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ABSTRACT Rapid microbiological diagnosis of the antibiotic susceptibility of Gram-neg
ative bacilli is a priority in clinical microbiology, especially in cases of bacteremia. 
The rapid advancement of antimicrobial resistance proposes a challenge for empirical 
antibiotic therapy and shows the need for fast antibiotic susceptibility diagnostics to 
guide treatments. The QuickMIC System (Gradientech AB, Uppsala, Sweden) is a recently 
developed rapid diagnostic tool for antibiotic susceptibility testing. Our study evalu
ates a rapid phenotypic system (QuickMIC) that provides information on the suscepti
bility of 12 antibiotics against Escherichia coli, Klebsiella spp., Pseudomonas aeruginosa, 
Acinetobacter baumannii, Enterobacter cloacae, Proteus spp., Citrobacter spp., and Serratia 
marcescens. A total of 816 antibiotic/microorganism combinations were tested, resulting 
in eight discrepancies. The concordance between the antibiotics offered by QuickMIC 
and reference methods (MicroScan WalkAway plus system, Beckman Coulter; Etest 
(BioMerieux microdilution system (Bruker); Real-time PCR (GeneXpert, Cepheid); and 
immunochromatography (Biotech) was 99.02%. Time elapsed to obtain a valid minimal 
inhibitory concentration (MIC) was between 2 and 4 h. The QuickMIC system allows 
for the early adjustment of antibiotic treatment in these infections. Given the existing 
limitations of currently available rapid methods, its clinical utility is particularly relevant 
in the management of P. aeruginosa infections and AmpC-producing Enterobacterales. 
The use of rapid methods can help diversify antibiotic use and reduce carbapenem 
consumption.

IMPORTANCE The rapid diagnosis of antibiotic sensitivity in Gram-negative bacilli is of 
paramount importance in clinical microbiology, particularly in cases of bacteremia. The 
escalating challenge of antimicrobial resistance underscores the need for expeditious 
antibiotic susceptibility diagnostics to guide empirical antibiotic therapy effectively. 
In light of this, we present our study that evaluates the QuickMIC System, a recently 
developed rapid diagnostic antibiogram. QuickMIC System, offers a novel approach to 
phenotypic testing, providing information on the activity of 12 antibiotics against key 
pathogens, including Escherichia coli, Klebsiella spp., Pseudomonas aeruginosa, Acine
tobacter baumannii, Enterobacter cloacae, Proteus spp., Citrobacter spp., and Serratia 
marcescens. Our investigation involved testing a total of 816 antibiotic/microorganism 
combinations. The study demonstrated an impressive 99.02% concordance between the 
QuickMIC System and the reference methods, with only eight discrepancies observed. 
The time to actionable minimum inhibitory concentration (MIC) ranged between 2 and 4 
h, highlighting the system's efficiency in providing rapid results.
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T he rapid diagnosis of bacteremia caused by Gram-negative bacilli (GNR) is one of the 
priorities in clinical microbiology due to its significant clinical impact on patients and 

the frequency of these infections. An overall mortality rate of 11% has been reported, 
with inadequate treatment being a significant risk factor (1, 2). When the condition is 
associated with multidrug-resistant microorganisms, mortality rates can reach up to 50% 
(3).

Delayed administration of appropriate antibiotic treatment in bacteremia is 
associated with more unfavorable clinical outcomes, making it crucial to act quickly 
and efficiently in these situations (4). Early identification of the antibiotic susceptibility 
of microorganisms can significantly influence clinical outcomes, underscoring the need 
for rapid phenotypic assays to guide appropriate treatment (5–7). For this reason, various 
methods are being developed to provide information on the antibiotic susceptibility 
of microorganisms, analyzing both genotypic and phenotypic traits. In general, results 
show that the application of these techniques within multidisciplinary teams allows for 
the rapid identification of microorganisms and their antibiotic susceptibility, facilitating 
early treatment (8, 9). This can improve patient survival, reduce hospital stays, and 
decrease healthcare costs. Additionally, it reduces the use of broad-spectrum drugs, 
minimizing the increase in antibiotic resistance for the benefit of the patient (10).

Escherichia coli is the most frequent etiological agent of bacteremia (11), particularly 
when associated with extended-spectrum beta-lactamase-producing strains. Although 
less common, bacteremias associated with Pseudomonas aeruginosa are notable for their 
severity and the challenges they present for treatment due to increasing resistance. Even 
when following international guidelines, selecting the appropriate treatment can be 
difficult (12). Bacteremias associated with Klebsiella pneumoniae have also been shown to 
cause a mortality rate of 34% within 90 days (13).

A pilot study was previously conducted by the developers of the QuickMIC System 
(Gradientech AB, Uppsala, Sweden), a new system for the phenotypic study of the 
resistance patterns of the main Gram-negative bacilli associated with bacteremia, using 
samples from a geographic area with a low incidence of multidrug resistance (14). 
This study demonstrated that the QuickMIC system can provide antibiotic susceptibility 
testing (AST) data very rapidly for up to 12 antibiotics and at least 10 different species 
of Gram-negative bacteria, with an average time of approximately 3 h. Therefore, in 
this work, we continue the evaluation of this new system for phenotypic study within 
the routine clinical practice of a hospital with a high incidence of multidrug-resistant 
bacteria and a multidisciplinary management team.

MATERIALS AND METHODS

Design

An observational study was designed to evaluate the performance of the QuickMIC 
System (Gradientech AB, Uppsala, Sweden) in clinical practice at the General University 
Hospital, Dr Balmis (Alicante, Spain); Inclusion criteria: Monomicrobial bacteremia caused 
by Gram-negative bacilli, for which the new system was validated. Exclusion criteria: 
Bacteremia caused by other pathogens and poly-microbial/bacteremia.

Samples

Eighty-six consecutive positive blood culture samples with Gram-negative bacilli 
bacteremia were collected from November 2022 to March 2023.

Evaluation system

This is the first evaluation of the QuickMIC System in real clinical practice, following a 
pilot study conducted at Gradientech AB, Uppsala, Sweden (14). QuickMIC is an ultra-fast 
antibiogram system that directly utilizes positive blood culture samples. QuickMIC uses 
microfluidics, real-time microscopy, and light-scatter growth quantification, to provide 
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bacterial susceptibility results within 2–4 h. The technology consists on the formation 
of a stable antibiotic gradient (in a three-dimensional agarose gel) covering a range of 
concentrations that increase linearly. Real-time imaging allows for monitorization of the 
bacterial growth rate and quantification of individual bacterial colonies, enabling a quick 
identification of the minimum inhibitory concentration (MIC).

The antibiotics analyzed in the current study using the QuickMIC GN cassette 
(cat. no: 43-001-10) included: amikacin, cefepime, ciprofloxacin, colistin, cefotaxime, 
ceftazidime/avibactam, ceftazidime, gentamicin, meropenem, piperacillin/tazobactam, 
tigecycline, and tobramycin.

The QuickMIC system is validated for the following microorganisms: E. coli, Klebsiella 
spp. (K. pneumoniae, K. variicola, K. Oxytoca, and K. aerogenes), P. aeruginosa, Acinetobacter 
baumannii, Enterobacter cloacae, Proteus spp. (P. mirabilis and P. vulgaris), Citrobacter spp. 
(C. koserii and C. freundii), and Serratia marcescens.

Working protocol: The system was integrated into our protocol for the microbiological 
diagnosis of Gram-negative bacilli bacteremia (Fig. 1A). The routine protocol consisted 
first on the identification of the microorganism using Maldi-Tof from a positive blood 
culture by performing a series of centrifugations to obtain the identification in approxi
mately 30 min. Later, real-time PCR (GeneXpert, Cepheid) and immunochromatography 
(Biotech) systems were used for the rapid detection of the main resistance mecha
nisms (extended-spectrum beta-lactamases and carbapenemases). Finally, culture media 
were seeded and an antibiogram was performed using the MicroScan WalkAway plus 
system (Beckman Coulter). Borderline or anomalous susceptibility results were confirmed 
using the E-test (BioMerieux) or a microdilution system (Bruker), especially for colistin 
susceptibility. The antibiotic susceptibility profile was obtained 24 h after the blood 
culture tested positive.

The new method was incorporated into the routine antibiotic susceptibility study 
protocol for evaluation. The new system provided antibiogram results within 2–4 h, 
compared to 24 h for the MicroScan WalkAway plus system. Figure 1B illustrates protocol 
modifications based on the type of microorganism obtained in the blood culture and 
situations where the new system can be utilized.

Antibiotic resistance pattern: With the data obtained on the antibiotic susceptibil
ity of the microorganisms included in the study, the antibiotic resistance pattern was 
calculated using the EUCAST 2023 criteria for the susceptible or resistant category.

Data analysis

A categorical agreement between QuickMIC and Microscan is presented. Results are 
classified based on the type of discrepancy, categorized as very major, major, or 
minor discrepancy. A very major discrepancy was defined as the new method report
ing susceptible when the antibiotic was resistant. Conversely, a major discrepancy 
was identified when the new method classified the antibiotic as resistant despite it 
being susceptible. Minor discrepancies were considered when susceptible or resistant 
categories were reported as increased exposure (I) in the test system, or vice versa.

RESULTS

Out of 86 samples, 18 corresponded to bacteremias caused by Gram-negative bacilli not 
included in the panel and/or polymicrobial bacteremias. These samples, accounting for 
20.9%, were excluded from the study. Among the remaining 68 samples, the distribution 
was as follows: E. coli (n = 41, 60.3%), Klebsiella spp. (n = 14, 20.5%), Enterobacter spp. (n = 
5, 7.4%), P. aeruginosa (n = 4, 5.9%), Citrobacter spp. (n = 2, 2.9%), Proteus spp. (n = 1, 1.5%), 
and Serratia marcescens (n = 1, 1.5%). The detailed antibiotic resistance pattern found is 
presented in Table 1. A total of 816 antibiotic/microorganism combinations were tested 
(12 for each sample), revealing eight discrepancies. This yielded a concordance rate of 
99.02% between antibiotics. Detailed results are provided in Table 2.
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FIG 1 (A) Comparative scheme of the usual work protocol versus the new diagnostic method. (B) Comparative scheme of the 

time of each procedure according to the type of microorganism (both methods).
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DISCUSSION

The evaluated system excels in rapidly providing susceptibility data for multiple 
antibiotics against the primary pathogens associated with Gram-negative bacilli 
bacteremia. Compared to traditional systems, it demonstrates higher sensitivity and 
specificity, with a significantly shorter turnaround time (4–6 h vs 17–24 h). It is espe
cially useful for the early detection of microorganisms included in the recently consti
tuted “difficult-to-treat resistance” category, as they are not susceptible to all first-line 
antibiotics (carbapenems, β-lactam-β-lactamase inhibitor combinations, and fluoroqui-
nolones). The phenotypic results of the antibiogram obtained by QuickMIC facilitate the 
rapid implementation of appropriate measures to control the spread of these strains in 
the hospital environment (15–17).

The new system is particularly relevant for analyzing antibiotic susceptibility in 
Gram-negative bacilli against first-line medications, where rapid protein or gene-based 
tests are lacking. Thus, the rapid detection of resistance mechanisms in P. aeruginosa is 
notably limited by these methods, both against piperacillin/tazobactam, ceftazidime, or 
cefepime and against carbapenems or the new cephalosporins (ceftazidime/avibactam 
or ceftolozane/tazobactam). There is no rapid method available to detect resistance to 
any of the drugs mentioned, except in the case of strains producing carbapenemase. 
Therefore, the newly evaluated system provides valuable clinical information that is not 
typically provided by systems commonly distributed to clinical microbiology laborato
ries. This fact is very relevant; as rapid microbiological diagnosis has been seen to 
improve the management of patients with carbapenem-resistant P. aeruginosa (18–20).

Weaknesses include the inability to analyze polymicrobial infections or infections 
caused by microorganisms not validated for the system, typical of genotypic systems. 
Overall, it has been reported that 49.3% (N = 102) of polymicrobial cultures were 
incompletely identified by the FilmArray result (21). As market trends shift toward rapid 
microbiological diagnostics, evaluating these systems becomes imperative, considering 
local resistance epidemiology, stewardship team presence, and laboratory capabilities. 

TABLE 1 Resistance rates of isolates against the antibiotics testeda

Isolates, N = 61 Resistance rate (%)

AK CE CPF CL CFT CFA CTZ GEN ME P/T TIG TO

Escherichia coli (41) 0 12.2 26.8 2,4 12.2 0 9.8 4.9 0 0 0 7.3
Klebsiella pneumoniae (13) 0 7.7 7.7 7.7 15.4 0 15.4 7.1 0 15.4 - 7.7
S. marcescens (1) 100 0 100 100 0 0 0 0 0 0 - 0
P. aeruginosa (4) 0 75 25 0 - 0 50 - 25 50 - 25
Proteus spp. (1) 0 0 0 100 0 0 0 0 0 0 - 0

Isolates with inducible AmpC genes, N = 7 Resistance rate (%)

AK CE CPF CL CFT CFA CTZ GEN ME P/T TIG TO

Enterobacter cloacae complex (5) 0 25 25 0 50 0 50 25 0 25 - 25
Citrobacter spp. (2) 0 0 0 0 0 0 0 0 0 0 0 0
Klebsiella aerogenes (1) 0 0 0 0 0 0 0 0 0 0 0 0
aAK: Amikacin, CE: cefepime, CPF: ciprofloxacin, CL: colistin, CFT: cefotaxime, CFA: ceftazidime/avibactam, CTZ: ceftazidime, GEN: gentamicin, ME: meropenem, P/T: 
piperacillin/tazobactam, TIG: tigecycline, TO: tobramycin. The EUCAST 2023 cutoff points were used to classify the microorganisms in the susceptible or resistant category to 
the different antibiotics.

TABLE 2 Discrepancies between the usual method and the new QuickMIC systema

Discrepancy

Isolates AK CE CPF CL CFT CFA CTZ GEN ME P/T TIG TO

Escherichia coli VMD (1) VMD (2) - - - - - - - - - VMD (1)
Klebsiella pneumoniae - - - - M (1) - VMD (1) - - VMD (1) - -
S. marcescens - - - - - - - - - M (1) - -
aVMD = Very major discrepancy, the isolate is resistant to the usual method and susceptible to the new method. M: major discrepancy, the isolate is susceptible to the usual 
method and resistant to the new method. AK: Amikacin, CE: cefepime, CPF: ciprofloxacin, CL: colistin, CFT: cefotaxime, CFA: ceftazidime/avibactam, CTZ: ceftazidime, GEN: 
gentamicin, ME: meropenem, P/T: piperacillin/tazobactam, TIG: tigecycline, TO: tobramycin.
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These systems are especially beneficial in settings with high multidrug-resistant 
Gram-negative bacilli prevalence or serious infections in vulnerable patients (22–27).

In contrast, phenotypic studies of multiple antibiotics offer more comprehensive 
information compared to systems based on genotypic detection. This is due to the 
multitude of possible genetic variants, which increases the challenge of detecting less 
prevalent ones. For example, bacteria may produce extended-spectrum beta-lactamases 
other than CTX-M, or exhibit mechanisms of resistance to carbapenems unrelated to the 
production of the most prevalent carbapenemases. Additionally, some bacteria may be 
associated with hyperproduction of AmpC, affecting the analysis of beta-lactam drugs 
(28, 29). It is very difficult to detect the genetic mechanisms of resistance to other 
families of drugs, so phenotypic studies are much more important in this case (30, 
31). In addition to the correct treatment of multidrug-resistant bacteria, information on 
antibiotics from multiple families allows to choose the antibiotic with the narrowest 
spectrum within a few hours (32). In fact, EUCAST has proposed a rapid phenotypic 
system for the analysis of positive blood cultures using antibiotic discs, but it is validated 
for a limited number of microorganisms and antibiotics; the Vitek system (Biomerieux) 
is also being evaluated, to shorten the response time in case of positive blood cultures, 
with good results (12, 33, 34).

It is imperative to emphasize the necessity for rapid and precise management of P. 
aeruginosa infections, given the limitations of current rapid diagnostic methods and the 
questioning of traditional treatment protocols for highly vulnerable patients, owing to 
the prevalence of multi-resistant strains (12). Furthermore, the introduction of the new 
system holds promise in reducing carbapenem usage by providing information on the 
activity of multiple antibiotics. This enables the selection of treatment tailored to the 
clinical situation, with a narrower spectrum and reduced ecological and microbiome 
impact (35).

In relation to the discrepancies found between the two systems, they are very 
few despite the use of different technologies, which demonstrates their high clinical 
concordance; it is known that the phenotypic analysis of antibiotic activity is greatly 
influenced by the genetic characteristics of microorganisms, variations in the inoculum 
preparation, and in the incubation time (36).

The system’s ability to rapidly provide reliable information on 12 antibiotics will 
curb broad-spectrum antibiotic use, controlling antibiotic resistance while facilitating 
personalized patient treatment. However, this must be included in a protocol for the 
diagnosis of Gram-negative bacilli bacteremia, so that, following the criteria established 
by the diagnostic stewardship, the use of this technique is performed at the right time 
and on the right patient (37, 38, 39) .

Conclusions

The system evaluated provides rapid information on the antibiotic activity of 12 
antibiotics in the main Gram-negative bacilli associated with bacteremia, and can 
therefore, provide very useful information for the early adjustment of antibiotic 
treatment, for these processes. It is particularly useful in the management of P. aer
uginosa infections, because in these processes, the available rapid methods present 
significant limitations.
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