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ARTICLE INFO ABSTRACT

Dataset link: http://dx.doi.org/10.5281/zenod The efficiency of Concentrated Solar Power (CSP) plants strongly depends on steam condensation temperatures.
0.10806200 Current cooling systems, either wet (water-cooled) or dry (air-cooled), present trade-offs. Wet cooling towers
Keywords: (WCT) optimize performance but raise concerns due to substantial water usage, especially in water-scarce prone
Concentrated solar power locations of CSP plants. Dry cooling conserves water but sacrifices efficiency, specially during high ambient
Cooling system temperatures, coinciding with peak electricity demand. A potential compromise is a combined cooling system,
Modelling integrating wet and dry methods, offering lower water consumption, improved efficiency and flexibility.
Neural networks Incorporating such systems into CSP plants is of considerable interest, aiming to optimize operations under
Sensitivity analysis diverse conditions.

This research focuses on the first step towards this goal; developing static models for WCTs. Two
approaches, Poppe and Artificial Neural Networks (ANN), are developed and thoroughly compared in terms
of prediction capabilities, experimental and instrumentation requirements, sensitivity analysis, execution time,
implementation and scalability.

Both approaches have proven to be reliable, with Poppe providing better results, based on MAPE, for the
outlet temperature and water consumption (0.87 % and 3.74 %, respectively) compared to a cascade-forward
ANN model (1.82 % and 5.21 %, respectively). However, for the target application, the better execution time
favours the use of ANNs.

1. Introduction 2050 [1], which means that CSP will account for 11% of the electricity
generated worldwide and for 4% in the case of Europe.

Concentrated Solar Power (CSP) plants use mirrors to concentrate CSP plants are, in general, located in arid areas, where water
the sun’s energy to finally drive a turbine that generates electricity. is scarce. The efficiency of these plants is highly dependent on the
This technology currently represents a minor part of renewable energy temperature at which the steam is condensed. To date, the conventional
generation in Europe. Only approximately 5 GW are installed globally systems used to remove excess heat from CSP plants are either wet
(of which 2.3 GW in Europe are concentrated in Spain). However, the (water-cooled) or dry (air-cooled). The lowest attainable condensing
potential for growth is significant given the capability of CSP to provide temperature is achieved in wet cooling systems that depend on the wet-
renewable electricity when needed thanks to in-built energy storage bulb temperature, allowing CSP plants to achieve higher efficiencies.
continuing the production even in the absence of sunlight, unlike other However, this efficiency increase is at the expense of a high cost:
renewable technologies that are dependent on the availability of the excessive water use. Dry cooling systems eliminate the water use but

they lead to lower plant efficiencies when the ambient air temperature
is high. Those hot periods are often the periods of peak system demand
and higher electricity sale price. The combination of the advantages
of each of them into an innovative cooling system is thus of great
interest. There are different types of innovative cooling systems: those

energy source. Of increasing importance is also their potential appli-
cation in improving the manageability of the grid, replacing fossil fuel
alternatives. Their dispatchability enables plants to respond to peaks
in demand, and provide ancillary services to the grid. According to the
International Energy Agency forecasts, CSP has a huge potential in the ) . . .
long term, ranging from the 986 TWh by 2030 up to 4186 TWh by that integrate the dry and wet cooling systems into the same cooling
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Abbreviations

ACC
ANN

CF

CSp
Exp

FF
MAPE
MIMO
NDWCT

PSA
RBF
RMSE
WCT
MAE

Surface area of exchange per unit of
volume (m2/m3)

Me correlation parameter

Specific heat (J/kg K)

Differential of variable y

Frequency percentage (%)

Enthalpy (J/kg)

Heat transfer coefficient (W/m?2 K)
Mass transfer coefficient (kg/m? s)
Lewis number (= h¢/ <thpma ))

Mass flow rate (kg/s)

Merkel number

Number of data points

Me correlation parameter

Volumetric flow rate (m?/h)

R-squared

Temperature (°C)

Volume of the transfer region (m3)
Velocity (m/s)

Measurement variable for the ith data point
Estimated value of variable y;

Mean value of the experimental values
Height (m)

Relative humidity (%)
Humidity ratio (kg/kg)

Subscripts and superscripts

Air

Ambient

Fan

Inlet
Consumption
Outlet
Saturated
Water

Wet bulb

Air Cooled Condenser

Artificial Neural Network
Cascade-forward

Concentrated Solar Power
Experimental campaign
Feedforward

Mean Absolute Percentage Error
Multiple Inputs-Multiple Outputs
Natural Draft Counter-flow Wet Cooling
Towers

Plataforma Solar de Almeria
Radial-basis function

Root Mean Square Error

Wet Cooling Tower

Mean absolute Error
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device, which are called hybrid cooling systems and those that combine
separate dry and wet cooling systems, which are called combined
cooling systems. In the case of hybrid cooling systems, the dry section
are composed of compact heat exchangers included in a wet cooling
tower [2]. This kind of cooling systems can be considered as an efficient
cooling solution for CSP plants [3] due to the energy conservation and
water and greenhouse gas emissions savings. In the case of combined
cooling systems, different configurations can be found. The most com-
monly proposed in the literature is the one that considers an Air Cooled
Condenser (ACC) in parallel with a Wet Cooling Tower (WCT), as can
be seen in [4,5]. In this kind of configuration, the exhaust steam from
the turbine is condensed either through the ACC or through a surface
condenser coupled with the WCT. Another configuration, recently pro-
posed in [6] is a wet and a dry cooling tower (type air cooled heat
exchanger) sharing a surface condenser. In this case, the exhaust steam
from the turbine is condensed through the surface condenser and the
heated cooling water is cooled either through the WCT or through the
dry cooling tower. This kind of combined cooling systems are proposed
as the most suitable option for a flexible operation as a function of
the ambient conditions, since they allow to select the best operation
strategies to achieve an optimum water and electricity consumption
compromise [7]. In addition, if the optimization is combined with
energy demand forecasting as described in [8], the expected results can
be even better.

In order to perform such optimization, it is first necessary to develop
the modelling of the components of this combined cooling system.
Since the objective is performance prediction, this paper focuses on
the steady state modelling of the WCT. More specifically, the aim is
to compare two modelling strategies: that based on physical equations
and that based on black box models such as Artificial Neural Networks
(ANN), in order to see which one is more suitable for its integration
in the optimization of the complete process. In the case of the models
based on physical equations, the analysis of wet cooling towers has
its origin in [9], in which the theory for their performance evaluation
was developed. Merkel proposed a model based on several assumptions
to simplify the heat and mass transfer equations to a simple hand
calculation. However, these assumptions mean that Merkel’s method
does not reliably represent the physics of the heat and mass transfer
process in a cooling tower. This was already stated by Bourillot [10]
who concluded that the Merkel method is simple to use and can
correctly predict cold water temperature when an appropriate value of
the coefficient of evaporation is used. However, it is insufficient for the
estimation of the characteristics of the warm air leaving the fill and for
the calculation of changes in the water flow rate due to evaporation.
Jaber and Webb [11] developed the equations necessary to apply the
effectiveness-NTU method directly to counterflow or crossflow cooling
towers. This approach is particularly useful in the latter case and
simpler compared to a more conventional numerical procedure. Notice
that the effectiveness-NTU method is based on the same simplifying
assumptions as the Merkel method. On the other hand, Poppe and
Rogener [12] developed the Poppe method. They derived the governing
equations for heat and mass transfer in a wet cooling tower and did
not make any simplifying assumptions as in the Merkel theory, which
makes it a very precise model. As a matter of fact, predictions from
the Poppe formulation have resulted in values of evaporated water
flow rate that are in good agreement with full scale cooling tower test
results [13]. This model has already been used for the evaluation of the
thermal performance of solar power plants using different condensation
systems (wet, dry and hybrid system), as can be found in Cutillas
et al. [14].

In the case of black box models, numerous authors in the literature
have designed ANN models for WCT with different objectives, such as
performance prediction, simulation and optimization. One of the first
works in this area is the one described in [15] where an ANN model
was developed to predict the performance of a forced-counter flow
cooling tower at lab scale. In this case, the input variables were the
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dry bulb temperature, the relative humidity of the air stream entering
the tower, the temperature of the water entering the tower, the air
volume flow rate and the cooling water mass flow rate. The outputs
of this model were the heat rejection rate at the tower, the mass flow
rate of water evaporated, the temperature of the cooling water at the
tower outlet, the dry bulb temperature and the relative humidity of
the air at the outlet of the tower. The results obtained with a 5-5-5'
ANN demonstrated that wet cooling towers at lab-scale can be modelled
using ANNs with a high degree of accuracy. There are also ANN models
for Natural Draft Counter-flow Wet Cooling Towers (NDWCT) at lab-
scale, such as the one proposed by [16]. In this case, the authors used
a 4-8-6 ANN structure and considered some additional variables, such
as air gravity, wind velocity, heat transfer coefficients and efficiency as
outputs. All these works can be useful to validate the model develop-
ment methodology but may fail predicting the performance of WCT at
larger scale. In this sense, special attention deserves the study carried
out by [17] where an 8-14-2 ANN model was proposed to predict the
performance (the cooling number and the evaporative loss proportion)
of NDWCTs at commercial scale. The model is based on 638 sets of field
experimental data collected from 36 diverse NDWCTs used in power
plants. It is a very challenging work since it covers samples from a
wide range of tower sizes and capacities being the Mean Relative Error
(MRE) below 5%.

From the literature review, it can be stated that there are works
based on Poppe and ANN models that evaluate the main output vari-
ables of WCTs. Nevertheless, to the authors knowledge, there are no
studies focused on the comparison between both modelling strategies.
Also lacking is a comprehensive analysis of the different aspects that
affect the models development and performance.

This paper presents a novel and exhaustive comparison between the
two modelling approaches, at steady state and with a focus on opti-
mization applications, in terms of predictive capabilities, experimental
and instrumentation requirements, execution time, implementation and
scalability. A sensitivity analysis is performed to further analyse and
compare each case study. It also presents and evaluates all relevant
aspects of interest in the development of such models, specifically for
ANNs, model configuration, architecture and topology are discussed.
This methodology is applied to a real 200 kW,, WCT integrated in a
combined cooling pilot plant at the Plataforma Solar de Almeria (PSA),
for which an extensive experimental evaluation has been carried out to
develop and validate both modelling strategies.

The paper is organized as follows: Section 2 contains the description
of the experimental facility, the methodology followed to conduct this
work, details the two modelling approaches (Poppe and ANNs) and the
different experimental campaigns used to evaluate the different mod-
elling approaches as well as the experimental procedure for conducting
tests in the pilot plant. In Section 3, individual results are first presented
for each modelling alternative followed by a discussion and comparison
of them, covering aspects such as: prediction capabilities, experimental
data requirements, instrumentation requirements, sensitivity analysis,
scalability and performance in diverse conditions, implementation and
execution time. Finally, in Section 4 the most important findings and
final recommendations of this research are presented.

2. Materials and methods

With the aim of comparing two modelling strategies established to
predict the outlet water temperature and the water consumption of
WCT (physical equation-based and ANN-based models), three different
experimental campaigns have been carried out at the pilot plant of
combined cooling systems located at PSA (see a detailed description in

! The notation n,-...-n, represents the architecture of the ANN model, where
I is the number of layers and n; are the nodes in each one of the layers.
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Section 2.1): the first one for the calibration of the physical equation-
based model, the second one for tuning the ANN-based model and the
last one for the validation and comparison of the two modelling strate-
gies. These strategies and the experimental campaigns are exhaustively
detailed in Sections 2.3 and 2.4, respectively.

2.1. Description of the pilot plant

The pilot plant of combined cooling systems located at PSA (see
the layout in Fig. 1) consists of three circuits: cooling, exchange and
heating. In the cooling circuit (see a picture in Fig. 2), water circulating
inside the tube bundle of a Surface Condenser (SC) can be cooled
through a Wet Cooling Tower and/or a Dry Cooling Tower (type Air
Cooled Heat Exchanger, ACHE), both with a designed thermal power
of 204 kW,,,. In the exchange circuit, a saturated steam generator of
80 kW,,, (on the design point), generates steam at different pressures (in
the range between 82 mbar and 200 mbar), which is in turn condensed
in the surface condenser. In this way, the steam transfers its latent heat
of condensation to the refrigeration water, that is heated. Finally, in the
heating circuit, a solar field with a thermal power of 300 kW,, at the
design point, provides the energy required by the steam generator, in
the form of hot water. It is a unique, very flexible, fully instrumented
and versatile facility, able to operate in different operation modes:
series and parallel mode, conventional dry-only mode (all water flow
is cooled through the dry cooling tower) and wet-only mode (all water
flow is cooled through the wet cooling tower). The instrumentation
related to the WCT is described in Table 1. Note that the sensors
measuring the air velocity and temperature and relative humidity at the
outlet area of the wet cooling tower have not been installed in the plant.
Portable sensors were used instead in some experiments, as described
in Section 2.4.1.

In regards to operational aspects of the system, note that the cooling
water and air flow rates at the experimental facility (i1, and air, 1,
respectively), are modified with the Pump 1 and the fan frequency
percentage SC-001, respectively (see Fig. 1).

2.2. Methodology

Fig. 3 schematically shows the procedure followed for the calibra-
tion, tuning and validation of the two modelling strategies established
as well as for the comparison between them.

As previously mentioned, three experimental campaigns have been
performed, shown in Fig. 3 as Exp 1, Exp 2, and Exp 3. Exp 1 corre-
sponds to the Poppe model calibration campaign and it was designed
for the calibration of the first principles model. The aims of such
campaign was to fit a function (mapping) that relates the air mass
flow rate at the outlet of the tower, ,, with the frequency of the
fan, f;,,, and to calibrate a WCT performance coefficient: the Merkel
number, Me. Exp 2, which corresponds to the ANN tuning experimental
campaign, is a set of data obtained over several years of operation in
a wide range of operating and ambient conditions that has been used
for tuning the ANN model. Finally, in the validation and comparison
experimental campaign (Exp 3), new data, not included in the other
two campaigns, has been collected by applying a design of experiments
in order to validate and compare the proposed modelling strategies.

To evaluate the quality of the models fit to the experimental data,
four performance metrics were evaluated: coefficient of determination
(R?), Root Mean Square Error (RMSE), Mean Absolute Error (MAE) and
Mean Absolute Percentage Error (MAPE). These metrics are described
below.

Coefficient of determination. R? measures the proportion of the
variance in the predicted variable that can be attributed to the inde-
pendent variable(s), in this case the considered system inputs. Values
close to one indicate a better prediction accuracy. It is calculated as
follows:

27:1()’1' - }A’i)z

RP=1- .
Z:’zl(yi - y)Z
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Table 1
Characteristics of instrumentation.
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Measured variable Instrument Range Measurement uncertainty
Water temperature Pt100 0-100 °C 0.03 + 0.005-7*
(TT-001, TT-006)
Cooling water flow rate Vortex flow meter 9.8-25 m*/h +0.65% o.r.”
(FT-001)
Water flow rate Paddle wheel 0.05-2 m*/h +0.5% of F.S¢
(FT-004) flow meter +2.5% o.r
Ambient temperature Pt1000 —40-60 °C +0.4@20 °C
Relative humidity Capacitive sensor 0%-98% +3% o.r @20 °C
Air velocity Impeller anemometer 0.1-15 m s7! +0.1 m s7! + 1.5% o.r
Outlet air temperature Pt100 -20-70 °C +0.5 °C
Outlet air humidity Capacitive sensor 0-100% +2%

2 Value of the temperature in °C.

b Of reading.

¢ Full scale.

4 Mean value.
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Fig. 1. Layout of combined cooling systems pilot plant at PSA.

where y; is the measured or observed value for the output variable, in
the ith observation, j; is the estimated value of the same variable and
n is the total number of observations. Finally, y is the mean value of
the experimental values.

Root Mean Square Error. RMSE is a statistical measure of the
difference between the values predicted by a model and the observed
values. It is calculated as the square root of the mean of the squared
differences between the predicted and observed values and it has its
units.

RMSE =

Mean Absolute Error. It represents the average absolute difference
between predicted and actual values.

n
1
MAE = - i — ¥
. ; |y = 3|
Mean Absolute Percentage Error. As the MAE, it calculates the

difference between the predicted and the actual values, but in this case
it does so in relative terms:

Yi _JA’,'

n

1

MAPE = -
n Z Vi

i=1

‘ %X 100%

On the other hand, the robustness and reliability of the models
have been evaluated by a sensitivity analysis. It involves systematically
assessing how variations in input parameters impact the model’s out-
puts. In this case, the Sobol method [18], which is a variance-based
approach, has been used. This method decomposes the total variance of
the model output into contributions from individual input parameters
and their interactions. By quantifying the relative importance of each
parameter, Sobol analysis facilitates the identification of influential
factors, enabling a more nuanced understanding of complex systems
characterized by numerous interacting variables (five in this case).
Sobol sensitivity analysis provides a quantitative basis for assessing
the consistency and validity of results when different approaches to
model a system are compared. ANNs models with similar sensitivity
analysis outcomes to those of the physical model, are likely to capture
the essential features of the system, offering a means to verify their
credibility and ensuring that the proposed solutions align with the
underlying physical principles. Therefore, Sobol sensitivity analysis
emerges as a powerful tool not only for understanding the system
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(a) The cooling circuit

(b) Back view of the WCT

Fig. 2. Pictures of the combined cooling pilot plant at PSA.

input-outputs relationships, but also as a way to validate and com-
pare various modelling approaches. The sensitivity analysis has been
performed using SAlib, an open source sensitivity analysis tool for the
Python programming language [19,20].

2.3. Modelling

The static models presented in this section have been developed to
predict two main outputs, the water temperature at the outlet of the

WCT, T,,,, and the water consumed due to evaporation losses, 7, -
The inputs variables required by both modelling approaches, Poppe
model and ANN models, are: the cooling water flow rate (si,,), the wa-
ter temperature at the inlet of the WCT (T,,,;), the ambient temperature
(T,,), the ambient relative humidity (¢.,) and the frequency percentage
of the fan (f fa,,) (or its equivalence in air mass flow rate,” r,).

2 ANN uses as input f;,, whereas Poppe’s model uses ri,.
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Box L.
2.3.1. Poppe model . . .
The well-known Merkel number is accepted as the performance My + driy, Mg (1 +tw+ dw)
coefficient of a wet cooling tower [21]. This dimensionless number A dh ht dh
is defined in Eq. (1), and it measures the degree of difficulty of the w + @y +
mass transfer processes occurring in the exchange area of a wet cooling
tower. [ 0 _ ]
hpa,V - -
Me = D.av , (1) r ,_ _‘ W
m

w

where hp is the mass transfer coefficient, a; is the surface area of
exchange per unit of volume and V is the volume of the transfer region,
as described in the Nomenclature Section.

The Merkel number can be calculated using the Merkel and Poppe
theories for the performance evaluation of cooling towers. On the one
hand, the Merkel theory [9] relies on several critical assumptions, such
as the Lewis factor (Le) being equal to 1, the air exiting the tower
being saturated with water vapour and it neglects the reduction of
water flow rate by evaporation in the energy balance. On the other
hand, the Poppe theory [12], which is the one used in this work, do
not consider simplifying assumptions, thus being the one most usually
preferred. In this theory, the authors derived the governing equations
for heat and mass transfer in the transfer region of the wet cooling
tower (control volume shown in Fig. 4) assuming a one dimensional
problem. In this figure, the red and green dashed lines indicate the fill
and air-side control volumes, respectively.

Following the detailed derivation process and simplification of the
previously-mentioned governing equations described in [21], the major
following equations for the heat and mass transfer obtained, according
to the Poppe theory, are: (see the Egs. (2)—(4) in Box I), where the

| * I
| drivg, = hp (Ws —w) dA

dz |

| _’hC(Tw—T)dA I

Mgy P me (1 +w), h

Fig. 4. Control volume in the exchange area of a wet cooling tower for counterflow
arrangement.

quantity referred to as Me in Eq. (4), is the Merkel number calculated
according to the Poppe theory. The above described governing equa-
tions can be solved by the fourth order Runge-Kutta method to provide
the evolution of the air humidity ratio, air enthalpy and Merkel number
inside the transfer area of the cooling tower (fill). Once these profiles
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network B

——0

network A

(b) Cascade configuration

Fig. 5. ANN model configurations considered.

are known, the amount of water lost due evaporation can be calculated
as per Eq. (5). Refer to [21] for additional information concerning the
calculation procedure.

mw,lost = ma(wa,o - wa,i) (5)

It is important to mention that the Merkel number varies with the
operation conditions and its value can be obtained using a correlation
with the water-to-air mass flow ratio as an independent variable. One
of the proposed correlations in ASHRAE [22] is: Me = ¢ (ni,,/mi,) ",
where the constants ¢ and n have been obtained from the fitting of the
experimental data, as it is shown in Section 3.2.

2.3.2. Neural network models

Machine learning algorithms are unique in their ability to obtain
models and extract patterns from data, without being explicitly pro-
grammed to do so. They are more effective with large volumes of
data but can also be applied to build steady state regression models
with fewer information of a process. Artificial neural networks (ANNs)
are part of this set of algorithms and, as the name suggests, have a
behaviour similar to biological neurons. Their structure is formed by
a succession of layers, each one composed by nodes (or neurons) and
they receive as input the output of the previous layer. This process
is subsequently repeated until the final layer which has a number of
neurons equal to the number of outputs.

There are important aspects to be considered in the ANN model
design, such as the model configuration, the network architecture and
the network topology. They are discussed below.

Model configuration. The WCT model has two outputs, and thus
several configurations are available for the implementation of the
model as shown in Fig. 5. The first one is a Multiple Inputs—Multiple
Outputs (MIMO) configuration, where a single network receives the
five defined inputs and directly produces the two desired outputs. The
second one is a cascade structure. This cascading approach involves
training a network (network A in Fig. 5(b)) to predict the outlet water
temperature using the initial five inputs. Subsequently, these inputs,
along with the output from the temperature-predicting network, are fed
into a second network (network B in Fig. 5(b)) that is in charge of fore-
casting the system’s water consumption. A potential advantage of this
configuration is that it may reduce the experimental data requirements
to obtain satisfactory results.

Network architectures. Three network architectures have been
implemented and tested:

1. Feedforward network (FF) - Fig. 6(a). This is the base network
architecture, where different layers are added sequentially and
the flow of information is unidirectional. The transfer function
adopted in the hidden layers is the differentiable Log-Sigmoid,
whereas the one employed in the output layer is a linear one
with no saturations.

2. Cascade-forward network (CF) - Fig. 6(b). It is a variation on
the feedforward network since it adds direct connections from
the input and hidden layers to the output layer.

3. Radial-basis function network (RBF) - Fig. 6(c). The transfer
functions used in the first layer of the RBF network are different,
they are local Gaussian like functions. Also, instead of multiply-
ing by the weights, the distance between inputs and weights is
computed and the bias is multiplied instead of added [23].

Network topology. Two-layer networks (one hidden and one out-
put layer) can learn almost any input—output relationship, including
non-linear ones. Adding more layers can improve the learning for
more complex problems. However, increasing the number of layers or
neurons per layer increases the training computational requirements,
requires more data for a satisfactory model and can lead to overfitting.
Therefore, the process is usually started with two layers and then the
number of layers is increased if they do not perform satisfactorily [23].
In this study, for the feedforward and cascade-forward architectures,
one and two hidden layers have been tested with the following config-
urations: 5, 10, 20, 5-5, 5-10, 10-5, 10-10. For the case of the RBF, it
only has one hidden layer and neurons are added sequentially during
the training process up to a maximum which is set to 120 neurons.

Training process. The next important aspect to consider is the
training process. For the FF and CF networks many Gradient- or
Jacobian-based algorithms can be utilized. In this case, the Levenberg—
Marquardt backpropagation algorithm [24] has been used. It is a fast
algorithm, ideal for multilayer networks with up to a few hundred
weights and biases enabling efficient training. The training in this case
is done in batches since sequential training is slower and does not
produce better results. All data have been normalized applying the z-
score normalization method. The criteria established for deciding when
to stop the training is the following one: when the performance on
the validation set increases (worsens) or when the gradient is below
a minimum (1 x 10~7) for a number of iterations or epochs, or when a
maximum number of 1000 epochs is reached. The number of iterations
to wait, often refereed as patience, is set to 6. Finally, the selected
network parameters will be those of the best epoch.

For each network architecture, the training process was repeated
a total of ten times (this is the recommended practice if the compu-
tational requirements allow it, since it guarantees reaching a global
optimum with a high degree of confidence [25]). The optimal archi-
tecture and training was selected according to a performance function,
which in this case has been the Mean Square Error (MSE) with the
values normalized.

In the case of the RBF network, the chosen training method consists
in two stages which treats the two layers of the RBF network separately.
The first layer weights and biases are tuned based on the orthogonal
least squares method [23], while for the second layer are computed
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Fig. 6. Considered ANN architectures.

in one step using a linear least-squares algorithm. During training,
neurons are added to the first layer (in increments of 20) trying to
minimize the MSE to some goal, which in this case is set depending
on the case study: 10 for the MIMO configuration and 0 (°C?) and
20 (12/h?) for temperature and water lost networks, respectively, for
the cascade configuration. Finally, a parameter called spread is used
to set the first layer biases. Larger values of this parameter promote
a smoother approximation of the training data (more generalization),
conversely, lower values provide a more exact fit to the training data.
Values from 0.1 to 30 have been tested for this parameter.

2.4. Experimental campaigns

As mentioned, two modelling approaches have been implemented
for performance evaluation of a WCT: the Poppe model (based on phys-
ical equations) and ANN-based models (which are data driven). With
the aim of calibrating, validating and comparing both modelling strate-
gies, three experimental campaigns have been performed. The set of
experimental data obtained with the pilot plant provides a fundamental
value to the study carried out and it is one of the strengths of the study
performed. A total of 132 steady-state experimental points have been
obtained thanks to the thorough experimentation conducted. These
data cover a large variety of ambient conditions (different seasons, days
and nights) and thermal loads (from 27 kW to 207 kW).

The normative framework followed to carry out the experiments, in
order to ensure stable conditions, has been the standards UNE 13741,
titled Thermal Performance Acceptance Testing of Mechanical Draught
Series Wet Cooling Towers [26], and CTI’s Acceptance Test Code for Water
Cooling Towers [27]. These standards specify the test duration and the
allowed variations of the most representative ambient and operating
magnitudes (water flow rate, heat load, cooling tower range, wet-
bulb and dry-bulb temperatures and wind velocity) during the tests.
Although the duration of the test should not be less than one hour
according to the standards, due to the low capacity of the WCT in the
PSA pilot plant and the operational experience, the duration of the
tests has been reduced to up to 30 min. Once stable conditions are
maintained during the defined interval time, the average and deviations
values of each measurement are calculated in order to check that they
are within the allowable limits of the norm, which finally lead to a valid
steady-state operating point.

2.4.1. Experimental campaign 1 - Exp 1

This campaign was specifically designed for the calibration of the
physical model. In total, 19 experimental tests were performed at the
combined cooling pilot plant at PSA. The physical model focuses on
the calculation of the Merkel number which, according to the literature
ASHRAE [22], is not a constant value. Instead, it varies depending on

the operating conditions (water-to-air mass flow ratio, s, /r,). There-
fore, the experimental campaign has been designed to cover different
water-to-air mass flow ratios. Both variables, the water and the air flow
rates, were varied within the allowable range for plant operation. In
the case of the water flow rate, it ranged from 8 m3/h to 22 m3/h,
and in the case of the air mass flow rate, it was modified by changing
the fan frequency from 12.5 Hz to 50 Hz (fan frequency percentage,
S fans from 25% to 100%). The magnitudes required to experimentally
determine the air mass flow rate (air velocity and air temperature and
relative humidity) were measured at the outlet area of the cooling
tower with the sensors listed in Table 1. The outlet area was divided
into 9 quadrants and the above mentioned magnitudes were registered
at the centre of each quadrant. The obtained values were averaged to
determine the mean velocity, temperature and relative humidity used
in the air mass flow rate calculation.

As the measurements for the air mass flow rate are a specific
requirement for the Poppe model, the r1, — f,, relationship shown in
Eq. (6) was also derived during this experimental campaign. Following
the same experimental procedure described earlier, air velocity, tem-
perature and humidity maps were measured for 8 different f,,, levels
(ranging from 30% to 100% in 10% intervals). This correlation enables
the calculation of the air mass flow rate using the permanent sensors
installed in the facility.

tig = —0.001472, +0.1743f,, = 0.7251. (6)
2.4.2. Experimental campaign 2 - Exp 2

The data required for an ANN model depend on several factors
such as the complexity of the model and the error allowed or the
diversity of the inputs. With the aim of obtaining a reliable ANN model
for the WCT, data collected over several years of operation of the
combined cooling system have been used for tuning. They are a set of
115 stationary data covering the following operating ranges: ambient
temperature, T,,, [9-39] °C, ambient humidity, ¢, [10-87]1%, inlet
water temperature, T, ; [33-41] °C, cooling water flow rate, q,,, [6-23]
m?/h and fan frequency percentage, f ran [21-94]%. The thermal load
in these tests varies in the range of [27-178] kW ,. The number of
steady-state data used is a reasonable value when compared to other
similar ANN models of counter-flow cooling towers, as in the case
of [15], where 81 experimental points were collected for training and
testing.

2.4.3. Experimental campaign 3 - Exp 3

With the aim of validating and comparing both models, a dataset of
17 tests (different from the ones taken for experimental campaigns 1
and 2) has been used. This experimental campaign was designed using
a design of experiments based on full factorial design with 4 factors
and 2 levels (low and high), whose values are shown in Table 2.
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Table 2
Design of experiments for model comparison.
Variable Low level High level
T, (°C) <10 >15
T, (°C) <37 >39
i, (kg/s) <3.3 >5
Ty - Ty, () <7 s
T R R e e e T —
@z 6F J
2
<55
T sk | - e
A 12:00:00 13:00:00 14:00:00

{ T,,(C) )

Thermal

50 by . | |
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Y
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Fig. 7. Example of one experiment at PSA pilot plant (July with two valid steady-state
operating points).

An additional test at design operating conditions of the WCT (T,
=21°C,T,,; =40°C, m, =69kg/sand T,,; — T, , = 7 °C) has been
also included in this test campaign, where T}, ,, is the ambient wet bulb
temperature and T, , the temperature of the water at the outlet of the
WCT.

3. Results

This section firstly shows an example of one experiment at the PSA
pilot plant to visualize how the steady state values included in the
different data sets are calculated. Then, the results obtained with the
two modelling approaches are analysed, and finally a comparison and
discussion is presented.

3.1. Experimental tests performed at PSA pilot plant

Fig. 7 shows the main variables involved in one of the experiments
performed at the pilot plant at constant air flow rate (f,, = 25%). As
can be observed, there are two time intervals in this case, in which
the process is at stationary conditions according to the normative
framework mentioned in Section 2.4. In order to process the results of
the experimental tests and identify valid time intervals, such as the ones
shown in this example, a function has been implemented in the Matlab
environment. This function identifies whether the standard criteria is
met and calculates the mean values of the required variables.

3.2. Poppe model

Table 3 shows the average values of the variables required to calcu-
late Me, which were obtained from Exp 1. As can be observed, the range
of air and water mass flow rates are 1.16-4.32 kg/s and 2.17-6.15 kg/s,
respectively. Regarding the environmental conditions, these were quite
similar for all tests: high ambient temperatures (ranging between 32 °C
and 41 °C), and low ambient relative humidities (between 13 % and
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Fig. 8. Experimental results for the Me number as a function of s, /r,.

40 %) since the experiments were carried out during the summer
season.

Fig. 8 shows the variation of the Merkel number as a function of the
water-to-air mass flow ratio (s1,,/rm,) using the data shown in Table 3.
As can be seen, the Me decreases with 1, /m, values following a linear
trend on log-log scale.

Following the correlation for the Merkel number of a wet cooling
tower described in Section 2.3.1, the parameters ¢ and » obtained from
the data fitting are 1.516 and 0.693, respectively.

3.3. ANN models

When tuning a neural network, the data is divided into two distinct
sets. The first one is the training set and it is used to tune the network
parameters. The second one is the evaluation set and it is used to
evaluate the quality of the ANN. In the case of FF and CF models, the
evaluation of the training stop criteria is performed with this second
set. In the case of the RBF implementation, the evaluation set is used to
select the best spread. For this study, one random division of the data
available in Exp 2 has been made, and used to tune the alternatives.
The dataset consists on 115 points, of which 80% was assigned to the
first set (92 points) and 20% to the second one (23 points).

As mentioned in the Methodology Section 2.3.2, two different model
configurations are tested with three different network architectures,
resulting in 6 distinct models. The best topology obtained for each
alternative can be seen in Table 4 - Topology,® where best is defined in
terms of performance metric value for the evaluation set (20% of Exp
2). MIMO feedforward networks favour the use of a single hidden layer
(20-2), and two in the cascade configuration, while cascade-forward
networks make use of two hidden layers in both configurations. In the
case of the RBF there is a clear trend, where the cascade temperature
predicting network uses the most neurons (92) and the water loss one
the least (29). It follows that the MIMO configuration is somewhere
in between with 37. This trend continues on the spread values, where
lower values are optimal when more neurons are present (10.78 for T, ,

3 In Table 4, when Model config is MIMO, the topology for the outlet

temperature and water loss is the same since it is the same network.
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Table 3
Averaged values obtained from the experiments performed in Exp 1.
Test  fyo H2) T,(CC ¢, () T, O T,0 T,,0C0 T,0C0 m kgs?) o, kgs™")
1 12.5 33.31 39.58 22.53 48.88 34.79 46.32 1.193 2.173
2 25 34.60 30.41 21.34 44.64 27.97 38.04 2.623 2.170
3 37.5 34.11 38.58 22.92 44.43 26.51 34.73 3.666 2.169
4 50 36.02 29.94 22.23 43.74 25.43 34.97 4.248 2.170
5 12.5 40.50 13.11 19.97 46.85 36.94 49.64 1.157 3.263
6 25 39.75 12.97 19.50 40.30 28.42 39.92 2.588 3.272
7 37.5 36.93 22.39 20.79 38.13 26.25 35.51 3.648 3.266
8 50 35.79 16.13 18.24 35.34 23.32 32.33 4.319 3.268
9 12.5 34.69 32.55 21.94 46.53 39.44 47.83 1.177 4.895
10 25 33.57 27.24 19.83 38.37 30.15 38.25 2.619 4.914
11 37.5 35.66 25.14 20.71 35.39 27.57 35.94 3.637 4.942
12 50 33.53 29.29 20.30 34.50 26.27 33.36 4.292 4.940
13 12.5 32.84 38.77 21.99 46.25 40.57 46.99 1.186 6.096
14 25 34.25 16.50 17.42 36.41 29.81 39.49 2.596 6.127
15 37.5 35.99 16.91 18.59 33.54 27.04 35.38 3.651 6.133
16 50 35.80 14.73 17.83 31.30 24.87 32.99 4.302 6.147
Table 4
Summary table of the prediction results obtained with the different modelling approaches studied.
Predicted variable Modelling alternative Model config Topology Performance metric Evaluation time (s)
R? () RMSE (s.u.) MAE (s.u.) MAPE (%)
T \ T A T \Y T \Y
Poppe - - - 098 - 0.33 - 0.27 - 0.87 6.288
Feedforward ANN MIMO 20-2 093 089 0.52 0.74 0.37  0.51 1.22 1.78 0.004
Cascade-forward ANN MIMO 10-5-2 0.93 0.90 0.50 0.70 0.35 0.47 1.15 1.65 0.004
T, O Radial basis ANN MIMO 37-2 099 095 0.23 0.51 0.18  0.40 0.57 1.35 0.004
Feedforward ANN Cascade 10-10-1 094 089 0.46 0.72 0.32  0.49 1.05 1.71 0.007
Cascade-forward ANN Cascade 10-10-1 0.94 0.87 0.46 0.79 0.31 0.52 1.02 1.82 0.008
Radial basis ANN Cascade 92-1 099 0.69 0.23 1.22 0.08  0.92 0.25 3.20 0.008
Poppe - - - 097 - 8.47 - 6.74 - 3.74 6.288
Feedforward ANN MIMO 20-2 0.95 0.90 11.75 16.27 9.47 14.53 7.74 8.44 0.004
Cascade-forward ANN ~ MIMO 10-5-2 0.96  0.94 10.52 12.68 8.23 10.96 6.68  6.33 0.004
tity, 1o (1/h) Radial basis ANN MIMO 37-2 099 093 4.88 13.86 3.67 10.93 294  6.76 0.004
Feedforward ANN Cascade 20-1 0.97 0.93 9.64 13.57 7.50 11.18 6.12 6.39 0.007
Cascade-forward ANN Cascade 10-10-1 0.97 0.95 8.52 11.24 6.18 9.15 4.92 5.21 0.008
Radial basis ANN Cascade 29-1 0.98 091 7.63 15.70 4.54 12.41 413 6.93 0.008

compared to 27.86 for 1, ,, in the cascade configuration). This trend
is a consequence of the chosen MSE goals during the training process
(see Section 2.3.2).

On the other hand, Fig. 9 shows the results obtained with each
ANN alternative. It shows the perfect fit together with the results
obtained with the MIMO feedforward (a), cascade CF (b) and MIMO
radial-basis (c) alternatives. Comparing the feedforward (a) and the
cascade-forward (b) cases, it can be seen that their responses are almost
identical for the temperature prediction, with about 0.5 °C of RMSE in
both data sets. The radial-basis network outperforms both networks for
this output in the training set (RMSE = 0.2 °C), but more importantly,
in the evaluation set with a value of 0.3 °C. Focusing on the water loss
predictions, once again the RBF network shows the best performance
(6.4 1/h), followed by the MIMO FF (10.5 1/h) and finally the Cascade
CF (13.2 1/h).

It should be noted that this analysis is based on data from Exp 2,
in the following section, more meaningful results are analysed since
they are based on Exp 3, which contains new data unseen during the
training process, and thus it guarantees independent results. The im-
portant thing to take from these results, is that there are no significant
differences between the train and evaluation sets, which indicates a
satisfactory training.

3.4. Discussing the two modelling approaches
In this section, the results obtained from each modelling approach

are compared in terms of several aspects: their prediction capabilities,
the experimental requirements to develop the models, their sensitivity
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response to the different inputs, scalability and other practical aspects
such as ease of implementation and computational requirements.

3.4.1. Prediction capabilities

The results of each modelling alternative and its comparison can be
visualized in Fig. 10 and Table 4. Fig. 10 shows the results obtained
with the models using Exp 3. It shows the perfect fit together with
the results obtained with Poppe’s model, MIMO FF, cascade CF, and
MIMO RBF. In Table 4, the performance of the studied modelling ap-
proaches are included for the different performance metrics (described
in Section 2.2). T represents the performance metric value for the
training/calibration dataset (Exp 1 or Exp 2 depending on the case),
and V for the validation and comparison one (Exp 3). In all cases
the model representing each alternative is in the best case scenario,
i.e. maximum number of points available. On the other hand, s.u.
indicates that the units of the column are the same as from the source
variable.

Comparing both modelling approaches (see Fig. 10), it can be
outlined that both models provide a good prediction of the output
variables, falling most of the discrepancies (errors) within the uncer-
tainty range. Poppe’s model provides a better prediction of the outlet
temperature, obtaining an RMSE of 0.33 °C and an R? of 0.98. In
comparison, the best ANN alternative (RBF MIMO) has a slight worse
performance with an RMSE of 0.51 °C and R> = 0.95. In terms of
water consumption, the physical model has a better prediction accuracy
in terms of RMSE and R? (8.5 1/h and 0.97) compared to 11.24 1/h
and 0.95 for the best ANN model (cascade CF). It can be stated that,
although the results are better for the physical model (specially in the
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Fig. 9. ANN regression model results with Exp 2 in best case scenario.

case of the outlet temperature prediction), both approaches produce
valid results with high accuracy levels.

3.4.2. Experimental data requirements

In order to estimate the minimum number of tests required to obtain
satisfactory results with both modelling strategies, an analysis was
performed in which each modelling alternative was calibrated/tuned
for different case studies with different amounts of available data, and
then the performance metrics were evaluated. In this way, trends in the
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predictive accuracy of the models as a function of the available data
can be identified. When the variation becomes small, it can be stated
that the model has converged and adding more information provides
diminishing returns.

For the physical model, the number of tests from Exp 1, used to
calibrate Me correlation, was varied from 2 up to 16 data points added
sequentially. In the case of the ANN models, the available tuning data
(Exp 2) was increased in steps of 10%, starting from the availability of
10% up to the entire data set (100%).
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Fig. 10. Model results obtained with Poppe and ANN models and data of Exp 3.

In both cases, the criteria for selecting the data was not random,
but it was done by applying physical knowledge. The water-to-air mass
flow ratio, m,,/m,, is a good indicator for selecting the operation points
to be fed to the model. The trend observed in Fig. 8 (decreasing Me
for increasing 1, /m,) has been extensively reported in the literature.
This behaviour is explained by the increase in the amount of water
per unit of air that lead to a less effective cooling [28]. The situa-
tion corresponding to the minimum m,,/m, can be interpreted as the
maximum air flow rate for a given water flow rate to be cooled. This
results in the maximum driving force and, therefore, maximum Merkel
number. As 11, decreases progressively, the driving force decreases for
a given rm,,, and Me decreases accordingly. Based on this knowledge,
the selection starts by choosing extreme points for the water-to-air mass
flow ratio in the Me-r,/m,, relationship from the available data, which
gives information of the system operating in its limits. Subsequently
intermediate points are added, covering this way the whole operating
range of the cooling system.

The results of this study are presented in Fig. 11, where the x-
axis represents the number of available data points and the y-axis a
model performance metric (RMSE) obtained when the model outputs
are compared to data from Exp 3. From the results obtained, it can
be clearly seen the advantage of the physical model in terms of data
requirements, since with the minimal amount of points, good results
are obtained, and by enlarging the available data points to 8-10, low
variation in the RMSE evolution can be observed for both predicted
variables. In the case of the ANN-based approaches, the results differ
depending on the ANN alternative.

In terms of the outlet temperature, very good results (low error and
variation) are obtained with the minimal dataset (10% of available
data, 12 data points) for feedforward and cascade-forward in any
configuration (MIMO and cascade). If more data is added, RMSE is
reduced from 1.1 up to 0.7 °C. Although the MIMO RBF outperforms
the results of the other ANN alternatives, it does so only from 90 points
onwards. For this case, the downward trend is much more noticeable
but constant, which cannot be stated for the cascade RBF, displaying
an erratic evolution up to 70 points.

Similar conclusions can be drawn for the water consumption, except
that in this case the two RBF configurations achieve satisfactory results
much earlier, starting from 23 points.

Summarizing, both modelling approaches, Poppe’s model and
ANNs, produce satisfactory results since their predictions fall well
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Fig. 11. Root Mean Square Error (RMSE) evolution as a function of the number of
points used for calibration/training of the Poppe’s and ANN approaches.

within the range of uncertainty for all the case studies, although
the obtained results, in terms of RMSE, favour the physical model.
Therefore, while the ANN model benefits from as much data as possible,
the Poppe model is already able to produce satisfactory results with
just two properly selected points. These two points are easy to identify
in advance because they are related to the maximum and minimum
m,,/m, ratio of the wet cooling tower. In practice, to minimize the
error prediction, around 5 points are often used. Out of the ANN
alternatives, considering both output variables, if less than 70 data
points are available, cascade-forward and feedforward alternatives with
any configuration are the best option, producing satisfactory results
with as low as 10 points. On the other hand, if enough data is available,
MIMO RBF should be considered as a strong candidate, but not in the
cascade configuration alternative.

3.4.3. Instrumentation requirements

Another important consideration is the instrumentation require-
ments. Poppe’s model requires measurements of the airflow at the
outlet of the WCT, while the ANN model can use the frequency of the
WCT fan directly as an input.

This measurement does not need to be done inline with each test.
Instead, a fan frequency-mass flow curve can be fitted during the
calibration campaign. Re-calibration of this relationship may become
necessary over time due to degradation of the fan, but in that case, the
ANN approaches will also be affected.

3.4.4. Sensitivity analysis

A sensitivity analysis was performed using Sobol’s technique. The
results are different sensitivities indices such as total sensitivity indices
(total-order), first-order sensitivity indices (frst-order), and interaction
sensitivity indices (second-order). First-order measures the direct effect
of an input variable on the output, excluding interaction effects with
other variables, while the second-order measures specifically this in-
teraction effects. Finally, total-order indices account for the total effect
of an input variable, including both direct and interaction effects. In
Fig. 12, only total-order sensitivity indices are represented in the y-axis
for the two output variables (outlet temperature on the top and water
consumption on the bottom). Its value ranges from 0 to 1, where 0
means the variable has no effect, and 1 means it has a significant effect
on the output.* The x-axis represents the system’s inputs and includes

4 Values can go slightly above 1 due to computing errors. This is due to
the Sobol’ sequence sample generator producing some unfeasible test samples
that need to be discarded.
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Fig. 12. Sobol’s sensitivity analysis result for different case studies.

a bar for some of the obtained models with different calibration or
training data points.

Comparing the results obtained for the different modelling ap-
proaches in Fig. 12, it can be seen that very homogeneous results are
obtained in all cases, except for the Cascade RBF case, which was
the worst performing of all the alternatives. These results serve to
confirm that, at least from a sensitivity analysis point of view, all valid
approaches are similarly sensitive to variations in the same inputs,
which is desirable since they are trying to predict the same physical
system. In the case of Cascade RBF, a discrepancy can be observed; less
relevant input variables (7, and ¢, ) are overestimated and overall
higher uncertainties in sensitivity are observed.

It is also important to highlight that the observed results are in
agreement with the underlying physics of the heat and mass transfer
processes occurring in the exchange area of the tower. The frequency
of the fan and the volumetric flow rate are directly related to 1, and
m,,, respectively, and they have a high influence on the heat transfer
coefficients. These coefficients govern the evaporation processes, which
impact the evaporation rate (water lost due evaporation) and the outlet
water temperature. On the other hand, the ambient conditions and the
inlet water temperature also affect the outputs, but less significantly,
since the driving force for the evaporation is the difference between
the inlet air enthalpy and the enthalpy of saturated air evaluated at
water temperature.

3.4.5. Scalability and performance in diverse operating and environment
conditions

One important advantage of the Poppe model is its adaptability
to large scale systems, as long as the system configuration remains
the same. This allows to study and analyse pilot scale plants and
extrapolate the results to industrial sized plants.

In addition, this model is also capable of accurately predicting the
behaviour of the WCT in conditions that have not been tested (different
environmental conditions or inlet water temperatures). It would even
be valid for unknown s, /m,, although the reliability of the model
would be lower if this ratio moves away from those experimentally
used for calibration. On the contrary, ANN models are only applicable
to the system and operating ranges they are trained for. Even though
there are techniques to create new ANN models from previously trained
ones [29], this is not a straightforward issue and it would require
expertise and additional experimental data.
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3.4.6. Implementation

In the recent years and due to the increase popularity of artificial
intelligence, there are many libraries of easy access for most common
programming languages, which makes the development and implemen-
tation of ANN models achievable by non experts or specialized teams.
The need of extensive data can be mitigated if an online steady-state
identification is implemented [30], which allows updating the model
with a growing dataset. In the case of the Poppe model, although
the number of tests is not a problem, it is necessary to have a deep
knowledge of psychrometrics and heat and mass transfer disciplines
to handle the governing equations described in Section 2.3.1 and the
variables involved. On the other hand, solving the system of differential
equations requires a non linear solver, which nowadays it is not a
concern since there is a wide variety of software tools and packages
available.

3.4.7. Execution time

In the case of the ANN model, the execution time is very low (in the
order of milliseconds) and it is independent on the input conditions. In
the case of the Poppe model, it is larger as it depends on the non-linear
solver used, and this in turn has a variable processing time depending
on how far the solution is from the initial point. The execution time
for each alternative in evaluating the entire validation dataset (Exp 3
consisting of 17 tests, see Section 2.4.3) is included in Table 4. All
of these results were obtained running each alternative on the same
hardware, an 11th Gen Intel Core i7-1165G7 with 16 GB of RAM.

In general, the ANN models take 0.004 s to complete the evaluation
in the MIMO configuration, and about double for cascade configuration.
This difference was expected since the cascade configuration is running
two networks in series. Nonetheless, in both cases the execution time
is very low, especially compared to the obtained 6.3 s (almost a factor
of 10%) for the same task with Poppe’s implementation.

This significant advantage of the ANN alternative is partly due
to how fast the computation of neural networks is, and also due to
their vectorization capabilities. Evaluating a bigger set would not take
significantly more time.

This issue can limit the use of the physical model in optimization
applications such as the determination of optimal operating conditions
to minimize the water consumption of combined cooling systems for
CSP plants. In this kind of use-cases, iteration times of less than a
second are required to make its implementation feasible.

4. Conclusions and final recommendations

This paper presents a thorough comparison between two mod-
elling alternatives: artificial neural networks and Poppe physical model.
It is applied to wet cooling towers when they are integrated into
combined cooling systems, with the aim of optimizing this integra-
tion. The main conclusions obtained during the investigation and final
recommendations can be summarized as follows:

Regarding the prediction of the output variables, in the case of
the outlet water temperature, both models reported good results, with
low errors falling within the uncertainty range of the experimental
equipment. Nonetheless, the physical model performs better than the
best ANN alternative (MIMO RBF): R? = 0.98 and RMSE = 0.33 °C
compared to R?> = 0.95 and RMSE = 0.51 °C, respectively.

For the predictions of water consumption, it was shown that the
Poppe model accurately predicts this variable, with results of R?> = 0.97
and RMSE = 8.47 1/h. The best ANN alternative (cascade CF) achieves
close results with an R?> = 0.95 and RMSE = 11.24 1/h.

However, the Poppe model reached such reliable prediction levels
with a much lower number of tests, needing only 2. In comparison, the
ANN alternatives need more data, at least 10 (with a good distribution
over the operating range) for the FF and CF ANN models.

One of the main strengths of the Poppe model is its ability to predict
the operation of the tower regardless of the conditions tested. This
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model is recommended to be used when it is necessary to scale up to
larger systems, as long as the system design remains the same. In the
case of the ANN model, it is only applicable to the same conditions and
the same tower for which the model was developed.

The ANN model also has several strengths compared to the Poppe
model. The most important one is the lower execution time. The ANN
model is faster by orders of magnitude, it can be vectorized and its
execution time is more constant regardless of the input conditions, in
the order of milliseconds. Another advantage is that it can be developed
and implemented without knowledge of the physical processes that take
place in a wet cooling tower.

Ultimately, the factor that determines which alternative to use is
the application of the model. For applications where its feasibility does
not depend strongly on execution time, the physical model provides
good results with minimal experimental data requirements. However, if
execution time is an important factor, then any of the ANNSs alternatives
shown in this work, or other alternative machine learning methods
are worth exploring. In those cases where both fast execution times
are required and few experimental data is available, a combination of
the two strategies is recommended. In this scenario, an ANN could be
trained using data generated by the physical model and then validated
using the available experimental information.

For the case study objective, a novel combined cooling system
coupled to a CSP plant, the model needs to be integrated into an
optimization scheme, so execution times are a priority and the predic-
tive capabilities of the ANNs alternatives are satisfactory. The authors’
recommendation for this or similar applications is to use a cascade-
forward ANN architecture in a cascade model configuration or a MIMO
radial-basis, either trained using experimental data if available, or using
data provided by the physical model.

As a final remark, the results and conclusions presented here should
not be taken as absolute, but rather as a methodology to systemat-
ically and rigorously compare both techniques. The family of neural
network architectures is large and ever-growing, with potential reduc-
tion of some of the weaknesses outlined here. In addition, machine
learning methods such as Gaussian Process Regression [31], Random
Forest [32], ensemble methods such as Gradient Boosting [32] or
Support Vector Machines [33] could be further explored.
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