas: una proporcionada por la compañía eléctrica y otra correspondiente a la residencia. En el caso de un inversor solar acoplado a la red eléctrica, como es el caso que nos ocupa, el neutro de la vivienda se conecta al neutro de la red y a la tierra de la distribuidora de la red pública, representando la primera "T" del esquema mencionado. La segunda "T" corresponde a la tierra de la propia vivienda, es decir, la pica de tierra de la vivienda.

Por lo tanto, de acuerdo con las disposiciones del REBT, no se requiere la instalación de dos picas de tierra diferenciadas. En su lugar, es válido y se recomienda utilizar la toma de tierra existente de la vivienda para la instalación generadora, lo cual incluye al inversor solar.

Siguiendo las consideraciones expuestas en el "Anejo VI: Cálculo de la puesta a tierra", la puesta a tierra de la parte de corriente continua se realizará mediante el cable ToxFree ZH - H07Z1-K (AS) color tierra. Dicho cable será el encargado de realizar conexión entre los paneles y estructuras métalicas de la instlación con el borne de tierras que se localiza en el Cuadro Genral de Mando y Protección. Dispondremos de 34 metros de cable de sección 10 mm².

Figura 33. Cable de puesta a tierra.

En el circuito de corriente alterna, el cable multiconductor que sale del inversor cumpliría la función de conectar el sistema a tierra de manera adecuada. En este caso, no sería necesario un cable adicional específico para la puesta a tierra, ya que el conductor de tierra del cable multiconductor cumpliría esa función.

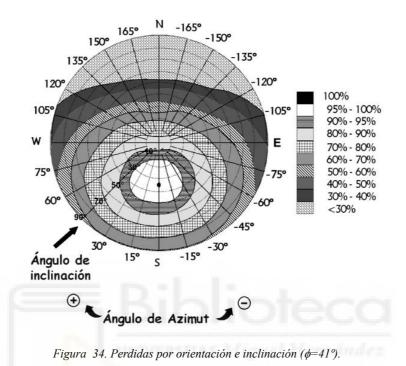
ANEJOS

ANEJO I: CÁLCULO DE LAS PÉRDIDAS POR ORIENTACIÓN E INCLINACIÓN

En los sistemas de energía solar, se pueden experimentar pérdidas de radiación solar cuando los paneles solares no están orientados o inclinados de manera óptima.

De acuerdo con las pautas establecidas por el IDAE y el Código Técnico de la Edificación (CTE), se han establecido límites para las pérdidas de radiación solar debido a la orientación y la inclinación de los paneles solares. Estos valores se detallan en una tabla específica proporcionada por estas entidades.

	Orientación e Inclinación
General	10 %
Superposición	20 %
Integración arquitectónica	40 %


La superposición ocurre cuando los paneles solares se instalan con la misma inclinación que el techo o la pared de un edificio. Para lograr una verdadera integración arquitectónica, los paneles deben reemplazar componentes estructurales de la construcción. Sin embargo, lo más común es el caso general, que se coloquen sobre el suelo o una superficie plana.

Para evaluar las pérdidas debidas a la orientación y la inclinación, seguimos el método recomendado por el Instituto IDAE. Este enfoque nos guía para determinar los ángulos óptimos de inclinación para nuestros paneles solares. El proceso implica calcular el ángulo de orientación del generador y establecer los límites de inclinación aceptables basados en las pérdidas máximas en comparación con la inclinación ideal. Esto se realiza utilizando una figura específica, como la Figura 34, que está diseñada para una latitud particular (en este caso, 41°).

Con el azimut ya conocido, recurrimos a la Figura 34 para establecer los límites de inclinación correspondientes a una latitud de 41° N. En este contexto, las pérdidas

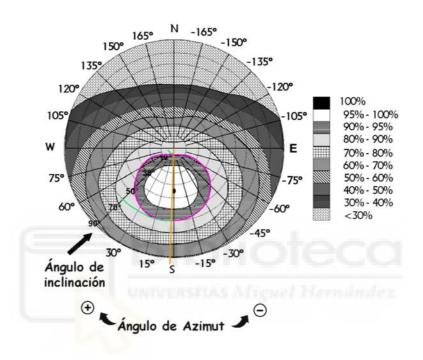
máximas varían: un 10 %, un 20 % en caso de superposición y un 40 % en integración arquitectónica. Para determinar los valores de inclinación máxima y mínima, simplemente ubicamos los puntos de intersección entre las líneas de límite de pérdida y la línea de azimut.

Si no hay intersección entre ambas, las pérdidas exceden los límites permitidos, lo que indica que la instalación está fuera de los parámetros aceptables. En caso de que las curvas se intersecten, se obtienen los valores correspondientes para latitud $\phi = 41^{\circ}$ N y se ajustan utilizando las ecuaciones:

Inclinación máxima = Inclinación
$$(\varphi = 41^{\circ}) - (\varphi = 41^{\circ} - latitud)$$

Inclinación mínima = Inclinación (
$$\varphi = 41^{\circ}$$
) – ($\varphi = 41^{\circ}$ – latitud)

A continuación, nos disponemos a realizar el procedimiento para nuestra instalación.


Datos de nuestra instalación:

- Latitud (ϕ): 38,143410°

- Azimut (α): +1°
- Inclinación (β): 30°
- Caso General

Determinamos los límites para la inclinación en el escenario donde φ tiene un valor de 41 grados:

Inclinación máxima (φ=41°) = 60°

Inclinación mínima (φ=41°) = 3°

Ahora procederemos a corregir las inclinaciones que hemos determinado para la latitud de nuestro proyecto:

Inclinación máxima =
$$60^{\circ}$$
 – $(41^{\circ} - 38,143410^{\circ}) = 57,143^{\circ}$

Inclinación mínima =
$$3^{\circ} - (41^{\circ} - 38,143410^{\circ}) = 0,143^{\circ}$$

En conclusión, la inclinación de los paneles tendrá que estar dentro del rango de 0,143° a 57,143°. Al optar por una inclinación de 30° para la instalación, cumplimos con los requisitos establecidos en el Pliego de Condiciones Técnicas del IDAE.

ANEJO II: CÁLCULO DE PÉRDIDAS DE RADIACIÓN SOLAR POR SOMBRAS

El lugar elegido para la instalación de los módulos fotovoltaicos presenta condiciones óptimas para su funcionamiento eficiente. El tejado, se encuentra a una altura de 7 metros, el área circundante al tejado es relativamente despejada, y no se identifica ningún objeto circundante de igual o mayor altura que pudiera proyectar sombras sobre los paneles. A excepción de un árbol de altura 7,5 metros ubicado a una distancia de 10 metros del tejado.

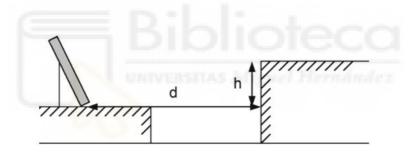
El árbol en cuestión se sitúa dentro de la propiedad del cliente, quien ha expresado su disposición para llevar a cabo ajustes en el mismo, con el objetivo de evitar la posibilidad de sombreado que pudiera incidir en el óptimo rendimiento de la instalación. Por lo tanto, no representará ningún riesgo de perdidas por sombra.

Dado que solo se dispondrá de una fila de módulos fotovoltaicos en nuestra instalación, no resultará necesario calcular la distancia mínima entre filas. Sin embargo, se requerirá calcular la distancia mínima entre la fila de módulos y el muro que circunda el entorno del tejado, el cual presenta una altura de 0,5 metro. Este cálculo se revela crucial para garantizar la eficiencia y el rendimiento óptimo del sistema fotovoltaico, al minimizar cualquier sombreado que pueda afectar la generación de energía solar.

Para realizar el cálculo necesitamos los siguientes datos:

- Latitud (ϕ): 38,143410°
- Altura del muro(h): 0,5 m
- Inclinación módulos (β): 30°
- k: Factor adimensional que varía según la latitud del lugar.

El primer paso, será realizar una interpolación lineal entre los datos correspondientes a 37º y 39º en la tabla, utilizando el valor de latitud específico que tenemos.



Latitud	29°	37°	39°	41°	43°	45°
k	1,600	2,246	2,475	2,747	3,078	3,487

$$k = 2,246 + \frac{2,475 - 2,246}{39 - 37} \times (38,14341 - 37) = 2,377$$

El cálculo nos proporciona un valor de k de 2,377.

Una vez que hemos recopilado todos los datos necesarios, ahora vamos a calcular la separación mínima requerida entre los paneles solares y el muro.

Determinaremos el valor de d empleando la siguiente ecuación:

$$d = h \times K = 0.5 \times 2.377 = 1.1885 m$$

En resumen, la distancia mínima requerida entre la fila de 4 módulos y el muro circundante del tejado debe ser de al menos 1,1885 metros para evitar cualquier pérdida por sombra.

ANEJO III: CÁLCULO Y VERIFICACIÓN DEL CONEXIONADO

Después de definir la cantidad óptima de paneles solares para nuestro proyecto, es fundamental realizar los cálculos de conexión. Esto garantizará que se ajusten correctamente a los requisitos necesarios para el funcionamiento del inversor.

Es esencial determinar la cantidad adecuada de paneles por string y a que entrada del inversor se conectaran dichos strings, para asegurar que la instalación permanezca dentro del rango de seguimiento del punto de máxima potencia (MPPT) del inversor durante la mayor parte del tiempo.

Además, tendremos en cuenta que, en las condiciones más extremas de funcionamiento, tanto la corriente como la tensión permanecerán dentro de los límites máximos aceptables establecidos por el inversor. Para garantizar esto, se calculan la corriente y la tensión en los escenarios más exigente de operación, es decir, durante las condiciones más frías (invierno en la mañana) y las más calurosas (verano al mediodía), considerando la temperatura de funcionamiento más alta.

Para iniciar, procederemos a identificar y definir los principales parámetros que serán fundamentales en los cálculos siguientes:

Variable	Parámetro			
$V_{oc,STC}$	Ténsion a circuito abierto del string en condiciones STC			
I _{sc,STC}	Corriente a circuito abierto del string en condiciones STC			
V _{mpp,STC}	Tension en el punto de máxima potencia del string en condiciones STC			
I _{mpp,STC}	Corriente en el punto de máxima potencia del string en condiciones STC			
P _{p,STC}	Potencia producida por el string en condiciones STC			
T _{cel}	Temperatura de la célula del panel solar fotovoltaico			
TONC	Temperatura de operación nominal del módulo			
α	Coeficiente de temperatura $V_{\rm oc}$			
β	Coeficiente de temperatura I _{sc}			
γ	Coeficiente de temperatura P _{mpp}			
V _{oc,módulo inv}	Tensión a circuito abierto del módulo en las condiciones más desfavorbles de invierno			
V _{oc,módulover}	Tensión a circuito abierto del módulo en las condiciones más desfavorbles de verano			
I _{sc,módulo inv}	Corriente a circuito abierto del módulo en las condiciones más desfavorbles de invierno			
I _{sc,módulover}	Corriente a circuito abierto del módulo en las condiciones más desfavorbles de verano			

V _{mpp,módulo inv}	Tensión en el punto de máxima potencia del módulo en las condiciones más desfavorables de invierno
V _{mpp,módulo ver}	Tensión en el punto de máxima potencia del módulo en las condiciones más desfavorables de verano
I _{mpp,módulo inv}	Corriente en el punto de máxima potencia del módulo en las condiciones más desfavorables de invierno
I _{mpp,módulo ver}	Corriente en el punto de máxima potencia del módulo en las condiciones más desfavorables de verano
P _{p,módulo inv}	Potencia del módulo en las condiciones más desfavorables de invierno
P _{p,módulo ver}	Potencia del módulo en las condiciones más desfavorables de verano
V _{oc,invierno}	Ténsion a circuito abierto del string en las condiciones más desfavorables de invierno
V _{oc,verano}	Ténsion a circuito abierto del string en las condiciones más desfavorables de verano
I _{sc,invierno}	Corriente a circuito abierto del string en las condiciones más desfavorables de invierno
I _{sc,verano}	Corriente a circuito abierto del string en las condiciones más desfavorables de verano
V _{mpp,invierno}	Tensión en el punto de máxima potencia del string en las condiciones más desfavorables de invierno
V _{mpp,verano}	Tensión en el punto de máxima potencia del string en las condiciones más desfavorables de verano
I _{mpp,invierno}	Corriente en el punto de máxima potencia del string en las condiciones más desfavorables de invierno
I _{mpp,verano}	Corriente en el punto de máxima potencia del string en las condiciones más desfavorables de verano
P _{p,invierno}	Potencia producida por el string en las condiciones más desfavorables de invierno
P _{p,verano}	Potencia producida por el string en las condiciones más desfavorables de verano

Antes de comenzar en el análisis del conexionado, es pertinente presentar una serie de datos relevantes extraídos de las fichas técnicas tanto del panel como del inversor seleccionados.

Datos Panel Solar	Hernández
Referencia	LR5-72HPH 550M
Potencia nominal	550 W
Eficiencia del panel	21,3%
Tensión nominal (V _{mpp})	41,95 V
Intensidad nominal (I _{mpp})	13,12 A
Tensión de circuito abierto (V _{oc})	49,8 V
Intensidad de cortocircuito (I _{sc})	13,98 A
Coef. Potencia-Temperatura ($oldsymbol{\gamma}$)	−0,34 %/ °C
Coef. Tensión-Temperatura ($lpha$)	−0,265 %/ °C
Coef. Intensidad-Temperatura ($oldsymbol{eta}$)	0,050 %/ °C
Temperatura de funcionamiento	−40°C a +85°C
TONC	45°C
Largo	2278 mm
Ancho	1134 mm
Espesor	35 mm

Datos Inversor									
Referencia	Primo GEN24 Plus								
Entrada									
Número de seguidores MPP	•	2							
Rango de tensión de entrada CC	65 - 6	600 V							
Tensión nominal de entrada	40	0 V							
Tensión de arranque	80) V							
Rango de tensión MPP	65 - 5	530 V							
	MPPT1	MPPT2							
Max. Corriente de entrada por MPP	22 A	12 A							
Máx. Corriente de cortocircuito por MPP	36 A	19 A							
Max. Potencia CC	3110 W	3110 W							
Max. Salida del generador FV	3750 W _p	3110 W _p							
Salida									
Potencia nominal CA	300	0 W							
Potencia aparente	3000 VA								
Máx. potencia de salida	300	0 VA							
Tensión nominal de Salida	220 Vca	230 Vca							
Corriente de salida CA nominal	13,6 A	13 A							

Primero, necesitamos determinar los valores de V_{oc}, I_{sc}, V_{mpp}, I_{mpp} y P_p en condiciones estándar de medida (STC). Para ello consideraremos el número de módulos conectados en serie:

1º Condición caso STC

$$V_{oc,STC(MPPT1)} = V_{oc,m\'odulo} \times N^{\circ}_{m\'odulos\,serie} = 49.8 \times 4 = 199.2 \, V$$

Se debe cumplir que:

$$V_{min,inversor} < V_{oc,STC} < V_{max,inversor}$$

$$65 V < 199,2 V < 600 V$$
 CUMPLE

2º Condición caso STC

$$I_{sc,STC(MPPT1)} = I_{sc,m\acute{o}dulo} \times N^{\circ}_{ramas\;en\;paralelo} = 13,98 \times 1 = 13,98 \; A$$

Se debe cumplir que:

$$I_{sc,inversor} > I_{sc,STC}$$

$$36 A > 13,98 A$$
 CUMPLE

3º Condición caso STC

$$V_{mpp,STC(MPPT1)} = V_{mpp,m\'odulo} \times N^{\circ}_{m\'odulos\,serie} = 41,95 \times 4 = 167,8\,V$$

Se debe cumplir que:

$$V_{MPPT,min} < V_{mpp,STC} < V_{MPPT,max}$$

CUMPLE

4º Condición caso STC

$$I_{mpp,STC(MPPT1)} = I_{mpp,m\acute{o}dulo} \times N^{\underline{o}}_{ramas\;en\;paralelo} = 13,12 \times 1 = 13,12\;A$$

Se debe cumplir que:

$$I_{mpp,inversor} > I_{mpp,STC}$$

CUMPLE

5º Condición caso STC

$$P_{p,STC(MPPT1)} = P_{p,m\'odulo} \times N^{\underline{o}}_{strings} \times N^{\underline{o}}_{m\'odulos\,serie} = 550 \times 1 \times 4 = 2200\,W_p$$

Se debe cumplir que:

$$P_{p,STC} < P_{max,inv}$$

$$2200 W_p < 3750 W_p$$
 CUMPLE

A continuación, se presenta una tabla que resume todos los resultados obtenidos a través de los cálculos realizados:

Condiciones STC	1
V _{oc} (V)	199,2
I _{sc} (A)	13,98
V _{mpp} (V)	167,8
I _{mpp} (A)	13,12
$P_p(W_p)$	2200

Ahora vamos a calcular los valores de V_{oc} , I_{sc} , V_{mpp} , I_{mpp} y P_p del módulo en situaciones desfavorables, tanto durante las mañanas en invierno como al mediodía en verano. Para llevar a cabo este proceso, es esencial comenzar calculando la "Temperatura de la célula (T_{cel}) ".

Vamos a calcular la temperatura de la célula (T_{cel}) suponiendo una temperatura ambiente de 45°C durante el mediodía del verano, y considerando una T_{cel} de 0°C para las mañanas invernales.

Correcciones de los parámetros.

$$T_{cel,invierno} = 0$$
°C

$$T_{cel,verano} = T_{amb} + (TONC - 20) \times \frac{E}{800} = 45 + (45 - 20) \times \frac{1000}{800} = 76,25 \text{ °C}$$

$$\begin{split} V_{oc,m\'odulo\ inv} &= V_{oc,m\'odulo} \times \left(1 + \alpha \times \left(T_{cel,inv} - 25\right)\right) \\ &= 49.8 \times \left(1 + (-0.00265) \times (0 - 25)\right) = 53.099\ V \\ V_{oc,m\'odulo\ ver} &= V_{oc,m\'odulo} \times \left(1 + \alpha \times \left(T_{cel,ver} - 25\right)\right) \\ &= 49.8 \times \left(1 + (-0.00265) \times (76.25 - 25)\right) = 43.036\ V \end{split}$$

$$\begin{split} I_{sc,m\acute{o}dulo\;inv} &= I_{sc,m\acute{o}dulo} \times \left(1 + \beta \times \left(T_{cel,inv} - 25\right)\right) \times \frac{E}{1000} \\ &= 13,98 \times \left(1 + 0,00050 \times (0 - 25)\right) \times \frac{500}{1000} = 6,903 \, A \\ I_{sc,m\acute{o}dulo\;ver} &= I_{sc,m\acute{o}dulo} \times \left(1 + \beta \times \left(T_{cel,ver} - 25\right)\right) \times \frac{E}{1000} \\ &= 13,98 \times \left(1 + 0,00050 \times (76,25 - 25)\right) \times \frac{1000}{1000} = 14,338 \, A \end{split}$$

$$\begin{split} V_{mpp,m\acute{o}dulo\;inv} &= V_{mpp,m\acute{o}dulo} \times \left(1 + \alpha \times \left(T_{cel,inv} - 25\right)\right) \\ &= 41,95 \times \left(1 + (-0,00265) \times (0 - 25)\right) = 44,729 \, V \\ V_{mpp,m\acute{o}dulo\;ver} &= V_{mpp,m\acute{o}dulo} \times \left(1 + \alpha \times \left(T_{cel,inv} - 25\right)\right) \\ &= 41,95 \times \left(1 + (-0,00265) \times (76,25 - 25)\right) = 36,253 \, V \end{split}$$

$$\begin{split} I_{mpp,m\'odulo\ inv} &= I_{mpp,m\'odulo} \times \left(1 + \beta \times \left(T_{cel,inv} - 25\right)\right) \times \frac{E}{1000} \\ &= 13,12 \times \left(1 + 0,00050 \times (0 - 25)\right) \times \frac{500}{1000} = 6,478\,A \\ I_{mpp,m\'odulo\ ver} &= I_{mpp,m\'odulo} \times \left(1 + \beta \times \left(T_{cel,ver} - 25\right)\right) \times \frac{E}{1000} \\ &= 13,12 \times \left(1 + 0,00050 \times (76,25 - 25)\right) \times \frac{1000}{1000} = 13,456\,A \end{split}$$

$$P_{p,m\acute{o}dulo\;inv} = P_{p,m\acute{o}dulo} \times \left(1 + \gamma \times \left(T_{cel,inv} - 25\right)\right) \times \frac{E}{1000}$$

$$= 550 \times \left(1 + (-0,0034) \times (0 - 25)\right) \times \frac{500}{1000} = 298,375 \, W_p$$

$$P_{p,m\acute{o}dulo\;ver} = P_{p,m\acute{o}dulo} \times \left(1 + \gamma \times \left(T_{cel,ver} - 25\right)\right) \times \frac{E}{1000}$$

$$= 550 \times \left(1 + (-0,0034) \times (76,25 - 25)\right) \times \frac{1000}{1000} = 454,163 \, W_p$$

Se presenta a continuación una tabla que resume todos los resultados derivados de los cálculos efectuados:

Correcciones									
Parámetros	Parámetros Invierno mañana								
V _{oc} (V)	53,099	43,036							
I _{sc} (A)	6,903	14,338							
V _{mpp} (V)	44,729	36,253							
I _{mpp} (A)	6,478	13,456							
$P_p(W_p)$	298,375	454,163							

En tercer lugar, vamos a determinar los valores de V_{oc} , I_{sc} , V_{mpp} , I_{mpp} y P_p , considerando las condiciones menos favorables.

1º Condición casos desfavorables

$$V_{oc,inv(MPPT1)} = V_{oc,m\'odulo\;inv} \times N^{\circ}_{m\'odulos\;serie} = 53,099 \times 4 = 212,396 \, V$$

$$V_{oc,ver(MPPT1)} = V_{oc,m\'odulo\;ver} \times N^{\circ}_{m\'odulos\;serie} = 43,036 \times 4 = 172,144\;V$$

Se debe cumplir que:

$$V_{min,inversor} < V_{oc,inv} y V_{oc,ver} < V_{max,inversor}$$

$$65 V < 212,396 V y 172,144 V < 600 V$$
 CUMPLE

2º Condición casos desfavorables

$$I_{sc,inv(MPPT1)} = I_{sc,m\'odulo\ inv} \times N^{\circ}_{ramas\ en\ paralelo} = 6,903 \times 1 = 6,903\ A$$

$$I_{sc,ver(MPPT1)} = I_{sc,m\'odulo\ ver} \times N^{\circ}_{ramas\ en\ paralelo} = 14,338 \times 1 = 14,338\ A$$

Se debe cumplir que:

$$I_{sc.inversor} > I_{sc.inv} y I_{sc.ver}$$

CUMPLE

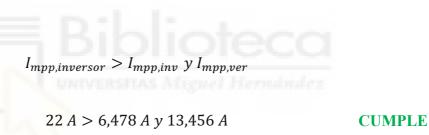
3º Condición casos desfavorables

$$V_{mpp,inv(MPPT1)} = V_{mpp,m\acute{o}dulo\;inv} \times N^{\underline{o}}_{m\acute{o}dulo\;s\;serie} = 44{,}729 \times 4 = 178{,}916\;V$$

$$V_{mpp,ver(MPPT1)} = V_{mpp,m\acute{o}dulo\;ver} \times N^{\underline{o}}_{m\acute{o}dulo\;s\;erie} = 36,253 \times 4 = 145,012\;V$$

Se debe cumplir que:

$$V_{MPPT,min} < V_{mpp,inv} y V_{mpp,ver} < V_{MPPT,mix}$$


CUMPLE

4º Condición casos desfavorables

$$I_{mpp,inv(MPPT1)} = I_{mpp,m\'odulo\ inv} \times N^{\circ}_{ramas\ en\ paralelo} = 6,478 \times 1 = 6,478\ A$$

$$I_{mpp,ver(MPPT1)} = I_{mpp,m\'odulo\;ver} \times N^{\circ}_{ramas\;en\;paralelo} = 13,456 \times 1 = 13,456\;A$$

Se debe cumplir que:

5º Condición casos desfavorables

$$\begin{split} P_{p,inv(MPPT1)} &= P_{p,m\acute{o}dulo\;inv} \times N^{\circ}_{strings} \times N^{\circ}_{m\acute{o}dulos\;serie} = 298,375 \times 1 \times 4 \\ &= 1193,5 \; W_p \end{split}$$

$$\begin{split} P_{p,ver(MPPT1)} &= P_{p,m\'odulo\;ver} \times N^{\circ}_{strings} \times N^{\circ}_{m\'odulos\;serie} = 454,\!163 \times 1 \times 4 \\ &= 1816,\!652 \, W_p \end{split}$$

Se debe cumplir que:

$$P_{p,inv} y P_{p,ver} < P_{max,inversor}$$

1193,5 W_p y 1816,652 W_p < 3750 W_p

CUMPLE

A contincuación se muestra de nuevo una tabla que resume todos los resultados que hemos obtenido a través de los cálculos realizados:

Condiciones más desfavorables								
Parametros Invierno mañana Verano medio								
V _{oc} (V)	212,396	172,144						
I _{sc} (A)	6,903	14,338						
V _{mpp} (V)	178,916	145,012						
I _{mpp} (A)	6,478	13,456						
P _p (W _p)	1193,5	1816,652						

En conclusión, tras llevar a cabo los cálculos pertinentes bajo condiciones STC y en las circunstancias más desfavorables, determinamos que nuestra instalación consistirá en un único string compuesto por 4 módulos conectados en serie, el cual estará conectado a la entrada MPPT1 de nuestro inversor.

ANEJO IV: CÁLCULO DE LA SECCIÓN DE LOS CONDUCTORES

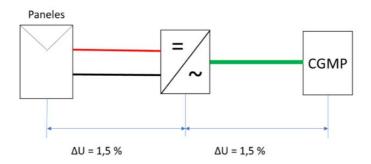
En esta sección, se determina el tamaño adecuado de los cables que se utilizarán en toda la instalación. Es importante calcular la sección correcta de los cables para garantizar que puedan manejar la corriente eléctrica de manera eficiente y segura, minimizando la caída de tensión y evitando sobrecalentamientos.

La sección debe ser calculada teniendo en cuenta los criterios de la máxima caída de tensión y de la máxima intensidad admisible:

<u>Criterio de la máxima intensidad admisible:</u> Según ITC-BT 40, los cables de conexión deberán estar dimensionados para una instensidad no inferior al 125% de la máxima intensidad del generador.

Criterio de la máxima caída de tensión: El punto 5 de la ITC-BT 40 del REBT establece lo siguiente: "...la caída de tensión entre el generador y el punto de interconexión a la Red de Distribución Pública o a la instalación interior, no será superior al 1,5 % para la intensidad nominal."

Podemos inferir que el generador entrega su energía a la salida del inversor, por lo tanto, tenemos limitada la caída de tensión máxima al 1,5 % entre el inversor y el cuadro general de mando y protección (CGMP), considerado como punto de interconexión a la instalación interior.


En el lado de corriente continua, ni el REBT ni la norma UNE-HD 60364-5-52 especifican un valor para la caída de tensión. El Pliego de Condiciones Técnicas de Instalaciones Conectadas a Red del IDAE (PCT-C-REV – julio 2011), en su apartado 5.5.2., establece lo siguiente con respecto a la caída de tensión en el cableado de corriente continua:

"Los conductores serán de cobre y tendrán la sección adecuada para evitar caídas de tensión y calentamientos. Específicamente, para cualquier condición de trabajo, los

conductores deben tener la sección suficiente para que la caída de tensión sea inferior al 1,5 %."

Por lo tanto, calcularemos considerando también un máximo del 1,5 % de caída de tensión en el lado de corriente continua.

4.1 Secciones del circuito en continua

Por criterio de máxima intensidad admisible.

Tramo exterior:

La corriente máxima que puede circular por el circuito en continua es:

$$I_{max.cc} = 1,25 \times I_{sc} = 1,25 \times 13,98 = 17,475 A$$

Sin embargo, en este tramo se consideran dos coeficientes de corrección, los cuales están definidos en la normativa ITC-BT-06:

- Por acción solar: 0,9.
- Por temperatura de 50°C en intemperie: 0,9.

Por lo tanto, será necesaria la correción de la I_{max,cc} anteriormente calculada.

$$I'_{max,cc} = \frac{I_{max,cc}}{f_{sol} \times f_{temp}} = \frac{17,574}{0,9 \times 0,9} = 21,574 A$$

Tramo interior:

En este tramo ya no tendremos la instalación sometida al sol ni a esos teóricos 50°C, por lo tanto ya no tendremos en cuenta ambos coeficientes de correción.

$$I_{max,cc} = 1,25 \times I_{sc} = 1,25 \times 13,98 = 17,475 A$$

Podemos observar que el valor mas alto de intensidad se obtiene en el tramo exterior, por consiguiente usaremos el valor de l'_{max,cc} al ser el más restrictivo.

Se determina la sección mínima del conductor teniendo en cuenta el método de instalación (B1), aislamiento XLPE y monofásico.

Método de instalación*			N	úmero de	e conduc	tores ca	rgados y	tipo de a	aislamier	nto		
A1		3x PVC	2x PVC		3x XLPE	2x XLPE						
A2	3x PVC	2x PVC		3x XLPE	2x XLPE							
B1				3x PVC	2x PVC		3x XLPE		2x XLPE			
B2			3x PVC	2x PVC		3x XLPE	2x XLPE					
С					3x PVC		2x PVC	3x XLPE		2x XLPE		
E						3x PVC		2x PVC	3x XLPE		2x XLPE	
F							3x PVC		2x PVC	3x XLPE		2x XLPE
Sección mm² COBRE	2	3	4	5	6	7	8	9	10	11	12	13
1,5	11	11,5	13	13,5	15	16	16,5	19	20	21	24	
2,5	15	16	17,5	18,5	21	22	23	26	26,5	29	33	
4	20	21	23	24	27	30	31	34	36	38	45	
6	25	27	30	32	36	37	40	44	46	49	57	
10	34	37	40	44	50	52	54	60	65	68	76	-
16	45	49	54	59	66	70	73	81	87	91	105	

En este caso, se obtiene que la sección mínima del conductor para soportar la máxima corriente de cortocircuito debe ser de 2,5 mm².

Por criterio de máxima caída de tensión.

La sección de los conductores debe ser tal que produzca una caída de tensión menor al 1,5% de la tensión nominal del sistema.

A continuación, se presenta en la fórmula que calcula la sección mínima del conductor que satisface el criterio de caída de tensión.

$$S \ge \frac{2 \times L \times I_{mpp}}{\gamma \times \Delta U}$$

Donde:

- S =Sección mínima del conductor
- L =Longitud del conductor
- I_{mpp} = Intensidad del punto de máxima potencia
- γ = Conductividad del cobre a 90°C
- ΔU = Caída de tensión máxima recomendada
- $V_{mpp,string}$ = Tensión del punto de máxima potencia del string

$$V_{mpp,string} = 4 \times V_{mpp} = 4 \times 41,95 = 167,8 V$$

$$\Delta U = \frac{1.5}{100} \times V_{mpp,string} = \frac{1.5}{100} \times 167.8 = 2.517 V$$

$$S \ge \frac{2 \times 25 \times 13,12}{44 \times 2,517} = 5,92 \text{ } mm^2$$

El criterio más restrictivo para la elección de la sección del conductor es el de caída de tensión, por lo que los conductores del circuito CC deben tener una sección mínima de 5,92 mm². Vamos a sobredimensionar la sección del conductor a 10 mm² en lugar de 6 mm², ya que la diferencia entre 5,92 mm² y 6 mm² es mínima. Esta elección proporciona un margen adicional de seguridad y resistencia. Además, la sección de 10 mm² es más adecuada para futuras expansiones del sistema. En definitiva, utilizaremos una sección de 10 mm² para este tramo de cableado en nuestra instalación y este cable estará revestido con aislamiento de XLPE.

4.2 Secciones del circuito en alterna

Este circuito desempeña un papel crucial al conectar el inversor con cuadro general de mando y protección (CGMP). Como hemos observado anteriormente, es imperativo mantener la caída de tensión dentro de límites aceptables para garantizar un rendimiento óptimo del sistema. Por lo tanto, se establece un límite máximo del 1,5% para la caída de tensión en este circuito.

Por criterio de intensidad máxima admisible.

Los conductores del circuito en alterna se dimensionarán para que soporten la intensidad máxima que es capaz de entregar el inversor.

$$I_{max,AC} = 1,25 \times I_{max,inv} = 1,25 \times 13 = 16,25 A$$

Determinamos la sección mínima del conductor teniendo en cuenta el método de instalación (B2), aislamiento XLPE y monofásico.

Método de instalación*			N	úmero de	e conduc	tores ca	rgados y	tipo de a	aislamier	nto		
A1		3x PVC	2x PVC		3x XLPE	2x XLPE						
A2	3x PVC	2x PVC		3x XLPE	2x XLPE							
B1				3x PVC	2x PVC		3x XLPE		2x XLPE			
B2			3x PVC	2x PVC		3x XLPE	2x XLPE					
С					3x PVC		2x PVC	3x XLPE		2x XLPE		
E						3x PVC		2x PVC	3x XLPE		2x XLPE	
F							3x PVC		2x PVC	3x XLPE		2x XLPE
Sección mm² COBRE	2	3	4	5	6	7	8	9	10	11	12	13
1,5	11	11,5	13	13,5	15	16	16,5	19	20	21	24	
2,5	15	16	17,5	18,5	21	22	23	26	26,5	29	33	
4	20	21	23	24	27	30	31	34	36	38	45	10-6
6	25	27	30	32	36	37	40	44	46	49	57	
10	34	37	40	44	50	52	54	60	65	68	76	
16	45	49	54	59	66	70	73	81	87	91	105	

Obtenemos que la sección necesaria por máxima intensidad admisible es de 1,5 mm².

Por criterio de máxima caida de tensión.

La sección de los conductores debe ser tal que produzca una caída de tensión menor al 1,5% de la tensión nominal del sistema. Determinaremos la sección de los conductores mediante la siguiente ecuación:

$$S \ge \frac{2 \times L \times I_{max,inv} \times \cos(\varphi)}{\gamma \times \Delta U}$$

Donde:

- S =Sección mínima del conductor
- L = Longitud del conductor
- $I_{max,inv}$ = Intensidad máxima a la salida del inversor
- γ = Conductividad del cobre a 90°C
- U = Caída de tensión máxima recomendada
- $V_{inv,sal}$ = Tensión a la salida del inversor

$$\Delta U = \frac{1.5}{100} \times V_{inv,sal} = \frac{1.5}{100} \times 230 = 3.45 V$$

$$S \ge \frac{2 \times 10 \times 13 \times 1}{44 \times 3.45} = 1,71 \text{ mm}^2$$

El criterio más restrictivo para la elección de la sección del conductor es el de caída de tensión, por lo que los conductores del circuito CA deben tener una sección mínima de 1,71 mm². Volvemos a sobredimensionar la sección del conductor, en este caso a 4mm². En conclusión, utilizaremos una sección de 4mm² para este tramo de cableado en nuestra instalación y este cable contará con aislamiento de XLPE.

ANEJO V: CÁLCULO DE PROTECCIONES ELÉCTRICAS

Del mismo modo que se ha realizado el cálculo del cableado, se diferenciarán dos tramos para las protecciones: uno de corriente continua y otro de corriente alterna que contarán con distintos mecanismos de protección.

5.1 Protecciones del circuito en continua

En esta sección se implementarán fusibles para salvaguardar tanto el cableado como el inversor. Estos fusibles desempeñarán un papel crucial al proteger la integridad de todo el sistema, evitando sobrecargas y posibles daños. La selección de los fusibles adecuados será fundamental para mantener la eficiencia y fiabilidad del sistema en todo momento.

Las ecuaciones utilizadas para la selección de los fusibles son las siguientes, según lo establecido en el Reglamento Electrotécnico de Baja Tensión, específicamente en la norma ITC-BT-22:

$$I_b \leq I_n \leq I_z$$

$$I_2 \leq 1,45 \times I_z$$

Donde:

- I_b = Intensidad de diseño
- I_n = Intensidad nominal del dispositivo de protección (en este caso fusibles)
- I_z = Intensidad admisible del cable en función del sistema de instalación utilizado
- I_2 = Intensidad que asegura la actuación del dispositivo de protección.

Además, tendremos en cuenta los factores de correción de la norma anteriormente aplicados:

$$I_b = 21,574 A$$

$$I_z = 65 A$$

Por lo tanto, la intensidad nominal del fusible elegido debe ser al menos:

1º Condición:

$$21,574 \ A \leq I_n \leq 65 \ A$$

$$I_n = 25 A$$

2º Condición:

$$I_2 = 1.6 \times I_n = 40 A$$

$$40 \le 1,45 \times 65 = 94,25 A$$

Como esta instalación solo contará con un string de 4 paneles conectados en serie, se necesitarán únicamente dos fusibles, uno para el polo positivo y otro para el polo negativo.

Según los cálculos realizados, se utilizarán dos fusibles con una intensidad nominal de 25 amperios.

5.2 Protecciones del circuito en alterna

En el tramo de corriente alterna únicamente será necesario instalar un interruptor general manual magnetotérmico y un interruptor automático diferencial, el resto de las protecciones necesarias se integran en el equipo inversor.

Para proteger contra cortocircuitos y sobrecargas en la parte de corriente alterna, se empleará un magnetotérmico. Este interruptor debe cumplir con las ecuaciones descritas

anteriormente en el apartado 5.1 para aquellos dispositivos que protegen un cable o conductor contra sobrecargas.

1º Condición:

$$16,25 \le I_n \le 31$$

$$I_n = 20 A$$

2º Condición:

$$I_2 = 1,45 \times I_n = 29 A$$

$$29 \le 1,45 \times 31 = 44,95 A$$

Tras el estudio, se ha decido emplear el Interruptor automático magnetotérmico Interruptor Automático Magnetotérmico 2P iC60N 6KA Schneider Electric de 20 A, una protección que puede ser instalada en la gran mayoría de instalaciones, desde entornos residenciales hasta grandes instalaciones terciarias.

Además, también se hará uso en la instalción de un interruptor diferencial.

Este interruptor debe contar con la sensibilidad adecuada, siendo lo recomendado 30mA para instalaciones domésticas. La función de este tipo de dispositivos de protección es hacer frente a una posible fuga de corriente, obteniendo la diferencia existente entre la corriente de entrada de un circuito y la corriente de salida de este. Con el objetivo de que este dispositivo únicamente actúe por fallos a tierra, su corriente nominal será superior a la del magnetotérmico de protección, en este caso es necesario elegir un diferencial con una intensidad superior a 20A.

Para este proyecto se ha elegido un interruptor diferencial tipo AC, bipolar, con una instensidad nominal 25A y una sensibilidad de 30mA de la marca Schneider Electric. Este dispositivo cumple con todas las exigencias de seguridad establecidas por norma.

ANEJO VI: CÁLCULO DE PUESTA A TIERRA

En la conexión a tierra de la parte de corriente continua de la instalación, se conectan los módulos a las estructuras de soporte. Estas estructuras de soporte, actúan como conductores de tierra, permitiendo que los módulos estén eléctricamente conectados a tierra a través de ellas.

Posteriormente, se instala un cable conductor que conecta estas estructuras de soporte, que están unidas a los módulos, a la toma de tierra de la vivienda. Este cable asegura que la conexión a tierra de los módulos esté vinculada adecuadamente al sistema de puesta a tierra de la vivienda, proporcionando una ruta segura para que la corriente se disipe en caso de un fallo o situación de emergencia.

Simultaneamente, en la conexión a tierra de parte de corriente alterna de la instalación, la salida del inversor se conectará a la misma toma de tierra de la vivienda que se utiliza para la conexión de los módulos fotovoltaicos.

En cuanto a la sección de estos cables de conexión a tierra, seguiremos la ITC BT-8. A continuación se muestra la tabla mediante la cual hallaremos dichas secciones:

Secciones de los conductores de fase o polares de la instalación (mm²)	Secciones mínimas de los conductores de protección (mm²)						
S ≤ 16	S (*)						
16< S ≤ 35	16						
S > 35	S/2						
(*) Con un mínimo de:							
2,5 mm ² si los conductores de protección no f	orman parte de la canalización de alimentación						
y tienen una protección mecánica							
4 mm² si los conductores de protección no for	man parte de la canalización de alimentación y						

Al tener una sección del conductor menor a 16mm², la sección de protección es igual a la de fase. Por lo tanto, para este propósito se ha seleccionado el cables ToxFree ZH - H07Z1-K (AS) color tierra de sección 10mm² para la puesta a tierra de la parte continua de la instalación.

En la parte de corriente no será necesaria la adquisicion de un cable específico de puesta a tierra ya que disponemos de un cable multipolar.

ANEJO VII: FICHAS TÉCNICAS

LR5-72HPH 540~560M

- Based on M10-182mm wafer, best choice for ultra-large power plants
- Advanced module technology delivers superior module efficiency
 - M10 Gallium-doped Wafer Smart Soldering 9-busbar Half-cut Cell
- Excellent outdoor power generation performance
- High module quality ensures long-term reliability

12-year Warranty for Materials and Processing

25-year Warranty for Extra Linear Power Output

Complete System and **Product Certifications**

IEC 61215, IEC 61730, UL 61730

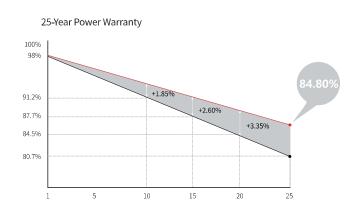
ISO9001:2015: ISO Quality Management System

ISO14001: 2015: ISO Environment Management System

ISO45001: 2018: Occupational Health and Safety

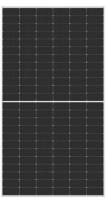
TS62941: Guideline for module design qualification and type approval

LR5-72HPH 540~560M

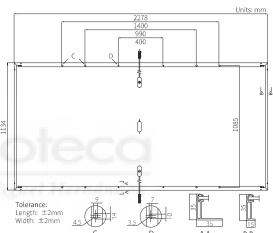

21.7% MAX MODULE EFFICIENCY 0~3%
POWER
TOLERANCE

<2%FIRST YEAR
POWER DEGRADATION

0.55% YEAR 2-25 POWER DEGRADATION


HALF-CELLLower operating temperature

Additional Value



Mechanical Parameters

Cell Orientation	144 (6×24)		
Junction Box	IP68, three diodes		
Output Cable	4mm², +400, -200mm length can be customized		
Connector	LONGi LR5 or MC4 EVO2		
Glass	Single glass, 3.2mm coated tempered glass		
Frame	Anodized aluminum alloy frame		
Weight	27.5kg		
Dimension	2278×1134×35mm		
Packaging	31pcs per pallet / 155pcs per 20' GP / 620pcs per 40' HC		

Electrical Characteristics	STC: AM1	5 1000W/m	² 25°C	NOCT: AM:	1.5 800W/r	n² 20°C 1m	/s Test ur	certainty for Pma	c: ±3%	
Module Type	LR5-72F	IPH-540M	LR5-72F	HPH-545M	LR5-72H	PH-550M	LR5-72	1PH-555M	LR5-72H	PH-560M
Testing Condition	STC	NOCT	STC	NOCT	STC	NOCT	STC	NOCT	STC	NOCT
Maximum Power (Pmax/W)	540	403.6	545	407.4	550	411.1	555	414.8	560	418.6
Open Circuit Voltage (Voc/V)	49.50	46.54	49.65	46.68	49.80	46.82	49.95	46.97	50.10	47.11
Short Circuit Current (Isc/A)	13.85	11.20	13.92	11.25	13.98	11.31	14.04	11.35	14.10	11.40
Voltage at Maximum Power (Vmp/V)	41.65	38.69	41.80	38.83	41.95	38.97	42.10	39.11	42.25	39.25
Current at Maximum Power (Imp/A)	12.97	10.43	13.04	10.49	13.12	10.56	13.19	10.61	13.26	10.67
Module Efficiency(%)	2	0.9	2	1.1	2	1.3	2	1.5	2	1.7

Operating Parameters

Operating rarameters		
Operational Temperature	-40°C ~ +85°C	
Power Output Tolerance	0~3%	
Voc and Isc Tolerance	±3%	
Maximum System Voltage	DC1500V (IEC/UL)	
Maximum Series Fuse Rating	25A	
Nominal Operating Cell Temperature	45±2°C	
Protection Class	Class II	
Fire Rating	UL type 1 or 2 IEC Class C	

Mechanical Loading

Front Side Maximum Static Loading	5400Pa
Rear Side Maximum Static Loading	2400Pa
Hailstone Test	25mm Hailstone at the speed of 23m/s

Temperature Ratings (STC)

Temperature Coefficient of Isc	+0.050%/°C
Temperature Coefficient of Voc	-0.265%/°C
Temperature Coefficient of Pmax	-0.340%/°C

Floor 19, Lujiazui Financial Plaza, Century Avenue 826, Pudong Shanghai, China Tel: +86-21-80162606

Web: www.longi.com

Specifications included in this datasheet are subject to change without notice. LONGi reserves the right of final interpretation. (20220410V15) G2

Principales ventajas

- 01 Máxima flexibilidad
- 02 Energía de emergencia para cualquier situación
- 03 Fácil instalación
- 04 Soporte y herramientas

Sostenible, fiable y preparado para el futuro: nuestro inversor híbrido Fronius GEN24 Plus como corazón de una instalación fotovoltaica permite producir energía de forma flexible y rentable, y conectar una batería de almacenamiento con el objetivo de utilizar la energía solar autogenerada para la movilidad eléctrica y para generar electricidad, calor o frío. Aprovecha toda la potencia del sol para tu transición energética privada con

Fronius GEN24 Plus. Designed to empower.

El corazón de la instalación fotovoltaica

01 Máxima flexibilidad

Fronius GEN24 Plus como corazón de tu instalación fotovoltaica te permite no solo comenzar tu transición energética personal, sino también abrir la puerta a todas las posibilidades y ventajas de la energía solar.

02 Energía de emergencia para cualquier situación

Suministro de energía seguro: Fronius GEN24 Plus te permite elegir entre "PV Point" y "Full Backup", un suministro de energía de emergencia para toda la casa.

03 Fácil instalación

Ahorra tiempo y dinero con una instalación rápida y segura gracias a los tornillos de cierre rápido de 180°, a los conectores rápidos por presión y a un sistema de montaje en pared bien diseñado.

04 Soporte y herramientas

Asistencia sin fin: las soluciones eficientes de Fronius para la planificación, el montaje y la monitorización de instalaciones están disponibles de forma gratuita. Esto aumenta la satisfacción del cliente y minimiza la necesidad de mantenimiento.

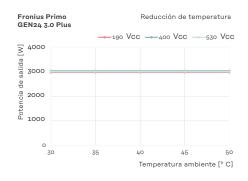
Fronius GEN24 Plus* | Opciones de energía de emergencia | Conexión de batería

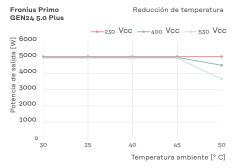
*La opción Full Backup está disponible para el Primo GEN24 3.0-6.0 Plus, así como el Symo GEN24 6.0-10.0 Plus.

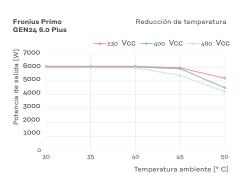
Datos concluyentes sobre su rendimiento


Fronius GEN24 Plus impresiona con el mayor rendimiento y la máxima potencia a altas temperaturas.

a o s. .


Rendimiento





Reducción de potencia

Datos técnicos 3.0 / 3.6 / 4.0 kW

	0.07 4.0 100		Primo GEN24 Plus								
			3.0				3.6			4.0	
	Número de seguidores MPP		2		2				2		
	Rango de tensión de entrada CC	V	V 65 - 600 65 - 600				65 - 600)			
	(Udc mín - Udc máx)			400							
	Tensión nominal de entrada (U _{dc,r})	V					400		400		
o o	Tensión de puesta en servicio (U _{dc} arranque)	V		80		80			80		
rad	Rango de tensión MPP	V		65 - 530			65 - 530			65 - 530	
ent	M		MPPT	1 M	IPPT2	MPPT1 MPPT2		PP12	MPPT	1 1	1PPT2
s de	Máx. corriente de entrada por MPP (Idc máx.)	А	22		12	22		12	22		12
Datos de entrada	Máxima corriente de cortocircuito por MPP (I _{SC DV})¹	А	36		19	36		19	36		19
	Número de entradas CC en el campo de módulo		2		2	2		2	2		2
			MPPT1	MPPT2	Total	MPPT1	MPPT2	Suma	MPPT1	MPPT2	Total
	Máx. potencia CC	W	3110	3110	3110	3810	3810	3810	4140	4140	4140
	Máx. salida del generador FV	W _{pico}	3750	3110	4500	4600	3810	5520	5000	4140	6000
				7000			7000			1000	
	Potencia nominal CA (Pac,r) Potencia aparente	W VA		3000			3680 3680		4000		
_	Máx. potencia de salida	VA		3000			3680		4000 4000		
Lide	Max. potentia de satida	, va	220 V		30Vca	220V		30Vca	220V		VCA
sa	Corriente de salida CA nom. (@ 220 / 230 V)	Α	13,6		13	16,7		16	18,2		17,4
s de	Acoplamiento a la red (U _{ac.r})	V				NPE 220					,.
Datos de salida	Frecuencia (rango de frecuencia f _{mín} - f _{máx})	Hz	53.0	~ 1		50.	/60 (45 -	65)			
	Coeficiente de distorsión no lineal	%	IVERS.				< 2				
	Factor de potencia (cos φ _{ac,r})						- 1 ind. /				
r a e	Potencia de salida nom. PV Point	VA		3000			3000		3000		
Datos de salida PV Point	Acoplamiento a la red PV Point	V				1~ 1	NPE 220/	230			
۾ ۾ و	Tiempo de transición	seg.					< 20				
de a kup²	Potencia de salida nom. "Full Backup"	VA		3000			3600			4000	
Datos de salida Full Backup²	Acoplamiento a la red "Full Backup"	V				1~ 1	NPE 220/	230			
Full	Tiempo de transición	seg.		< 35							
<u>ë</u>	Número de entradas CC			1			1			1	
ater	Máx. corriente de entrada (I _{dc máx.})	A		22			22			22	
la ba	Rango de tensión de entrada CC (Udc mín ⁻ Udc máx) ³				150 - 455			150 - 45	5		
de	Tecnología de conexión CC de la batería		Conecto	res rápio	dos por p	resión de	resión de 2,5-10 mm² (1 uni			y 1 unio	ad BAT-)
ión	Máx. potencia de entrada/salida CC4	W		3110			3810			4140	
Conexión de la batería	Máx. potencia de carga con acoplamiento CA ⁴	w		3000			3680			4000	
<u> </u>	Baterías compatibles ⁵			BYD	Battery-E	Box Prem	x Premium HVS/HVM y LG RESU FLEX ⁶				

¹ Isc pv = Isc max. \geq Isc (STC) x 1.25, de acuerdo, por ejemplo, a IEC 60364-7-712, NEC 2020, AS/NZS 5033:2021

² La opción "Full Backup" está disponible para Primo GEN24 de 3.0 a 6.0 Plus. Para el "Full Backup", se necesitan componentes externos adicionales para la conmutación de la red. En el manual de instrucciones puedes encontrar información más detallada.

³ La reducción de potencia de CA del inversor se produce con una tensión de entrada de la batería de CC de 419,7 V y superior.

⁴ En función de la batería conectada

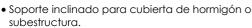
⁵ Dependiendo de la certificación específica de cada país y disponibilidad

⁶ Excepto BYD Battery-Box Premium HVS 10.2, HVS 12.8, HVM 8.3, HVM 22.1 y LG RESU FLEX 17.2

				Primo GEN24 Plus					
			3.0	3.6	4.0				
	Dimensiones (altura × anchura × profundidad)	mm		530 × 474 × 165					
	Peso (inversor / con embalaje)	kg	15,4/19	15,4/19	15,4/19				
	Tipo de protección		IP 66	IP 66	IP 66				
	Clase de protección		1	1	1				
	Consumo nocturno	W	<10	<10	<10				
	Categoría de sobretensión (CC/CA) ⁷		2/3	2/3	2/3				
	Concepto de inversor			Sin transformador					
	Refrigeración		Teo	iva					
Datos generales	Instalación		I	nstalación interior y exterio	r				
era	Rango de temperatura ambiente	°C	-40 a +60	-40 a +60	-40 a +60				
gen	Humedad de aire admisible	%	0 - 100	0 - 100	0 - 100				
3 so	Emisión de ruido	dB (A)	< 42	< 42	< 42				
)at	Máx. altitud	m	4000	4000	4000				
_	Tecnología de conexión CC FV		Conectores rápidos por pr	esión de 2,5-10 mm² (4 unidad	des CC+ y 4 unidades CC-)				
	Tecnología de conexión CA		Conector rápido por presión de CA de 3 polos de 2,5-10 mm² Conector rápido por presión de 3 polos para energía de emergencia de 1,5-10 mm² Bornes roscados PE (2 unidades de 2,5-16 mm² y 3 unidades de 2,5-10 mm²)						
	Certificados y cumplimiento de normas ⁸		IEC 62109, IEC 62909, AS/NZS 4777.2, CEI 0-21, ABNT BNR 16149 y 16150, IEC 62116, IEC61727, G98/99						
	Funciones de energía de emergencia	-	"PV Point" o "Full Backup"						
	País de fabricación			Austria					
	Análisis del ciclo de vida			ormas ÖNORM EN ISO 140 r el personal del instituto F					
		U. UI							
<u>.</u> .	Máx. rendimiento	%	97,6	97,6	97,6				
Rendi- miento	Rendimiento europeo (ηEU)	%	96,8	97,0	97,1				
W E	Rendimiento de adaptación MPP	%	> 99,9	> 99,9	> 99,9				
into Vad	Medición del aislamiento CC			Integrado					
mien ırida	Comportamiento de sobrecarga		Desplazamiento	al punto de trabajo, limitad	ción de potencia				
Equipamiento de seguridad	Seccionador CC			Integrado					
Equ	Protección contra polaridad inversa		Integrado						
	WLAN/2 × Ethernet LAN		Fronius Solar.web. M	odbus TCP SunSpec, Froni	us Solar API (JSON)				
Interfaces	6 entradas digitales 6 entradas/salidas digitales			cor del control de onda, ges					
rfa	Parada de emergencia (WSD)			Integrado					
nte	Datalogger y Servidor web			Integrado					
Ā	2 × RS485			ec (de otro fabricante) / Fro (GEN24 Plus), Fronius Ohn					

⁷ Según la norma IEC 62109-1. Protección opcional contra sobretensiones DC SPD tipo 1+2 que se puede equipar posteriormente para dos seguidores MPP; disponible con el siguiente número de artículo: 4,240,313,CK

⁸ Puedes encontrar los certificados actuales en www.fronius.com/primo-gen24-plus-cert


Ficha técnica

Soporte inclinado abierto. Vertical

09V30°

¥ SUNFER

- Anclaje a hormigón.
- Soporte premontado.
- Disposición de los módulos: Vertical.
- Valido para espesores de módulos de 28 hasta 40 mm.
- Tornillería de anclaje no incluida.
- Kits disponibles de 1 hasta 6 módulos.
- Inclinación: 30°

Viento: Hasta 150 Km/h (Ver documento de velocidades del

viento)

Materiales: Perfilería de aluminio EN AW 6005A T6

Tornillería de acero inoxidable A2-70

Comprobar el buen estado y la capacidad portante de la cubierta antes de cualquier instalación.

Comprobar la impermeabilidad de la fijación una vez colocada.

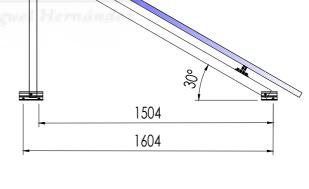
Dos opciones:

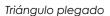
Para módulos de hasta 2279x1150 - Sistema Kit

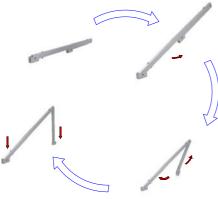
2279x1150

(Ver página 2)

Para módulos de hasta 2400x1350 - Sistema PS


2400x1350




(Ver página 3)

Par de apriete:

Tornillo Presor 7 Nm
Tornillo M8 Hexagonal 20 Nm
Tornillo M10 Hexagonal 40 Nm
Tornillo M4.2/4.8 Hexagonal 6 Nm
Tornillo M6.3 Hexagonal 10 Nm

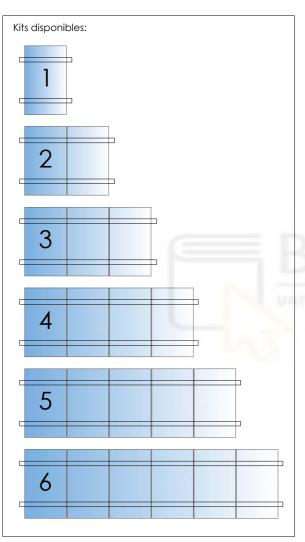
Detalle fijación G1 a triángulo (Son necesarios 2 fijaciones por perfil, 1 por cada lado)

Herramientas necesarias:

Seguridad:

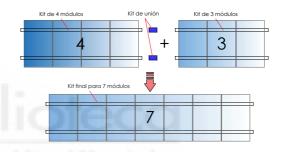
Apriete de las uniones y anclaje al suelo mediante tornillo de hasta M10.

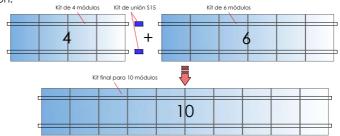
Marcado ES19/86524 **C €**



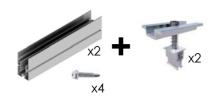
Reservado el derecho a efectuar modificaciones · Las ilustraciones de productos son a modo de ejemplo y pueden diferir del original.

Página 2





EJEMPLOS DE CONFIGURACIÓN


Para realizar una fila de 7 módulos se realizaría con 1 Kit de 4 + 1 Kit de 3 + 1 Kit de unión



Para realizar una fila de 10 módulos se realizaría con 1 kit de 4 + 1 Kit de 6 + 1 Kit de unión.

S15 Kit de unión

Ficha técnica - Sistema PS

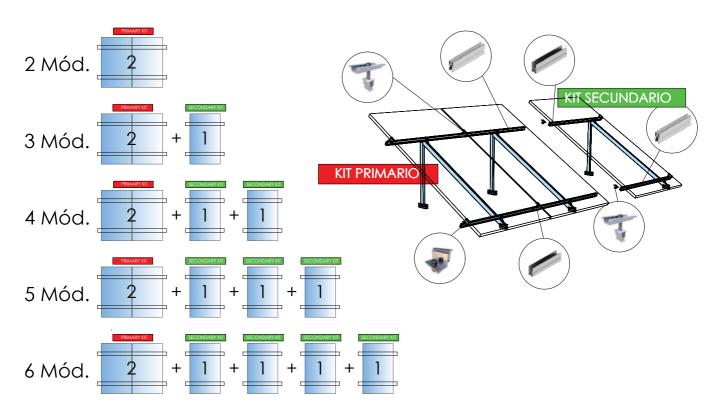
Para módulos de gran formato hasta 1350

Página 3

Sistema modular para instalaciones con módulos de gran formato de hasta 2400x1350.

El sistema consta de 1 kit primario y X número de kit secundario

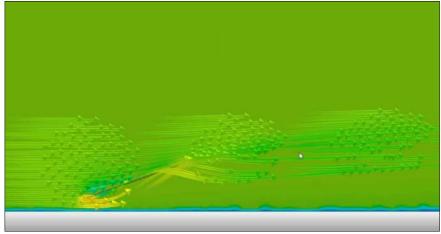
El Kit primario es un Kit para 2 módulos.


El Kit secundario es un producto complementario de 1 módulo para unirse al Kit primario al incorporar el Kit de unión.

Kits disponibles:

EJEMPLOS DE CONFIGURACIÓN

* Por dilataciones se recomienda no exceder de más de 20 metros por fila


- Cargas de viento: Según túnel del viento en modelo computacional CFD

- Cálculo estructural: Modelo computacional comprobado mediante EUROCÓDIGO 9 "PROYECTO ESTRUCTURAS DE ALUMINIO"

	Cuadro de velocidades máx. admisibles de viento								
	Inclinación	Tamaño del módulo	4	2	3	4	5	6	nº de módulos
KIT	De 5° a 30°	<2279x1150	150	150	150	130	150	150	Valasidad
NII .	35°	<2279x1150	150	150	150	130	130	150	Velocidad de viento
SIST	TEMA PS	<2400x1350			13	30			km/h

Tabla 1 - Velocidades máximas de viento admisibles.

- Para garantizar la resistencia a la velocidad máxima de diseño se deberán utilizar anclajes adecuados y utilizar el lastre indicado por el fabricante para cada situación.

Flujo viento - En estructura inclinada.

Fotovoltaicos Baja tensión

PRYSMIAN PRYSOLAR® - H1Z2Z2-K

Tensión asignada: 1,0/1,0 kVac, 1,5/1,5 kVdc (1,2/1,2 kVac máx.) (1,8/1,8 kVdc máx.)

UNE-EN 50618 / IEC 62930 Norma diseño:

Designación genérica: H1Z2Z2-K

WET-I 1500

longados.

N° DoP 1017844

DESCÁRGATE la DoP (declaración de prestaciones) https://es.prysmiangroup.com/dop

Test Prysmian Group para asegurar el comportamiento del cable inmerso en agua por periodos pro-

Simula una situación similar a la que el cable está expuesto en una planta FV.

Condiciones del test:

- 1800 V DC (Máx voltaje)
- Agua a 70 °C
- > 1500 ciclos

Libre de halógenos Baja opacidad IEC 62821-1 UNE-EN 50525-1

de humos UNF-FN 61034-2 IFC 61034-2

Máxima (AD8 + test WET-I 1500)

Resistencia al calor húmedo

Resistencia

Cable flexible

Resistencia a los rayos

ultravioleta

a los agentes auímicos

Resistencia al ozono

• Temperatura de servicio: -40 °C, +90 °C (Cable termoestable), +120 °C (20 000h).

• Ensayo de tensión durante 5 min: 6500 Vac / 15000 Vdc.

Reacción al fuego

Prestaciones frente al fuego en la Unión Europea:

- Clase de reacción al fuego (CPR): E_{ca}.
- Requerimientos de fuego: UNE-EN 50575:2015 + A1:2016.
- Clasificación respecto al fuego: UNE-EN 13501-6.
- Aplicación de los resultados: CLC/TS 50576.
- Métodos de ensayo: UNE-EN 60332-1-2.

Normativa de fuego completa (incluídas normas aplicables a países no pertenecientes a la Unión Europea):

- No propagación de la llama: UNE-EN 60332-1-2; IEC 60332-1-2; NFC 32070-C2.
- · Libre de halógenos: IEC 62821-1 Anexo B, UNE-EN 50525-1 Anexo B.
- · Baja opacidad de humos: UNE-EN 61034-2; IEC 61034-2.

Fotovoltaicos Baja tensión

PRYSMIAN PRYSOLAR® - H1Z2Z2-K

Ensayos adicionales cable PRYSMIAN PRYSOLAR

Tensión asignada: 1,0/1,0 kVac, 1,5/1,5 kVdc (1,2/1,2 kVac máx.) (1,8/1,8 kVdc máx.)

Norma diseño: UNE-EN 50618 / IEC 62930

Designación genérica: H1Z2Z2-K

Vida estimada 30 años * AD8 (test ac) ** EN 50525-2-21 Ensayo mejorado de Prysmian Protección Group específico FV: > 1500 ciclos frente al aqua WET-I 1500 sumergido en agua a 70 °C con la máxima tensión continua (1800 Vdc) IEC 62930 Anexo E; Resistencia UNE-EN 50618 Anexo E a los rayos UVA 720 h (360 ciclos) TÜV Rheinland Certificación Servicios móviles Sí Doble aislamiento Sí (clase II) Temperatura máxima 90 °C (120 °C 20 000 h) del conductor 250 °C (cortocircuito) Tensión máxima eficaz: 1200 V (>906 V) Adecuado para sistemas anti-PID Tensión máxima de pico: 1697 V (>1468 V) 50 N/mm² durante el tendido Máxima tensión 15 N/mm² en operación (instalado) de tracción IEC 62930 Tab.3 según IEC 60811-403; UNE-EN 50618 Resistencia Tab.2 según UNE-EN 50396 al ozono tipo de prueba B IEC 62930 y UNE-EN 50618 Anexo B Resistencia 7 días, 23 °C N-ácido oxálico, N-hidróxido sódico (según IEC 60811-404; UNE-EN 60811-404). a ácidos y bases IEC 62930 Prueba Tab. 2 según IEC 60811-503;UNE-EN 50618 de contracción Tab. 2 según UNE-EN 60811-503 (máxima contracción 2 %) IEC 62930 Tab.2 v UNE-EN 50618 Resistencia Tab.21000 h a 90 °C y 85 % de al calor húmedo humedad para IEC 60068-2-78, UNE-EN-60068-2-78 Resistencia IEC 62821-2; UNE-EN 50395-9 de aislamiento (240 h/85 °C agua /1,8 kVdc) a largo plazo (dc) Directiva RoHS 2011/65/UE Respetuoso con el medio ambiente de la Unión Europea Ensayo de penetración IEC 62930 Anexo D;

Construcción

1. Conductor

Metal: cobre recocido estañado.

Flexibilidad: flexible, clase 5, según UNE EN 60228.

Temperatura máxima en el conductor:

90 °C (120 °C, por 20 000 h). 250 °C en cortocircuito.

2. Aislamiento

Material: compuesto reticulado libre de halógenos según tabla B.1 de anexo B de EN 50618.

3. Cubierta

Material: compuesto reticulado libre de halógenos según

tabla B.1 de anexo B de EN 50618.

Colores: negro o rojo.

Aplicaciones

Especialmente diseñado para instalaciones solares fotovoltaicas interiores, exteriores, industriales, agrícolas, fijas o móviles (con seguidores...). Pueden ser instalados en bandejas, conductos y equipos.

Especialmente resistente a la acción del agua (AD8 + test especial para corriente continua WET-I1500), en instalaciones subterráneas bajo tubo o conducto.

Indicado para el lado de corriente contínua en instalaciones de autoconsumo solar fotovoltaico.

Sistemas de corriente continua (ITC-BT 53, UNE-HD 60364-7-712).

Ver esquemas de aplicación en apartado: 2.25. y ejemplos de cálculo en apartados: 2.17., 2.18., 2.19. y 3.

UNE-EN 50618 AnexoD

Doblado y alargamiento a -40 °C

según IEC 60811-504 y -505

y UNE-EN 60811-504 y -505

Resistencia al impacto a -40 °C según IEC 62930

Anexo C según IEC 60811-506

y UNE-EN 50618 Anexo C según UNE-EN 60811-506

IEC 62930; UNE-EN 50396

^{**} La condición AD8 habitual es una autodeclaración de fabricante sin norma de referencia. Declara la posibilidad de funcionamiento del cable permanentemente sumergido pero el ensayo habitual está pensado para corriente alterna y hasta 450/750 V de tensión asignada del cable. Situación muy alejada de la realidad de las instalaciones fotovoltaicas. Los cables de Prysmian superan el ensayo especial WET-I1500 a 1800 V en corriente continua.

dinámica

Doblado a baia

temperatura

Resistencia

al impacto en frío

Durabilidad del marcado

^{*} Para la estimación de la vida del cable se utilizado el ensayo de endurancia térmica según la IEC 60216.

Fotovoltaicos Baja tensión

PRYSMIAN PRYSOLAR® - H1Z2Z2-K

Tensión asignada: 1,0/1,0 kVac, 1,5/1,5 kVdc (1,2/1,2 kVac máx.) (1,8/1,8 kVdc máx.)

Norma diseño: UNE-EN 50618 / IEC 62930

Designación genérica: H1Z2Z2-K

Datos técnicos

Número de conductores xsección (mm²)	Diámetro máximo del conductor (mm) (1)	Diámetro exterior del cable (valor máximo) (mm)	Radio mínimo de curvatura dinámico (mm)	Radio mínimo de curvatura estático (mm)	Peso (kg/km) (1)	Resistencia del conductor a 20°C (W/km)	Intensidad admisible al aire (2) (A)	Intensidad admisible al aire. Tambiente 60°C y T conductor 120°C (3)	Intensidad admisible bajo tubo enterrado (4) (A)	Caída de tensión (V/A km) (2)
1x1,5	1,8	5,4	22	16	33	13,7	24	30	24	27,4
1x 2,5	2,4	5,9	24	18	45	8,21	34	41	32	16,42
1 x 4	3,0	6,6	26	20	61	5,09	46	55	42	10,18
1x 6	3,9	7,4	30	22	80	3,39	59	70	53	6,78
1 x 10	5,1	8,8	35	26	124	1,95	82	98	70	3,90
1 x 16	6,3	10,1	40	30	186	1,24	110	132	91	2,48
1 x 25	7,8	12,5	63	50	286	0,795	140	176	116	1,59
1 x 35	9,2	14,0	70	56	390	0,565	182	218	140	1,13
1 x 50	11,0	16,3	82	65	542	0,393	220	276	166	0,786
1x70	13,1	18,7	94	75	742	0,277	282	347	204	0,554
1 x 95	15,1	20,8	125	83	953	0,210	343	416	241	0,42
1 x 120	17,0	22,8	137	91	1206	0,164	397	488	275	0,328
1 x 150	19,0	25,5	153	102	1500	0,132	458	566	311	0,264
1 x 185	21,0	28,5	171	114	1843	0,108	523	644	348	0,216
1 x 240	24,0	32,1	193	128	2304	0,0817	617	775	402	0,1634

- (1) Valores aproximados.
- (2) Instalación monofásica o corriente continua en bandeja perforada al aire (40 $^{\circ}$ C). Con exposición directa al sol, multiplicar la corriente por 0,85.
- \longrightarrow XLPE2 con instalación tipo F \longrightarrow columna 13. (UNE-HD 60364-5-52 e IEC 60364-5-52).
- (3) Instalación de conductores separados con renovación eficaz del aire en toda su cubierta (cables suspendidos).

Temperatura ambiente 60 °C (a la sombra) y temperatura máxima en el conductor 120 °C. Valor que puede soportar el cable, 20 000 h a lo largo de su vida estimada (30 años) EN 50618 (tabla A.3).

(4) Instalación bajo tubo enterrada con resistividad térmica del terreno estándar de 2,5 K·m/W y temperatura del terreno 25 °C. XLPE2 con instalación tipo D1 (Cu) (monofofásica o continua).

Afumex Baja tensión

AFUMEX CLASS 1000 V (AS) - RZ1-K (AS)

Tensión asignada: 0.6/1 kV UNE 21123-4 Norma diseño: Designación genérica: RZ1-K (AS)

Libre de halógenos

Baia emisión de gases tóxicos NFC 20454. It= 1

Baja opacidad

de la llama IEC 60332-1-2

de incendio UNE-EN 60332-3-24 IFC 60332-3-24

UNE-EN 60754-1 IFC 60754-2 IEC 60754-1

DEF-STAN 02-713

de humos

de humos IEC 61034-2

gases corrosivos TEC 60754-2 NFC 20453

Baja emisión de calor UNE-EN 50399

Reducido Desprendimiento De gotas / partículas Inflamadas

Resistencia a la absorción del aqua

Resistencia

al frío

Cable flexible

Resistencia a los rayos ultravioleta

Alta seguridad

• Temperatura de servicio: -25 °C, +90 °C. (Cable termoestable).

• Ensayo de tensión alterna durante 5 min: 3500 V.

Reacción al fuego

Prestaciones frente al fuego en la Unión Europea:

- Clase de reacción al fuego (CPR): C_{ca}-s1b,d1,a1.
- Reguerimientos de fuego: UNE-EN 50575:2014 + A1:2016.
- Clasificación respecto al fuego: UNE-EN 13501-6.
- Aplicación de los resultados: CLC/TS 50576.
- · Métodos de ensayo:

UNE-EN 60332-1-2; UNE-EN 50399; UNE-EN 60754-2; UNE-EN 61034-2.

Normativa de fuego completa (incluídas normas aplicables a países no pertenecientes a la Unión Europea):

• No propagación de la llama:

UNE-EN 60332-1-2; IEC 60332-1-2

- · No propagación del incendio: UNE-EN 50399; UNE-EN 60332-3-24; IEC 60332-3-24.
- · Libre de halógenos:

UNE-EN 60754-2; UNE-EN 60754-1;

IEC 60754-2; IEC 60754-1.

• Reducida emisión de gases tóxicos:

UNE-EN 60754-2; NFC 20454; DEF STAN 02-713.

• Baja emisión de humos:

UNE-EN 50399.

· Baja opacidad de humos:

UNE-EN 61034-2; IEC 61034-2.

• Baja emisión de gases corrosivos:

UNE-EN 60754-2; IEC 60754-2; NFC 20453.

• Baja emisión de calor:

UNE-EN 50399.

• Reducido desprendimiento de gotas/partículas inflamadas: EN 50399.

Afumex Baja tensión

AFUMEX CLASS 1000 V (AS) - RZ1-K (AS)

Tensión asignada: 0,6/1 kV Norma diseño: UNE 21123-4 Designación genérica: RZ1-K (AS)

Máxima pelabilidad

Gracias a la capa especial antiadherente se puede retirar la cubierta fácil y rápidamente. Un importante ahorro de tiempo de instalación.

Limpio y ecológico

La ausencia de talco y aceites de silicona permite un ambiente de trabajo más límpio y con menos partículas contaminantes.

Aplicaciones

Cable de fácil pelado especialmente adecuado para instalaciones en locales de pública concurrencia: salas de espectáculos, centros comerciales, escuelas, hospitales, edificios de oficinas, pabellones deportivos, etc.

En centros informáticos, aeropuertos, naves industriales, parkings y túneles de carreteras, locales de difícil ventilación y/o evacuación, etc.

En toda instalación donde el riesgo de incendio no sea despreciable: instalaciones en montaje superficial, canalizaciones verticales en edificios o sobre bandejas, etc., o donde se requieran las mejores propiedades frente al fuego y/o la ecología de los productos en edificios o sobre bandejas, etc., o donde se requieran las mejores propiedades frente al fuego y/o la ecología de los productos de construcción.

Líneas generales de alimentación (ITC-BT 14). -Derivaciones individuales ITC-BT 15) -Instalaciones interiores o receptoras (ITC-BT 20). -Locales de pública concurrencia (ITC-BT 28). -Locales con riesgo de incendio o explosión (adecuadamente canalizado) (ITC-BT 29). -Industrias (Reglamento de Seguridad contra Incendios en los Establecimientos Industriales R.D. 2267/2004. -Edificios en general (Código técnico de la Edificación, R.D. 314/2006, art. 11).

NOTA: para tuneles ferroviarios consultar a Prysmian. La normativa europea exige clase $B2_{ca}$ -s1a, d1, a1.

Construcción

1. Conductor

Metal: cobre recocido.

Flexibilidad: flexible, clase 5, según UNE EN 60228.

Temperatura máxima en el conductor: 90 °C en servicio permanente, 250 °C en cortocircuito.

2. Aislamiento

Material: mezcla de polietileno reticulado (XLPE), tipo DIX3 según UNE HD 603-1.

Calana manufa manu ania and

Colores: marrón, negro, gris, azul, amarillo/verde según UNE 21089-1. Unipolares color natural.

3. Elemento separador

Capa especial antiadherente.

4. Relleno (si aplica)

Material: mezcla LSOH libre de halógenos.

5. Cubierta

Material: mezcla especial libre de halógenos tipo AFUMEX UNE 21123-4.

Color: verde.

Afumex Baja tensión

AFUMEX CLASS 1000 V (AS) - RZ1-K (AS)

Tensión asignada: 0,6/1 kV Norma diseño: UNE 21123-4 Designación genérica: RZ1-K (AS)

Datos técnicos

Número de conductores x sección	Espesor de aislamiento	Diámetro exterior	Peso (kg/km) (1)	Resistencia del conductor	Intensidad admisible al	Intensidad admisible enterrado	Caída de tensi	ón (V/A km) (2)
(mm²)	(mm) (1)	(mm) (1)		a 20 °C Ω/km	aire (2) (A)	(3) (A)	cos Φ = 1	cos Φ = 0,8
1x1,5	0,7	7	67	13,3	21	21	26,5	21,36
1x2,5	0,7	7,5	79	7,98	30	27	15,92	12,88
1x4	0,7	8	97	4,95	40	35	9,96	8,1
1x6	0,7	8,5	120	3,3	52	44	6,74	5,51
1x10	0,7	9,6	167	1,91	72	58	4	3,31
1x16	0,7	10,6	226	1,21	97	75	2,51	2,12
1 x 25	0,9	12,3	321	0,78	122	96	1,59	1,37
1 x 35	0,9	13,8	421	0,55	153	117	1,15	1,01
1 x 50	1	15,4	579	0,38	188	138	0,85	0,77
1x70	1,1	17,3	780	0,27	243	170	0,59	0,56
1x95	1,1	19,2	995	0,20	298	202	0,42	0,43
1 x 120	1,2	21,3	1240	0,16	350	230	0,34	0,36
1 x 150	1,4	23,4	1529	0,12	401	260	0,27	0,31
1 x 185	1,6	25,6	1826	0,10	460	291	0,22	0,26
1 x 240	1,7	28,6	2383	0,08	545	336	0,17	0,22
1x300	1,8	31,3	2942	0,06	630	380	0,14	0,19
1 x 400	2	36	3921	0,05		446	0,11	0,17
2 x 1,5	0,7	10	134	13,3	23	24	30,98	24,92
2 x 2,5	0,7	10,9	169	7,98	32	32	18,66	15,07
2 x 4	0,7	11,8	213	4,95	44	42	11,68	9,46
2 x 6	0,7	12,9	271	3,3	57	53	7,90	6,42
2x10	0,7	15,2	399	1,91	78	70	4,67	3,84
2 x 16	0,7	17,7	566	1,21	104	91	2,94	2,45
2 x 25	0,9	Consultar	Consultar	0,78	135	116	1,86	1,59
2 x 35	0,9	Consultar	Consultar	0,55	168	140	1,34	1,16
2 x 50	1	Consultar	Consultar	0,38	204	166	0,99	0,88
3 G 1,5	0,7	10,4	150	13,3	23	24	30,98	24,92
3 G 2,5	0,7	11,4	193	7,98	32	32	18,66	15,07
3 G 4	0,7	12,4	250	4,95	44	42	11,68	9,46
3 G 6	0,7	13,6	324	3,3	57	53	7,90	6,42
3 G 10	0,7	16	486	1,91	78	70	4,67	3,84
3 G 16	0,7	18,7	696	1,21	104	91	2,94	2,45
3 x 25	0,9	Consultar	Consultar	0,78	115	96	1,62	1,38
3 x 35	0,9	Consultar	Consultar	0,55	143	117	1,17	1,01
3 x 50	1	Consultar	Consultar	0,38	174	138	0,86	0,77
3 x 70	1,1	Consultar	Consultar	0,27	223	170	0,6	0,56
3 x 95	1,1	Consultar	Consultar	0,20	271	202	0,43	0,42
3 x 120	1,2	Consultar	Consultar	0,16	314	230	0,34	0,35
3 x 150	1,4	Consultar	Consultar	0,12	359	260	0,28	0,3
3 x 185	1,6	Consultar	Consultar	0,10	409	291	0,22	0,26
3 x 240	1,7	Consultar	Consultar	0,08	489	336	0,17	0,21
3 x 300	1,8	Consultar	Consultar	0,06	549	380	0,14	0,18/

- (1) Valores aproximados.
- (2) Instalación en bandeja al aire (40 °C).
- \longrightarrow XLP3 con instalación tipo F \longrightarrow columna 11 (1x trifásica).
- \longrightarrow XLP2 con instalación tipo E \longrightarrow columna 12 (2x, 3G monofásica).
- \longrightarrow XLP3 con instalación tipo E \longrightarrow columna 10b (3x, 4G, 4x, 5G trifásica).
- (3) Instalación enterrada, directamente o bajo tubo con resistividad térmica del terreno estándar de 2,5 K.m /W.
- \rightarrow XLPE3 con instalación tipo Método D1/D2 (Cu) \rightarrow 1x, 3x, 4G, 4x, 5G trifásica.
- \longrightarrow XLPE2 con instalación tipo D1/D2 (Cu) \longrightarrow 2x, 3G monofásica.

Según UNE-HD 60364-5-52 e IEC 60364-5-52.

AFUMEX CLASS 1000 V (AS) - RZ1-K (AS)

Tensión asignada: 0,6/1 kV Norma diseño: UNE 21123-4 Designación genérica: RZ1-K (AS)

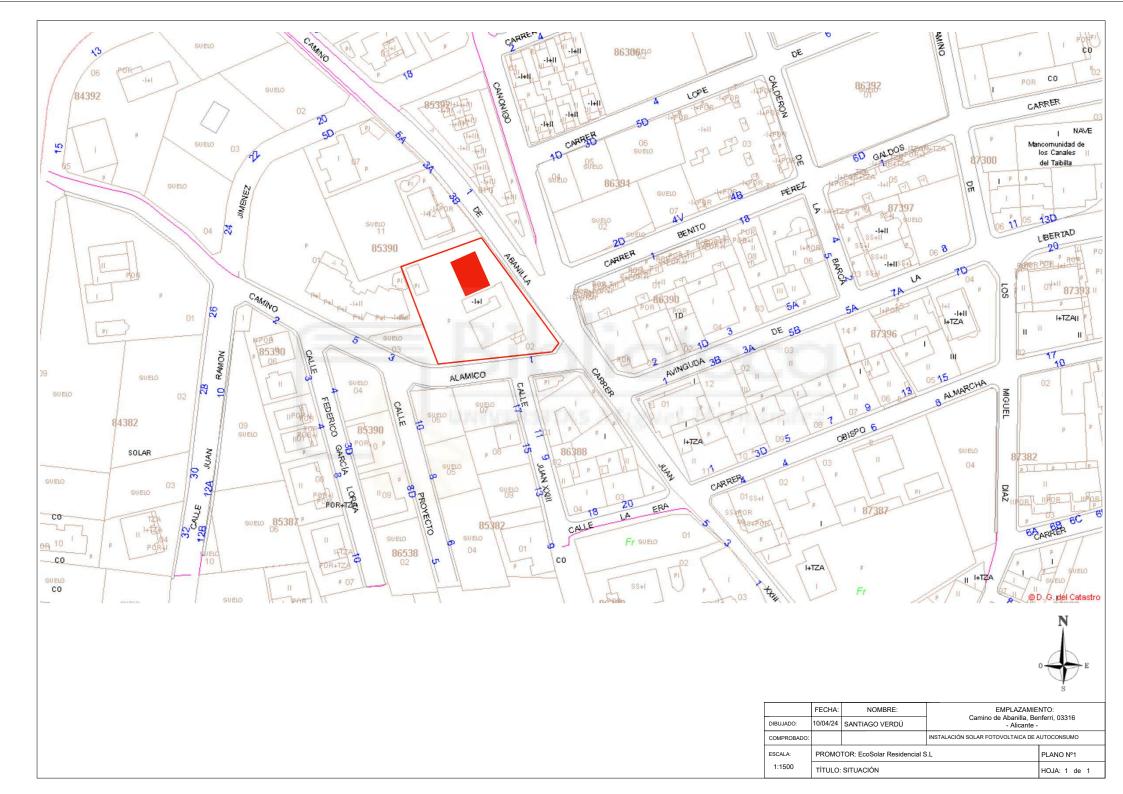
Datos técnicos

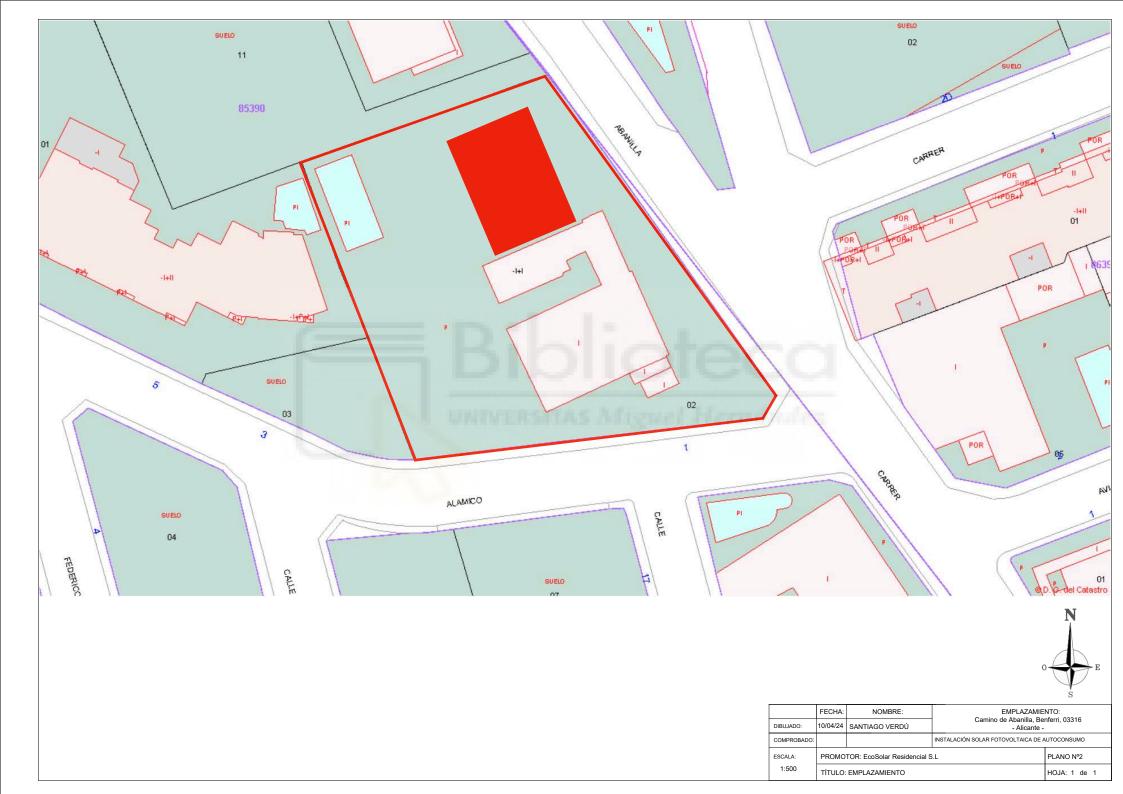
Número de conductores x sección (mm²)	Espesor de aislamiento (mm) (1)	Diámetro exterior (mm) (1)	Peso (kg/km)	Resistencia del conductor a 20°C	Intensidad admisible al aire (2) (A)	Intensidad admisible enterrado	Caída de tensión (V/A km) (2) y (3)		
(111111-)	(111111) (1)	(111111) (1)	(1)	(Ω/km)	alle (2) (A)	(3) (A)	cos Φ = 1	cos Φ = 0,8	
/ 3 x 25/16	0,9/0,7	Consultar	Consultar	0,780/1,21	115	96	1,62	1,38	
3 x 35/16	0,9/0,7	Consultar	Consultar	0,554/1,21	143	117	1,17	1,01	
3 x 50/25	1,0/0,9	Consultar	Consultar	0,386/0,780	174	138	0,86	0,77	
3 x 70/35	1,1/0,9	Consultar	Consultar	0,272/0,554	223	170	0,6	0,56	
3 x 95/50	1,1/1,0	Consultar	Consultar	0,206/0,386	271	202	0,43	0,42	
3 x 120/70	1,2/1,1	Consultar	Consultar	0,161/0,272	314	230	0,34	0,35	
3 x 150/70	1,4/1,1	Consultar	Consultar	0,129/0,272	359	260	0,28	0,3	
3 x 185/95	1,6/1,1	Consultar	Consultar	0,106/0,206	409	291	0,22	0,26	
3 x 240/120	1,7/1,2	Consultar	Consultar	0,0801/0,161	489	336	0,17	0,21	
3 x 300/150	1,8/1,4	Consultar	Consultar	0,0641/0,129	549	380	0,14	0,18	
4 G 1,5	0,7	11,2	173	13,3	20	21	26,94	21,67	
4 G 2,5	0,7	12,3	227	7,98	28	27	16,23	13,1	
464	0,7	13,4	298	4,95	38	35	10,16	8,23	
466	0,7	14,7	391	3,3	49	44	6,87	5,59	
4 G 10	0,7	17,5	593	1,91	68	58	4,06	3,34	
4 G 16	0,7	20,4	855	1,21	91	75	2,56	2,13	
4 x 25	0,9	24,3	1267	0,78	115	96	1,62	1,38	
4 x 35	0,9	28,4	1792	0,55	143	117	1,17	1,01	
4 x 50	1,0	32,5	2439	0,38	174	138	0,86	0,77	
4 x 70	1,1	37,1	3359	0,27	223	170	0,6	0,56	
4 x 95	1,1	41,2	4276	0,20	271	202	0,43	0,42	
4 x 120	1,2	46,7	5500	0,16	314	230	0,34	0,35	
4 x 150	1,4	51,8	6750	0,12	359	260	0,28	0,3	
4 x 185	1,6	57,6	8172	0,10	409	291	0,22	0,26	
4 x 240	1,7	64,4	10642	0,08	489	336	0,17	0,21	
5 G 1,5	0,7	12	202	13,3	20	21	26,94	21,67	
5 G 2,5	0,7	13,3	266	7,98	28	27	16,23	13,1	
5 G 4	0,7	14,5	351	4,95	38	35	10,16	8,23	
566	0,7	16	467	3,3	49	44	6,87	5,59	
5 G 10	0,7	19	711	1,91	68	58	4,06	3,34	
5 G 16	0,7	22,2	1028	1,21	91	75	2,56	2,13	
5 G 25	0,9	26,6	1529	0,78	115	96	1,62	1,38	
5 G 35	0,9	31,4	2169	0,55	143	117	1,17	1,01	
5 G 50	1,0	35,2	2969	0,38	174	138			

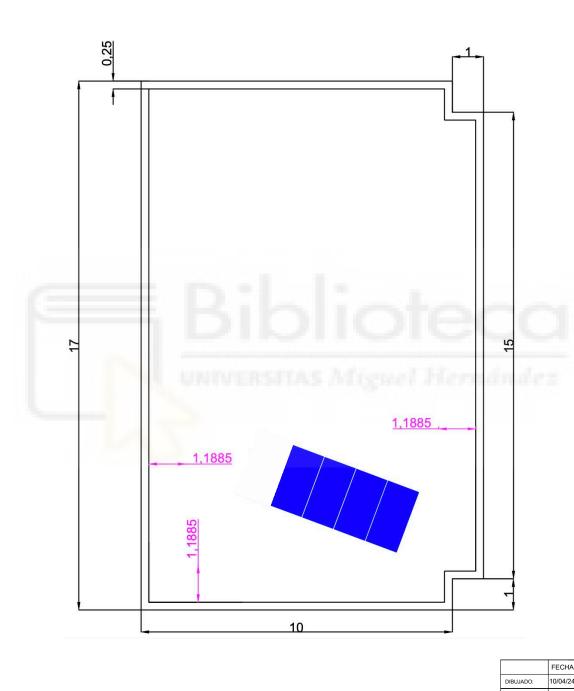
(1) Valores aproximados.

- (2) Instalación en bandeja al aire (40 °C).
- → XLP3 con instalación tipo F → columna 11 (1x trifásica).
- \longrightarrow XLP2 con instalación tipo E \longrightarrow columna 12 (2x, 3G monofásica).
- \rightarrow XLP3 con instalación tipo E \rightarrow columna 10b (3x, 4G, 4x, 5G trifásica).
- (3) Instalación enterrada, directamente o bajo tubo con resistividad térmica del terreno estándar de 2,5 K.m /W.
- \rightarrow XLPE3 con instalación tipo Método D1/D2 (Cu) \rightarrow 1x, 3x, 4G, 4x, 5G trifásica.
- \longrightarrow XLPE2 con instalación tipo D1/D2 (Cu) \longrightarrow 2x, 3G monofásica.

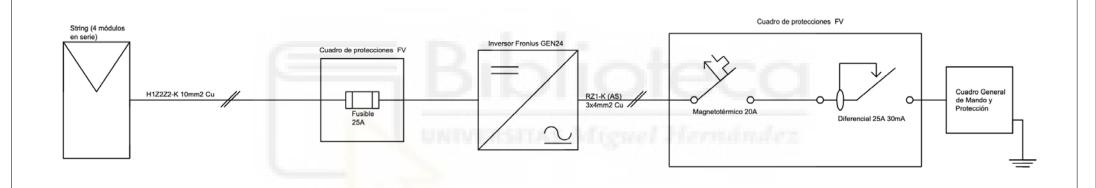
Según UNE-HD 60364-5-52 e IEC 60364-5-52.







DOCUMENTO II: PLANOS



Cotas mínimas a cumplir

	FECHA:	NOMBRE:	EMPLAZAMIENTO:			
DIBUJADO:	10/04/24	SANTIAGO VERDÚ	Camino de Abanilla, Benferri, 03316 - Alicante -			
COMPROBADO:			INSTALACIÓN SOLAR FOTOVOLTAICA DE AUTOCONSUMO			
ESCALA:	PROMO	TOR: EcoSolar Residencial S	S.L	PLANO Nº 3		
1:100	TÍTULO:	PLANTA	INTA			

	FECHA:	NOMBRE:	EMPLAZAMIENTO:			
DIBUJADO:	10/04/24	SANTIAGO VERDÚ	Camino de Abanilla, Benferri, 03316 - Alicante -			
COMPROBADO:			INSTALACIÓN SOLAR FOTOVOLTAICA DE AUTOCONSUMO			
ESCALA:	РКОМО	TOR: EcoSolar Residencial S	i.L	PLANO Nº 4		
	TÍTULO:	ESQUEMA UNIFILAR		HOJA: 1 de 1		

DOCUMENTO III: PLIEGO DE CONDICIONES

1 OBJETO

Este documento tiene como objetivo establecer las condiciones técnicas mínimas que deben cumplir las instalaciones solares fotovoltaicas conectadas a red, dentro del ámbito de actuación del Instituto para la Diversificación y Ahorro de la Energía (IDAE), en proyectos y líneas de apoyo. Se pretende proporcionar una guía tanto para instaladores como para fabricantes de equipos, definiendo las especificaciones mínimas que una instalación debe cumplir para garantizar su calidad. Esto se realiza en beneficio del usuario final y para promover el desarrollo adecuado de esta tecnología.

Se busca evaluar la calidad final de la instalación en términos de rendimiento, producción e integración. Este pliego de condiciones técnicas (PCT) abarca todos los sistemas mecánicos, eléctricos y electrónicos que forman parte de estas instalaciones.

En ciertos casos particulares, para proyectos específicos, puede ser necesario adoptar soluciones diferentes a las exigidas en este PCT debido a la naturaleza del proyecto o al avance tecnológico. Sin embargo, estas soluciones alternativas deben estar suficientemente justificadas en su necesidad y no deben implicar una disminución de las exigencias mínimas de calidad establecidas en este documento.

2 GENERALIDADES

Este Pliego se aplica específicamente a las instalaciones solares fotovoltaicas conectadas a la red de distribución eléctrica. Se excluyen de manera expresa las instalaciones que operan de forma aislada de la red.

Además, este documento puede funcionar como una guía técnica para otras aplicaciones especiales que requieran cumplir con requisitos de seguridad, calidad y durabilidad establecidos. En la Memoria de Diseño o Proyecto correspondiente se detallarán las características específicas de estas aplicaciones.

En todos los casos, se garantiza el cumplimiento de todas las normativas relacionadas con las instalaciones solares fotovoltaicas, incluyendo, en particular, las siguientes:

- Ley 54/1997, de 27 de noviembre, del Sector Eléctrico.
- Norma UNE-EN 62466: Sistemas fotovoltaicos conectados a la red. Requisitos mínimos de documentación, puesta en marcha e inspección de un sistema.
- Resolución de 31 de mayo de 2001 por la que se establecen modelos de contrato tipo y factura para las instalaciones solares fotovoltaicas conectadas a la red de baja tensión.
- Real Decreto 1663/2000, de 29 de septiembre, sobre conexión de instalaciones fotovoltaicas a la red de baja tensión.
- Real Decreto 1955/2000, de 1 de diciembre, por el que se regulan las actividades de transporte, distribución, comercialización, suministro y procedimientos de autorización de instalaciones de energía eléctrica.
- Real Decreto 842/2002, de 2 de agosto, por el que se aprueba el Reglamento Electrotécnico para Baja Tensión (B.O.E. de 18-9-2002).
- Real Decreto 314/2006, de 17 de marzo, por el que se aprueba el Código Técnico de la Edificación.
- Real Decreto 661/2007, de 25 de mayo, por el que se regula la actividad de producción de energía eléctrica en régimen especial.
- Real Decreto 1110/2007, de 24 de agosto, por el que se aprueba el Reglamento Unificado de puntos de medida del sistema eléctrico.
- Real Decreto 1578/2008, de 26 de septiembre, de retribución de la actividad de producción de energía eléctrica mediante tecnología solar fotovoltaica para instalaciones posteriores a la fecha límite de mantenimiento de la retribución del Real Decreto 661/2007, de 25 de mayo, para dicha tecnología.

3 DEFINICIONES

3.1 RADIACIÓN SOLAR

Radiación solar: Se refiere a la energía que emana del Sol en forma de ondas electromagnéticas.

Irradiancia: Es la densidad de potencia que incide en una superficie o la energía incidente en una superficie por unidad de tiempo y área. Se expresa en kilovatios por metro cuadrado (kW/m²).

Irradiación: Es la energía incidente en una superficie por unidad de área y a lo largo de un período determinado de tiempo. Se mide comúnmente en kilovatios-hora por metro cuadrado (kWh/m²) o en megajulios por metro cuadrado (MJ/m²).

3.2 INSTALACIÓN

Instalaciones fotovoltaicas: Se refieren a aquellas que cuentan con módulos fotovoltaicos para la conversión directa de la radiación solar en energía eléctrica, sin necesidad de ningún paso intermedio.

Instalaciones fotovoltaicas interconectadas: Son aquellas que están físicamente conectadas a las redes de transporte o distribución de energía eléctrica del sistema, ya sea directamente o a través de la red de un consumidor.

Línea y punto de conexión y medida: La línea de conexión se refiere a la línea eléctrica que conecta las instalaciones fotovoltaicas con un punto de la red de la empresa distribuidora o con la acometida del usuario, conocido como punto de conexión y medida.

Interruptor automático de la interconexión: Es un dispositivo de corte automático sobre el cual actúan las protecciones de interconexión.

Interruptor general: Se trata de un dispositivo de seguridad y maniobra que permite separar la instalación fotovoltaica de la red de la empresa distribuidora.

Generador fotovoltaico: Consiste en la asociación en paralelo de ramas fotovoltaicas.

Rama fotovoltaica: Es un subconjunto de módulos interconectados en serie o en asociaciones serie-paralelo, con un voltaje igual a la tensión nominal del generador.

Inversor: Este dispositivo se encarga de convertir la tensión y corriente continua en tensión y corriente alterna. También se conoce como ondulador.

Potencia nominal del generador: Es la suma de las potencias máximas de los módulos

fotovoltaicos.

Potencia de la instalación fotovoltaica o potencia nominal: Se refiere a la suma de las

potencias nominales de los inversores (las especificadas por el fabricante) que intervienen

en las tres fases de la instalación en condiciones nominales de funcionamiento.

3.3 MÓDULOS

Célula solar o fotovoltaica: Dispositivo que convierte la radiación solar en energía

eléctrica.

Célula de tecnología equivalente (CTE): Célula solar encapsulada de forma

independiente, cuya tecnología de fabricación y encapsulado es idéntica a la de los

módulos fotovoltaicos que componen la instalación.

Módulo o panel fotovoltaico: Conjunto de células solares directamente interconectadas

y encapsuladas como una unidad indivisible, protegidas por materiales que las resguardan

de los efectos climáticos.

Condiciones Estándar de Medida (CEM): Son condiciones de irradiancia y temperatura

en la célula solar que se utilizan universalmente para caracterizar células, módulos y

generadores solares.

Irradiancia solar: 1000 W/m²

Distribución espectral: AM 1,5 G

Temperatura de célula: 25 °C

Potencia pico: Es la máxima potencia que puede generar un panel fotovoltaico bajo

Condiciones Estándar de Medida (CEM).

TONC (Temperatura de operación nominal de la célula): Se define como la temperatura

alcanzada por las células solares cuando el módulo se expone a una irradiancia de 800

132

W/m² con una distribución espectral AM 1,5 G, mientras que la temperatura ambiente es de 20 °C y la velocidad del viento es de 1 m/s.

3.4 INTEGRACIÓN ARQUITECTÓNICA

Integración arquitectónica de módulos fotovoltaicos: Se refiere al uso de los módulos fotovoltaicos con una doble función, tanto energética como arquitectónica, donde reemplazan a elementos constructivos convencionales.

Revestimiento: Se produce cuando los módulos fotovoltaicos forman parte de la envolvente de una construcción arquitectónica.

Cerramiento: Se realiza cuando los módulos constituyen el tejado o la fachada de la construcción, asegurando la adecuada estanqueidad y aislamiento térmico.

Elementos de sombreado: Se aplican cuando los módulos fotovoltaicos protegen la construcción de la sobrecarga térmica provocada por la radiación solar, proporcionando sombra en el tejado o en la fachada.

4 DISEÑO

4.1 DISEÑO DEL GENERADOR FOTOVOLTAICO

4.1.1 Generalidades

El módulo fotovoltaico seleccionado debe cumplir con las especificaciones detalladas en el apartado 5.2.

Todos los módulos que formen parte de la instalación deben ser del mismo modelo. En caso de utilizar modelos diferentes, el diseño debe asegurar completamente la compatibilidad entre ellos y evitar cualquier efecto negativo en la instalación debido a esta causa.

En situaciones excepcionales en las que se empleen módulos no cualificados, se requerirá una justificación exhaustiva acompañada de documentación que respalde las pruebas y

ensayos a los que hayan sido sometidos. Independientemente de esto, es imperativo cumplir con todas las normativas vigentes de obligado cumplimiento.

4.1.2 Orientación e inclinación y sombras

La orientación y la inclinación del generador fotovoltaico, así como las posibles sombras que puedan afectarlo, deben ser configuradas de manera que las pérdidas sean inferiores a los límites especificados en la tabla I. Se considerarán tres escenarios: el caso general, la superposición de módulos y la integración arquitectónica. En todos estos casos, se deben cumplir tres condiciones fundamentales: las pérdidas por orientación e inclinación, las pérdidas por sombreado y las pérdidas totales deben ser inferiores a los límites establecidos con respecto a los valores óptimos.

	Tabla I					
	Orientación e inclinación (OI)	Sombras (S)	Total (OI+S)			
General	10%	10%	15%			
Superposición	20%	15%	30%			
Integración arquitectónica	40%	20%	50%			

En situaciones excepcionales y debidamente justificadas donde no sea posible instalar según lo establecido, se evaluará la posible reducción en el rendimiento energético de la instalación. Esta evaluación se incluirá en la Memoria del Proyecto. En todos los casos, se deberán analizar las pérdidas debidas a la orientación e inclinación del generador, así como las pérdidas causadas por sombras.

4.2 DISEÑO DEL SISTEMA DE MONITORIZACIÓN

El sistema de monitorización proporcionará medidas, como mínimo, de las siguientes variables:

- Voltaje y corriente CC a la entrada del inversor.
- Voltaje de fase/s en la red y potencia total de salida del inversor.

- Radiación solar en el plano de los módulos, medida con un módulo o una célula de tecnología equivalente.
- Temperatura ambiente en la sombra.
- Potencia reactiva de salida del inversor para instalaciones mayores de 5 kWp.
- Temperatura de los módulos en integración arquitectónica y, siempre que sea posible, en potencias mayores de 5 kW.

Los datos serán presentados en forma de medias horarias, siguiendo los lineamientos establecidos en el documento del JRC-Ispra "Guidelines for the Assessment of Photovoltaic Plants - Document A", Report EUR16338 EN, respecto a los tiempos de adquisición, la precisión de las medidas y el formato de presentación.

El sistema de monitorización será diseñado para ser de fácil acceso para el usuario.

4.3 INTEGRACIÓN ARQUITECTÓNICA

En el caso de considerar la realización de una instalación integrada desde la perspectiva arquitectónica, como se describe en el punto 3.4, la Memoria de Diseño o Proyecto especificará las condiciones tanto de la construcción como de la instalación, junto con una descripción y justificación detallada de las soluciones elegidas.

Las condiciones de la construcción abordarán aspectos como el análisis de las características urbanísticas, las implicaciones en el diseño, las intervenciones en la construcción, la posible necesidad de llevar a cabo obras de reforma o ampliación, y las verificaciones estructurales. Estos aspectos, evaluados desde la perspectiva de un profesional competente en edificación, requerirán su intervención.

Por otro lado, las condiciones de la instalación se centrarán en evaluar el impacto visual, los cambios en las condiciones de funcionamiento del edificio, la posible necesidad de habilitar nuevos espacios o ampliar el volumen construido, así como los posibles efectos sobre la estructura, entre otros aspectos relevantes.

5 COMPONENTES Y MATERIALES

5.1 GENERALIDADES

Como principio fundamental, es imprescindible garantizar al menos un grado de aislamiento eléctrico básico de clase I en todos los componentes, incluyendo equipos (módulos e inversores) y materiales (conductores, cajas y armarios de conexión), con la excepción del cableado de corriente continua, que deberá contar con doble aislamiento de clase 2. Además, se requerirá un grado de protección mínimo de IP65.

La instalación deberá integrar todos los elementos y características necesarias para asegurar la calidad continua del suministro eléctrico.

Es imperativo que el funcionamiento de las instalaciones fotovoltaicas no cause averías en la red, ni comprometa las condiciones de seguridad más allá de los límites establecidos por la normativa aplicable. Asimismo, dichas instalaciones no deben generar condiciones de trabajo peligrosas para el personal responsable del mantenimiento y operación de la red de distribución.

Los materiales expuestos a condiciones ambientales deberán ser protegidos contra agentes externos, particularmente la radiación solar y la humedad.

Se deben incluir todos los elementos de seguridad y protecciones necesarios para garantizar la seguridad de las personas y de la instalación fotovoltaica, abarcando la protección contra contactos directos e indirectos, cortocircuitos, sobrecargas, así como cualquier otro requisito derivado de la legislación vigente.

La Memoria de Diseño o Proyecto deberá contener fotocopias de las especificaciones técnicas proporcionadas por el fabricante de todos los componentes.

Por razones de seguridad y operatividad de los equipos, los indicadores, etiquetas, etc., deberán estar en castellano y, cuando sea pertinente, en alguna de las lenguas oficiales españolas del lugar donde se realice la instalación.

5.2 SISTEMAS GENERADORES FOTOVOLTAICOS

Los módulos fotovoltaicos deberán incorporar el marcado CE, según la Directiva 2006/95/CE del Parlamento Europeo y del Consejo, de 12 de diciembre de 2006, relativa a la aproximación de las legislaciones de los Estados miembros sobre el material eléctrico destinado a utilizarse con determinados límites de tensión. Además, deberán cumplir la norma UNE-EN 61730, armonizada para la Directiva 2006/95/CE, sobre cualificación de la seguridad de módulos fotovoltaicos, y la norma UNE-EN 50380, sobre informaciones de las hojas de datos y de las placas de características para los módulos fotovoltaicos. Adicionalmente, en función de la tecnología del módulo, éste deberá satisfacer las siguientes normas:

- UNE-EN 61215: Módulos fotovoltaicos (FV) de silicio cristalino para uso terrestre. Cualificación del diseño y homologación.
- UNE-EN 61646: Módulos fotovoltaicos (FV) de lámina delgada para aplicaciones terrestres. Cualificación del diseño y aprobación de tipo.
- UNE-EN 62108: Módulos y sistemas fotovoltaicos de concentración (CPV).
 Cualificación del diseño y homologación.

Los módulos que se encuentren integrados en la edificación, aparte de que deben cumplir la normativa indicada anteriormente, además deberán cumplir con lo previsto en la Directiva 89/106/CEE del Consejo de 21 de diciembre de 1988 relativa a la aproximación de las disposiciones legales, reglamentarias y administrativas de los Estados miembros sobre los productos de construcción.

Aquellos módulos que no puedan ser ensayados según estas normas citadas, deberán acreditar el cumplimiento de los requisitos mínimos establecidos en las mismas por otros medios, y con carácter previo a su inscripción definitiva en el registro de régimen especial dependiente del órgano competente.

Será necesario justificar la imposibilidad de ser ensayados, así como la acreditación del cumplimiento de dichos requisitos, lo que deberá ser comunicado por escrito a la Dirección General de Política Energética y Minas, quien resolverá sobre la conformidad o no de la justificación y acreditación presentadas.

Los módulos fotovoltaicos deberán llevar de manera claramente visible e indeleble el modelo, nombre o logotipo del fabricante, así como una identificación individual o número de serie que sea trazable hasta la fecha de fabricación.

Se seleccionarán y utilizarán módulos que cumplan con las especificaciones técnicas detalladas a continuación.

Los módulos deberán estar equipados con diodos de derivación para prevenir posibles fallas en las células y sus circuitos debido a sombreados parciales, y deberán poseer un grado de protección IP65.

En caso de que existan, los marcos laterales deberán ser fabricados con aluminio o acero inoxidable.

Para ser considerado aceptable, un módulo deberá tener una potencia máxima y corriente de cortocircuito reales, referidas a condiciones estándar, que se encuentren dentro del margen del \pm 3% en comparación con los valores nominales correspondientes del catálogo.

Cualquier módulo que presente defectos de fabricación, como roturas o manchas en cualquiera de sus componentes, así como falta de alineación en las células o burbujas en el encapsulante, será rechazado.

Se valorará positivamente una alta eficiencia de las células solares.

La estructura del generador deberá estar conectada a tierra.

Con el fin de garantizar la seguridad y facilitar el mantenimiento y reparación del generador, se instalarán los elementos necesarios, como fusibles e interruptores, para permitir la desconexión independiente en ambos terminales de cada rama del generador.

Los módulos fotovoltaicos contarán con una garantía mínima de 10 años otorgada por el fabricante, así como una garantía de rendimiento durante 25 años.

5.3 ESTRUCTURAS DE SOPORTE

Las estructuras de soporte deben cumplir con las especificaciones detalladas en este apartado, garantizando en todo momento el cumplimiento de las regulaciones del Código Técnico de la Edificación en materia de seguridad.

La estructura de soporte de los módulos fotovoltaicos debe ser capaz de resistir las cargas de viento y nieve, con los módulos instalados, según lo establecido en el Código Técnico de la Edificación y demás normativa aplicable.

El diseño y construcción de la estructura y el sistema de fijación de los módulos deben permitir las dilataciones térmicas necesarias sin transmitir cargas que puedan comprometer la integridad de los módulos, siguiendo las indicaciones proporcionadas por el fabricante.

Los puntos de sujeción para los módulos fotovoltaicos deben ser suficientes en número y posición, de modo que no se produzcan flexiones que excedan las especificaciones del fabricante y los métodos homologados para el modelo de módulo.

El diseño de la estructura debe ajustarse a la orientación y ángulo de inclinación especificados para el generador fotovoltaico, considerando la facilidad de montaje, desmontaje y posibles sustituciones de elementos.

Se debe proteger superficialmente la estructura contra la acción de agentes ambientales, realizando taladros antes del galvanizado o protección de la misma, si fuera necesario.

La tornillería utilizada será de acero inoxidable, salvo en el caso de estructuras galvanizadas, donde se admitirán tornillos galvanizados, con excepción de los utilizados para la sujeción de los módulos, que deberán ser de acero inoxidable.

Los topes de sujeción de módulos y la propia estructura no deben proyectar sombra sobre los módulos.

En el caso de instalaciones integradas en cubierta, el diseño de la estructura y la estanquidad entre módulos deben cumplir con las regulaciones vigentes en materia de edificación.

Se deben disponer las estructuras de soporte necesarias para montar los módulos, tanto en superficies planas como integradas en tejados, cumpliendo con las especificaciones sobre sombreado. Se incluirán todos los accesorios, bancadas y/o anclajes necesarios.

La estructura de soporte debe ser calculada según la normativa vigente para resistir cargas extremas debido a condiciones climáticas adversas, como viento, nieve, etc.

Si se construye con perfiles de acero laminado conformado en frío, estos deben cumplir con las normas UNE-EN 10219-1 y UNE-EN 10219-2 para garantizar todas sus características mecánicas y químicas.

Si la estructura es galvanizada en caliente, debe cumplir con las normas UNE-EN ISO 14713 (partes 1, 2 y 3) y UNE-EN ISO 10684, y los espesores deben cumplir con los mínimos exigibles según la norma UNE-EN ISO 1461.

En el caso de utilizar seguidores solares, estos deben llevar el marcado CE y cumplir con lo establecido en la Directiva 98/37/CE del Parlamento Europeo y del Consejo, de 22 de junio de 1998, así como la Directiva 2006/42/CE del Parlamento Europeo y del Consejo, de 17 de mayo de 2006, relativas a las máquinas y su normativa de desarrollo.

5.4 INVERSORES

Los inversores seleccionados deberán ser del tipo apropiado para su conexión a la red eléctrica, con capacidad de entrada variable, de modo que puedan garantizar la extracción óptima de la potencia máxima disponible proveniente del generador fotovoltaico a lo largo de cada jornada.

Las especificaciones fundamentales de los inversores serán las siguientes:

- Principio de funcionamiento: fuente de corriente.

- Autoconmutados.
- Seguimiento automático del punto de máxima potencia del generador.
- No funcionarán en isla o modo aislado.

La caracterización de los inversores deberá hacerse según las normas siguientes:

- UNE-EN 62093: Componentes de acumulación, conversión y gestión de energía de sistemas fotovoltaicos. Cualificación del diseño y ensayos ambientales.
- UNE-EN 61683: Sistemas fotovoltaicos. Acondicionadores de potencia. Procedimiento para la medida del rendimiento.
- IEC 62116. Testing procedure of islanding prevention measures for utility interactive photovoltaic inverters.

Los inversores cumplirán con las directivas comunitarias de Seguridad Eléctrica y Compatibilidad Electromagnética, ambas certificadas por el fabricante, e incluirán protecciones contra:

- Cortocircuitos en alterna.
- Tensión de red fuera de rango.
- Frecuencia de red fuera de rango.
- Sobretensiones, mediante varistores o similares.
- Perturbaciones presentes en la red como microcortes, pulsos, defectos de ciclos, ausencia y retorno de la red, etc.

Además, deben cumplir con la Directiva 2004/108/CE del Parlamento Europeo y del Consejo, de 15 de diciembre de 2004, que trata sobre la armonización de las legislaciones de los Estados miembros en materia de compatibilidad electromagnética.

Cada inversor estará provisto de las indicaciones necesarias para su correcto funcionamiento y contará con los controles automáticos esenciales para garantizar su adecuada supervisión y manejo.

Asimismo, cada inversor deberá incluir, como mínimo, los siguientes controles manuales:

- Encendido y apagado general del inversor.
- Conexión y desconexión del inversor a la interfaz CA.

Las especificaciones eléctricas de los inversores serán las siguientes:

El inversor mantendrá la entrega de potencia a la red de manera continua incluso en condiciones de irradiancia solar hasta un 10% superiores a las Condiciones Estándar de Medida (CEM). Además, será capaz de soportar picos de hasta un 30% superiores a las CEM durante períodos de hasta 10 segundos.

El rendimiento de potencia del inversor, definido como el cociente entre la potencia activa de salida y la potencia activa de entrada, será de al menos un 92% para una potencia de salida en corriente alterna igual al 50% de la potencia nominal, y del 94% para una potencia de salida igual al 100% de la potencia nominal. Este rendimiento será calculado de acuerdo con la norma UNE-EN 61683: Sistemas fotovoltaicos. Acondicionadores de potencia. Procedimiento para la medida del rendimiento.

El autoconsumo de los equipos en "stand-by" o modo nocturno será inferior al 2% de su potencia nominal de salida.

El factor de potencia de la potencia generada será superior a 0.95, en el rango de potencia del 25% al 100% de la potencia nominal.

A partir de potencias superiores al 10% de su potencia nominal, el inversor deberá inyectar energía en la red.

Los inversores contarán con un grado de protección mínimo de IP 20 para aquellos instalados en el interior de edificios y lugares inaccesibles, IP 30 para aquellos instalados en el interior de edificios y lugares accesibles, y IP 65 para aquellos instalados a la intemperie, cumpliendo en todos los casos con la legislación aplicable.

Estarán garantizados para operar en condiciones ambientales que abarquen temperaturas entre 0 °C y 40 °C, así como una humedad relativa entre 0% y 85%.

Los inversores destinados a instalaciones fotovoltaicas contarán con una garantía mínima otorgada por el fabricante de 3 años.

5.5 CABLEADO

Los cables positivos y negativos de cada conjunto de módulos serán conducidos de manera independiente y protegidos de acuerdo con las regulaciones vigentes.

Se emplearán conductores de cobre con la sección apropiada para prevenir pérdidas de tensión y sobrecalentamientos. Específicamente, los conductores deberán tener una sección adecuada para garantizar que la caída de tensión no supere el 1,5 % en cualquier situación operativa.

La longitud del cable será seleccionada para evitar tensiones en los distintos componentes y para prevenir posibles enganches causados por el tránsito habitual de personas.

Todo el cableado de corriente continua contará con doble aislamiento y será adecuado para su utilización en condiciones atmosféricas exteriores, ya sea expuesto al aire libre o enterrado, conforme a lo establecido en la norma UNE 21123.

5.6 CONEXIÓN A RED

Todas las instalaciones de hasta 100 kW se ajustarán a lo establecido en el Real Decreto 1663/2000, en particular a los artículos 8 y 9, relativos a la conexión de instalaciones fotovoltaicas a la red de baja tensión.

5.7 MEDIDAS

Todas las instalaciones cumplirán con el Real Decreto 1110/2007, de 24 de agosto, por el que se aprueba el Reglamento Unificado de puntos de medida del sistema eléctrico.

5.8 PROTECCIONES

Todas las instalaciones cumplirán con lo estipulado en el Real Decreto 1663/2000, específicamente en su artículo 11, referente a las protecciones en instalaciones fotovoltaicas conectadas a la red de baja tensión.

En el caso de conexiones a redes trifásicas, las protecciones para la interconexión estarán configuradas para operar a máxima y mínima frecuencia (51 Hz y 49 Hz, respectivamente) y a máxima y mínima tensión (1,1 Um y 0,85 Um, respectivamente) para cada fase.

5.9 PUESTA A TIERRA DE LAS INSTALACIONES FOTOVOLTAICAS

Todas las instalaciones cumplirán con lo establecido en el Real Decreto 1663/2000, en particular en su artículo 12, referente a las condiciones de puesta a tierra en instalaciones fotovoltaicas conectadas a la red de baja tensión.

En casos donde el aislamiento galvánico entre la red de distribución de baja tensión y el generador fotovoltaico no se logre mediante un transformador de aislamiento, se detallarán en la Memoria de Diseño o Proyecto los elementos empleados para asegurar esta condición.

Todas las masas de la instalación fotovoltaica, tanto en la sección continua como en la alterna, serán conectadas a una única puesta a tierra. Esta puesta a tierra será independiente de la del neutro proporcionado por la empresa distribuidora, conforme a lo estipulado en el Reglamento de Baja Tensión.

5.10 ARMÓNICOS Y COMPATIBILIDAD ELECTROMAGNÉTICA

Todas las instalaciones cumplirán con lo dispuesto en el Real Decreto 1663/2000 (artículo 13) sobre armónicos y compatibilidad electromagnética en instalaciones fotovoltaicas conectadas a la red de baja tensión.

5.11 MEDIDAS DE SEGURIDAD

Las centrales fotovoltaicas, sin importar la tensión a la que estén conectadas a la red, contarán con un sistema de protección que asegure su desconexión en caso de fallos en la red o en la instalación interna de la central. Este sistema garantizará que no interrumpan el funcionamiento adecuado de las redes a las que están conectadas, tanto en operación normal como durante incidentes.

Es imperativo que la central fotovoltaica evite operar de manera no intencionada en modo isla con partes de la red de distribución en caso de desconexión de la red general. La protección anti-isla detectará la desconexión de la red en un tiempo acorde con los criterios de protección de la red de distribución correspondiente, o dentro del límite máximo establecido por la normativa técnica vigente. Este sistema debe funcionar en paralelo con otras centrales eléctricas, independientemente de su tecnología, y suministrar energía a las cargas normales de la red, como motores.

Todas las centrales fotovoltaicas con una capacidad superior a 1 MW contarán con un sistema de teledesconexión y un sistema de telemedida. El propósito del sistema de teledesconexión es permitir la desconexión remota de la planta cuando sea recomendable por razones de seguridad. Estos sistemas serán compatibles con la red de distribución a la que se conecta la central fotovoltaica, pudiendo utilizar los sistemas de telegestión en baja tensión conforme a los requisitos establecidos por la legislación vigente.

Además, las centrales fotovoltaicas deben estar equipadas con los medios necesarios para permitir la reconexión a la red de distribución sin causar daños. No generarán sobretensiones que puedan dañar otros equipos, incluso durante transitorios como el cambio a modo isla con cargas bajas o sin carga. Todos los equipos instalados cumplirán

con los límites de emisión de interferencias establecidos en las normativas nacionales e internacionales de compatibilidad electromagnética.

6 RECEPCIÓN Y PRUEBAS

El instalador proporcionará al usuario un documento-albarán que certifique el suministro de componentes, materiales y manuales de uso y mantenimiento de la instalación. Ambas partes firmarán este documento por duplicado, conservando cada una un ejemplar. Los manuales entregados al usuario estarán redactados en alguna de las lenguas oficiales españolas para facilitar su correcta interpretación.

Previo a la puesta en servicio de todos los elementos principales (módulos, inversores, contadores), estos deberán haber superado las pruebas de funcionamiento en fábrica, documentadas mediante un acta adjunta a los certificados de calidad.

El instalador realizará, como mínimo, las siguientes pruebas:

- -Verificación del funcionamiento y puesta en marcha de todos los sistemas.
- Pruebas de arranque y parada en diferentes momentos de funcionamiento.
- Pruebas de los elementos y medidas de protección, seguridad y alarma, incluyendo su actuación, exceptuando las pruebas del interruptor automático de desconexión.

Una vez concluidas las pruebas y la puesta en marcha, se procederá a la Recepción Provisional de la Instalación. Sin embargo, el Acta de Recepción Provisional no se firmará hasta que se haya comprobado que todos los sistemas y elementos han funcionado correctamente durante al menos 240 horas seguidas, sin interrupciones causadas por fallos o errores del sistema suministrado, y se hayan cumplido los requisitos mencionados anteriormente.

Durante este período, el suministrador será el único responsable de la operación de los sistemas suministrados y deberá proporcionar formación al personal de operación.

Todos los elementos suministrados y la instalación en su conjunto estarán protegidos contra defectos de fabricación, instalación o diseño por una garantía de tres años, excepto

para los módulos fotovoltaicos, cuya garantía mínima será de 10 años a partir de la fecha de firma del Acta de Recepción Provisional.

El instalador se compromete a reparar los fallos de funcionamiento que puedan surgir debido a defectos ocultos de diseño, construcción, materiales o montaje, sin cargo alguno para el usuario, de acuerdo con la legislación vigente sobre vicios ocultos.

7 REQUERIMIENTOS TÉCNICOS DEL CONTRATO DE MANTENIMIENTO

7.1 GENERALIDADES

Se establecerá un contrato de mantenimiento preventivo y correctivo con una duración mínima de tres años.

Este contrato de mantenimiento abarcará todos los componentes de la instalación, e incluirá las tareas preventivas recomendadas por los diversos fabricantes.

7.2 PROGRAMA DE MANTENIMIENTO

El objeto de este apartado es definir las condiciones generales mínimas que deben seguirse para el adecuado mantenimiento de las instalaciones de energía solar fotovoltaica conectadas a red.

Se definen dos escalones de actuación para englobar todas las operaciones necesarias durante la vida útil de la instalación para asegurar el funcionamiento, aumentar la producción y prolongar la duración de la misma:

- Mantenimiento preventivo.
- Mantenimiento correctivo.

Plan de mantenimiento preventivo: operaciones de inspección visual, verificación de actuaciones y otras, que aplicadas a la instalación deben permitir mantener dentro de

límites aceptables las condiciones de funcionamiento, prestaciones, protección y durabilidad de la misma.

Plan de mantenimiento correctivo: todas las operaciones de sustitución necesarias para asegurar que el sistema funciona correctamente durante su vida útil. Incluye:

- La visita a la instalación en los plazos indicados en el punto 8.3.5.2 y cada vez que el usuario lo requiera por avería grave en la misma.
- El análisis y elaboración del presupuesto de los trabajos y reposiciones necesarias para el correcto funcionamiento de la instalación.
- Los costes económicos del mantenimiento correctivo, con el alcance indicado, forman parte del precio anual del contrato de mantenimiento. Podrán no estar incluidas ni la mano de obra ni las reposiciones de equipos necesarias más allá del período de garantía.

El mantenimiento debe realizarse por personal técnico cualificado bajo la responsabilidad de la empresa instaladora.

El mantenimiento preventivo de la instalación incluirá, al menos, una visita (anual para el caso de instalaciones de potencia de hasta 100 kWp y semestral para el resto) en la que se realizarán las siguientes actividades:

- Comprobación de las protecciones eléctricas.
- Comprobación del estado de los módulos: comprobación de la situación respecto al proyecto original y verificación del estado de las conexiones.
- Comprobación del estado del inversor: funcionamiento, lámparas de señalizaciones, alarmas, etc.
- Comprobación del estado mecánico de cables y terminales (incluyendo cables de tomas de tierra y reapriete de bornas), pletinas, transformadores, ventiladores/extractores, uniones, reaprietes, limpieza.

Realización de un informe técnico de cada una de las visitas, en el que se refleje el estado de las instalaciones y las incidencias acaecidas.

Registro de las operaciones de mantenimiento realizadas en un libro de mantenimiento, en el que constará la identificación del personal de mantenimiento (nombre, titulación y autorización de la empresa).

7.3 GARANTÍAS

7.3.1 Ámbito general de la garantía

Sin perjuicio de cualquier posible reclamación dirigida a terceros, la reparación de la instalación se llevará a cabo conforme a las condiciones generales establecidas en caso de que haya sufrido una avería debido a un defecto en el montaje o en cualquiera de sus componentes, siempre y cuando haya sido manipulada adecuadamente de acuerdo con las instrucciones del manual.

La garantía se otorga en beneficio del comprador de la instalación, lo cual deberá ser debidamente justificado mediante el certificado de garantía correspondiente, con la fecha que se haya acreditado en la certificación de la instalación.

7.3.2 Plazos

El proveedor garantizará la instalación por un período mínimo de 3 años, cubriendo todos los materiales utilizados y el procedimiento empleado en su montaje. Para los módulos fotovoltaicos, la garantía mínima será de 10 años.

En caso de que la operación del suministro deba interrumpirse debido a razones atribuibles al proveedor, o para llevar a cabo reparaciones necesarias para cumplir con las disposiciones de la garantía, el período de garantía se extenderá por la duración total de dichas interrupciones.

7.3.3 Condiciones económicas

La garantía abarca la reparación o sustitución, según corresponda, de los componentes y piezas que pudieran presentar defectos, así como la mano de obra necesaria para dichas reparaciones o sustituciones durante el período de validez de la garantía.

Todos los gastos adicionales, como los relacionados con el desplazamiento, transporte, uso de vehículos y herramientas, y los costos de envío y devolución de equipos para su reparación en los talleres del fabricante, están expresamente cubiertos.

Además, se incluyen la mano de obra y los materiales requeridos para realizar ajustes y ajustes operativos en la instalación.

En caso de que el proveedor incumpla las obligaciones de garantía en un plazo razonable, el comprador de la instalación podrá establecer una fecha límite por escrito para que el proveedor cumpla con sus obligaciones. Si el proveedor no cumple dentro de este último plazo, el comprador podrá, a expensas y riesgo del proveedor, realizar las reparaciones necesarias por sí mismo o contratar a un tercero para hacerlo, sin perjuicio de cualquier reclamación por daños y perjuicios contra el proveedor.

7.3.4 Anulación de la garantía

La garantía quedará anulada si la instalación ha sido reparada, modificada o desmontada, ya sea parcialmente, por personas que no pertenezcan al proveedor o a los servicios de asistencia técnica autorizados expresamente por el proveedor.

7.3.5 Lugar y tiempo de la prestación

Cuando el usuario identifique un mal funcionamiento en la instalación, deberá informarlo de manera fehaciente al proveedor. Si el proveedor determina que se trata de un defecto de fabricación en algún componente, lo comunicará fehacientemente al fabricante.

El proveedor atenderá cualquier incidencia en un plazo máximo de una semana, y se compromete a resolver la avería en un plazo máximo de 10 días, a menos que existan circunstancias de fuerza mayor debidamente justificadas.

Las averías en las instalaciones serán reparadas in situ por el proveedor. En caso de que alguna avería de un componente no pueda ser reparada en el lugar de la instalación, dicho componente será enviado al taller oficial designado por el fabricante, a cargo del proveedor.

El proveedor llevará a cabo las reparaciones o sustituciones de piezas tan pronto como sea posible después de recibir el aviso de avería. Sin embargo, no se hará responsable de los daños causados por retrasos en estas reparaciones, siempre que el plazo sea inferior a 10 días naturales.

DOCUMENTO IV: PRESUPUESTO

PRESUPUESTO

	Medición	Precio (€)	Importe (€)
COMPONENTES DE LA INSTALACIÓN			
Módulo solar LONGI LR5-72HPH 550W	4	228,36	913,44
Inversor FRONIUS Primo GEN24 Plus 3000W	1	1945,98	1945,98
Kit de estructura Sunfer 09V para 4 paneles	1	213,53	213,53
FRONIUS Smart Sensor 63A-1	1	100,13	100,13
		TOTAL	3173,08
TOTAL COMPONE	NTES DE LA I	NSTALACIÓN	3173,08
CABLEADO Y PROTECCIONES			
Circuito CC:	20	0.00	00.7
Cable Prysmian PRYSOLAR H1Z2Z2-K de 10mm ² Rojo	30	2,99	89,7
Cable Prysmian PRYSOLAR H1Z2Z2-K de 10mm ² Negro	30	2,99	89,7
Fusible 25A 1000 VDC 10x38	2	11,01	22,02
Portafusible DC 10x38 1000V	2	4,24	8,48
0: 1: 40		TOTAL	209,9
Circuito AC:		0.05	47 4
Cable Afumex 1000V (AS) RZ1-K 1kV 3x4 mm ²	12	3,95	47,4
Interruptor Automático 2P iC60N 6KA SCHNEIDER 20A	1	16,46	16,46
Interruptor diferencial Acti9 iID 2P 25A 30mA AC	1	36,25	36,25
		TOTAL	100,11
TOTAL CA	BLEADO Y PRO	DIECCIONES	310,01
ACCESORIOS		45.07	45.07
Caja de protecciones ICP	med Herr	15,97	15,97
Conjunto conector MC4 de 10mm ² Canal 2mts 40x60mm ²	6	4,5	27
Tubo flexible helicoidal PVC 32mm 25m	2 2	6,54 45	13,08 90
Tubo flexible fleticoldal PVC 32fffff 25fff	2	TOTAL	146,05
	TOTAL /	ACCESORIOS	146,05
	IOIAL F	CCESORIOS	140,05
PUESTA A TIERRA			
Cable ToxFree ZH - H07Z1-K (AS) 10mm ² Tierra	40	2,89	115,6
Capte Toxi fee ZiT-Tio/ZT-K (AS) Tollilli Tiella	40	Z,03 TOTAL	115,6
	TOTAL DIJE	STA A TIERRA	115,6
	IOIAL FUE	OIA A HENNA	113,0
MANO DE OBRA			
Instalación de todos los elementos	1	1000	1000
instatution de todos tos eternemos	•	TOTAL	1000
	TOTAL MA	NO DE OBRA	1000
TRAMITACIÓN Y LEGALIZACIÓN			
Certificados, tramitación y legalización de la instalación	1	600	600
Solution de la mistalioni y logalización de la mistalición	ı	TOTAL	600
TOTAL TRAN	MITACIÓN Y I I	EGALIZACIÓN	600
TOTAL TRAI		- SALLACION	500
		TOTAL	5344,74

Es importante considerar la posibilidad de solicitar una subvención para nuestro proyecto.

Para obtener detalles sobre el proceso y los requisitos tanto administrativos como de la

instalación, consultamos la página oficial de la Generalitat Valenciana. Allí

encontraremos información detallada sobre el procedimiento, así como requisitos

específicos que deben cumplirse.

Según los detalles del trámite, para ser elegibles para esta subvención, debemos cumplir

con los requisitos establecidos en el Real Decreto 477/2021 de 29 de junio, por el que se

aprueban la concesión directa a las comunidades autónomas de ayudas para la ejecución

de diversos programas de incentivos ligados al autoconsumo.

Requisitos:

A) "La subvención máxima a percibir se corresponderá con los 5 primeros MW de

potencia de la instalación. Se permite la instalación de potencias superiores a este

límite, pero en ningún caso podrán percibir ayuda por la potencia que supere los

5 MW indicados."

En nuestra situación, esto no nos afecta porque nuestra instalación es muy pequeña y

estamos significativamente por debajo del límite establecido.

B) "Se debe prever que, durante el transcurso de un año, la suma de la energía

eléctrica consumida por los consumidores asociados a la instalación beneficiaria

de la ayuda sea igual o mayor al 80 % de la energía anual generada por dicha

instalación."

A continuación, comprobaremos si nuestra instalación cumple este requisito:

- Consumo anual = 3640,008 kWh

- Producción anual estimada = 4451,903 kWh

Para cumplir dicho requisito deberemos cumplir:

Consumo anual \geq Producción anual \times 80%

154

$3640,008 \ge 3561,522$

Como podemos observar, cumplimos estos requisitos principales, por lo tanto seremos validos para solicitar dicha subvención.

Para conocer el valor de las ayudas, es necesario consultar el Anexo III del RD 477/2021, donde se detallan los importes específicos para distintos tipos de actuaciones y destinatarios finales. Dentro de este anexo, se encuentran diversas tablas dirigidas a diferentes sectores. Nos enfocaremos en la tabla correspondiente al sector residencial, que proporciona una guía clara de los recursos disponibles para este ámbito.

Actuaciones	Módulo [Ayuda (€/kWp)]	Módulo para el caso de autoconsumo colectivo [Ayuda (€/kWp)]
Instalación Fotovoltaica autoconsumo (1.000 kWp < P \leq 5.000 kWp).	300	355
Instalación Fotovoltaica autoconsumo (100 kWp < P ≤ 1.000 kWp).	350	420
Instalación Fotovoltaica autoconsumo (10 kWp < P \leq 100 kWp).	450	535
Instalación Fotovoltaica autoconsumo (P ≤ 10 kWp).	600	710
Instalación eólica (500 kW < P ≤ 5.000 kW) para autoconsumo.	650	775
Instalación eólica (20 kW < P ≤ 500 kW) para autoconsumo.	1.950	2.250
Instalación eólica (P ≤ 20 kW) para autoconsumo.	2.900	3.350

La instalación está compuesta por cuatro módulos con una potencia nominal de 550 W_p cada uno, lo que da como resultado una potencia total de 2,2 kW_p en la instalación. Como se puede observar en la tabla, tenemos establecida una ayuda de 600 €/kW_p.

Por lo tanto, el futuro propietario podría ser subvencionado con una cantidad aproximada de 1320 €. Y el coste final de la instalción podría ser el calculado a continuación:

Coste final instalación = 5344,74 - 1320 = 4024,74 €