
Analytical calculation of the flow superposition effect

on the power consumption in oscillatory baffled

reactors
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Abstract

The aim of this communication is to clarify some aspects related to the

power consumption in continuous Oscillatory Baffled Reactors (OBRs). The

first aspect studied is the effect of the flow superimposition on the power

consumptions associated to the net flow and the oscillatory flow. The quasi-

steady model is used to obtain an expression for the oscillatory flow effect on

the net flow power consumption, and vice versa. The expression obtained for

the oscillatory flow effect is in good agreement with the one available in the

literature, whose deduction is still unknown. The second aspect is the effect

of the energy recovery in the power consumption. An analytical expression,

function of the pressure drop-velocity phase lag, is derived, showing that the

power consumption difference between a system with and without energy

recovery can be significant.
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Nomenclature1

A cross sectional area of the tube (m2), πD2/42

D tube inner diameter (m)3

f oscillation frequency (Hz)4

Fn factor for the influence of the oscillatory flow on the net pump

power consumption

5

Fosc factor for the influence of the net flow on the oscillator power

consumption

6

FNER factor for the influence of no energy recovery on the oscillator

power consumption

7

Kp constant for the pressure drop losses along the test section

(Pa/(m2/s2))

8

Δp instantaneous pressure drop (Pa)9

Δpmax pressure drop amplitude, considered as a perfect sine wave

(Pa)

10

qmax flow rate amplitude, considered as a perfect sine wave (m3/s)11

t time (s)12

T period (s)13

un mean velocity of the net flow (m/s)14

uosc mean instantaneous velocity of the oscillatory flow (m/s)15

u mean instantaneous overall velocity of the flow (m/s)16

W averaged power consumption (W)17

x0 oscillation amplitude, center to peak (m)18

Z OBR length (m)19

20

Dimensionless groups21

2



Ren net Reynolds number, ρUnD/μ22

Reosc oscillatory Reynolds number, ρ(2πfx0)D/μ23

Ψ velocity ratio, Reosc/Ren24

25

Greek symbols26

δ pressure drop-velocity phase lag (rad)27

μ dynamic viscosity (kg/(m·s))28

ρ fluid density (kg/m3)29

θ phase (rad)30

θ0 phase at which the overall velocity is zero (rad)31

ω angular frequency (rad/s)32

33

Subscripts34

ER considering energy recovery35

NER considering no energy recovery36

n related to the net flow pump37

osc related to the oscillator38

0 without considering the effect of the flow superposition39

40

1. Introduction41

Oscillatory baffled reactors (OBRs) are a form of plug flow reactor, ideal for42

performing long reactions in continuous mode, as the mixing is independent43

of the net flow rate [1]. The superposition of an oscillating motion on a44

low velocity, net flow through a baffled tube creates a series of well-mixed45
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volumes, which are responsible for the decoupling of plug flow from net flow46

velocity. A full review of the applications of oscillatory flow technology is47

presented in [2].48

Several aspects of OBRs have been thoroughly analysed in the open lit-49

erature, like mixing [3], heat transfer enhancement [4] and scaling-up [5].50

However, the number of investigations dealing with the power consumption51

mechanisms in OBRs is comparatively scant, and only a few works based52

on CFD have addressed this problem in the last years [4, 6, 7]. In most of53

the cases, the approach for analysing the power consumption is based on54

neglecting the effect of the net flow rate. This is supported by the high55

oscillatory-to-net velocity ratios that are required in OBRs for achieving an56

adequate level of plug flow [1]. As a result of this approach, the most used57

empirical models for the analysis of power consumption in OBRs, namely the58

quasi-steady model [8] and the eddy enhancement model [9], take only into59

account the power consumption for the generation of the oscillatory motion60

(oscillator power consumption).61

The crossed influence of net flow and oscillatory flow components on power62

consumption is, however, intuitive, and both contributions must be simul-63

taneously considered for a proper modelling analysis in OBRs. A precursor64

work following this strategy was performed in 1984 by Noh and Baird [10],65

who analysed the net component of pressure drop in a cocurrent reciprocat-66

ing plate extraction column. Applying the quasi-steady model, they derived67

a numerical expression for the averaged pressure drop in a flow with superim-68

posed net and oscillatory components. The results showed an overestimation69

of the quasi-steady model for high net flow velocities, and an underestima-70
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tion for low net flow rates when there is no oscillation. The authors proved71

a better performance of the model for the higher frequencies, which was ex-72

plained by the more uniform orifice coefficient values found for the resulting73

higher Reynolds number regime. However, the expression proposed has been74

seldom adopted by other authors, apparently due to its relative complexity.75

In 1995, Mackley and Stonestreet [11] introduced a factor to quantify the76

augmentation of the pumping power that sustains the net flow rate (net flow77

pumping power), when an oscillatory flow is superimposed (Equation 1).78

Fn =

(
1 +

(
4Ψ

π

)3
) 1

3

(1)

This factor is referenced in [11] as a personal communication with Prof.79

M.H.I. Baird, who authored a significant number of works in the field of80

pulsating columns [12, 13, 14]. It is striking that, in spite of being the81

most utilised approximation for the assessment of the interaction between82

net and oscillatory flows [7, 15, 16], the experimental or theoretical evidence83

of this expression is not available -to the best of our knowledge- in the open84

literature.85

A complementary factor, able to evaluate the increased oscillator power con-86

sumption as a result of a net flow rate through the tube has not been devised87

so far. This aspect has been justified by the fact that, in OBRs, the oscilla-88

tory flow is much higher than the net flow (i.e. high velocity ratio). However,89

it would be interesting to quantify that statement.90

Alternatively, recent studies [7] have proposed to nondimensionalize the power91

consumption by using the maximum velocity (net plus oscillatory) as the92

characteristic velocity. This total power is of high interest to correlate the93
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mixing quality and the power density, and quantify the performance of the94

OBRs under given flow conditions. However, this approach is not able to95

distinguish the net flow pumping power from the oscillator power, which is96

an important aspect in order to design both systems.97

Another aspect of interest, which has been barely treated in the modelling98

of power consumption in continuous OBRs, is the ability of the oscillation99

mechanism for absorbing and releasing mechanical energy. Jealous and John-100

son [8] pointed out that this aspect could be relevant as, in a certain period of101

the oscillation cycle, the power demand is negative and therefore susceptible102

to storage. This takes place when the pressure drop and velocity signals have103

opposite signs. Hafez and Baird [13] explained that the ability of an oscil-104

lation system to store mechanical energy requires the inclusion of a flywheel105

or other highly inertial components. Baird and Stonestreet [9] discussed the106

possible energy recovery effects at the end of strokes of the oscillation pis-107

ton of a continuous OBR, since velocity becomes null and a different sign108

between pressure and velocity could occur. The most extended expression109

for power dissipation in OBRs [17] accepts that the system is able to recover110

energy, even though the classical assemblies for the generation of oscillation111

in continuous OBRs are not designed to this aim.112

The aim of this communication is to clarify, from a theoretical basis, some113

open questions exposed above related to the power demand in OBRs. Firstly,114

the quasi-steady model and a formulation based on the integral form of the115

momentum equation along an OBR is developed, in order to devise analytical116

expressions for the net flow pumping power, the oscillator power consumption117

and the consequent implications of the interactions between both components118
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of the flow in continuous OBRs. Secondly, a mathematical expression is119

obtained for the evaluation of the oscillator power consumption in a pure120

oscillatory flow system without energy storage. It should be noticed that,121

while of interest, the calculation of the absolute power is out of the scope of122

this communication.123

2. Oscillatory and net flows interaction124

2.1. Physical model125

Elements related to power consumption. A simplified schematic of the el-126

ements of a general continuous OBR is shown in Figure 1. A pump (1)127

sustains the net flow rate across the test section, and a double acting cylin-128

der (2) generates the oscillatory flow, which is superimposed upon the net129

flow. The details of the oscillatory flow device are irrelevant in the context of130

the following deductions, e.g., it could equally be a diaphragm or a syringe131

pump. For sake of simplicity, it will be referred as an oscillator.132
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uosc

un

u(t)=un+uosc

(t)

(t)

(2)

(1)

Figure 1: Hydraulic schematic of a continuous Oscillatory Baffled Reactor: (1) net flow

pump, (2) oscillatory flow system.

Along the section of the circuit painted in red there is only a constant net133

flow, as imposed by the pump (1). In the blue section there is only a pure134

oscillatory flow, which follows, typically, a sinusoidal curve, according to the135

displacement of the oscillator. In the violet section, representing the test136

section A-B, both flows are superimposed.137

Model assumptions and simplifications. These are the assumptions and sim-138

plifications of the model:139

• The oscillatory flow follows a perfect sinusoidal wave. This is a reason-140

able approximation because the devices which generate the oscillatory141

flow are designed in order to follow a sinusoidal movement.142

8



• The flow behaviour is quasi-steady, i.e., the instantaneous frictional143

pressure drop is identical to the one which would exist in a steady144

flow whose mean velocity equals the instantaneous velocity. Apart145

from fully turbulent flows [7], this behaviour has also been reported in146

laminar flows at very low oscillation intensities [18].147

• The instantaneous pressure drop is a quadratic function of the flow148

velocity during the whole oscillation cycle. It is evident that the flow149

would be laminar during some fractions of the cycle when the mean flow150

velocity is low, and the instantaneous friction factor would be a function151

of the instantaneous Reynolds number. However, it is considered that152

the chaotic behaviour affects the whole cycle and the relation between153

the instantaneous pressure drop and velocity is not dependent on the154

Reynolds number.155

With regard to the quasi-steady and turbulent assumptions, we present here156

a mathematical derivation that might clarify our assumption. The power157

density, Wosc/(AZ), of the oscillator assuming the previous hypothesis: 1)158

pure sinusoidal velocity; 2) quasi-steady flow; and 3) fully turbulent flow, is:159

ε =
4Kp

3πZ
(x0ω)

3 (2)

where Kp is a constant which is the relationship between the instantaneous160

pressure drop and the flow velocity. This constant depends on the fluid161

properties and the geometry of the baffles, but it has been considered as162

independent of the Reynolds number. If this expression is compared with163

the power density provided by the quasi-steady and the eddy enhancement164
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models, the constant Kp for these models is, respectively:165

Kp,qs =
nb ρ

2 C2
0

(1− S2)

S2
(3)

Kp,ee =
9π nb ρ lm
8 x0 S

(4)

As a conclusion, both models can be seen as quasi steady and fully turbulent166

models. The eddy-enhancement model has been validated at moderately low167

oscillatory Reynolds numbers for single-orifice baffles with sudden constric-168

tions [9]: Reosc = 40− 85 at St = 0.95, and Reosc = 130− 350 at St = 0.15.169

Ergo our model should be valid, at least, for the same operational regimes.170

This statement should be taken very cautiously, because in those ranges the171

flow in that geometry has been identified -at least- as chaotic, whereas this172

hydraulic status can change completely for a different geometry. As an exam-173

ple, the quasi steady model provided results lacking physical meaning [7]in174

single-orifice baffled tubes with smooth constrictions for Reosc ≈ 100.175

The third assumption implies that the pressure drop in the test section cannot176

be obtained by superposition, i.e., by adding the pressure drop due to the177

oscillatory flow and the net flow separately. Consequently, the respective178

power consumptions of the net flow pump (1) and the oscillator (2) are179

affected by the superposition of both flows.180

Problem formulation. The mean flow velocity, u(t), between the points A181

and B is the superposition of the net and the oscillatory flows:182

u(t) = un + uosc(t) = un + x0 ω cos(ωt) (5)
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The existence of a negative velocity (flow reversal) depends on the ratio of183

the maximum oscillatory flow velocity and the net flow velocity, defined as184

the velocity ratio:185

Ψ =
x0 ω

un

(6)

The typical evolution of the net and the oscillatory flows is shown in Figure186

2. As can be seen in Figure 2 (a), for the case with Ψ < 1, there is no flow187

reversal. The interest of this case is merely theoretical, because in COBRs188

a velocity ratio of Ψ > 1 is required (Figure 2 (b)) in order to achieve flow189

reversal and generate cyclic vortex dispersion during both halves of the cycle,190

increasing the radial mixing.191
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Figure 2: Flow in the different sections of the circuit, for a case with a) Ψ = 0.7; (b) Ψ = 2

Following the third assumption, the pressure drop in the test section, A-B,192

experienced by the net flow pump and the oscillator can be expressed as:193

ΔpAB(t) = Kp (un + x0 ω cos(ω t)) |un + x0 ω cos(ω t)| (7)

The constant KP takes into consideration all the elements between the points194

A and B, where the pressure drop is a result of the overall flow velocity, i.e.195

superposition of the net and the oscillatory flows. The absolute value ensures196

that the pressure drop direction is the same as the overall flow direction at197

each instant.This pressure drop has to be overcome by both the net flow198

pump and the oscillator. Therefore, the averaged net flow pumping power is199
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given by:200

W̄n =
1

T

∫ T

0

A un ΔpAB(t) dt (8)

and the averaged oscillator power consumption is:201

W̄osc =
1

T

∫ T

0

A uosc(t) ΔpAB(t) dt (9)

2.2. Effect of the oscillatory flow on the net flow pumping power consumption202

In order to solve the integral (Equation 8), the expression of the pressure203

drop in the section A-B (Equation 7) is introduced and the change of variable204

θ = ωt is done:205

W̄n =
1

2π

∫ 2π

0

A un Kp (un + x0 ω cos(θ)) |un + x0 ω cos(θ)| dθ (10)

Due to the presence of the absolute value in the integral, the way to solve it is206

different if the velocity is negative or not during a fraction of the cycle. For a207

case with flow reversal, Ψ > 1, the minimum flow velocity is negative during208

a fraction of the cycle. The part of the cycle when there is flow reversal209

can be delimited calculating the phase of the cycle when the velocity is zero.210

From Equation 5:211

θ0 = arccos

(
− un

x0 ω

)
= arccos

(
− 1

Ψ

)
(11)

Thus, the integral to be developed is:212

W̄n

A
=

Kp

2π

[
−
∫ 2π−θ0

θ0

un (un + x0 ω cos(θ))2 dθ +

∫ 2π+θ0

2π−θ0
un (un + x0 ω cos(θ))2 dθ

]
(12)
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As can be observed, the lower and upper limits of the integration are θ = θ0213

and θ = 2π + θ0, respectively. This way the number of sections to consider214

in the integration is reduced.215

For a case without flow reversal, Ψ < 1, the integral can be solved directly:216

W̄n

A
=

Kp

2π

∫ 2π

0

un (un + x0 ω cos(θ))2 dθ (13)

The resolution of both expressions allows us to obtain the oscillatory flow217

effect on the net flow, Fn, as the relation between the net flow pumping218

power considering the effect of the oscillatory flow, W̄n, and the pumping219

power without considering it, W̄n,0. Thus:220

Fn = W̄n

W̄n,0
=

⎧⎨
⎩ A+B Ψ+ C Ψ2 Ψ ≥ 1

1 + Ψ2

2
Ψ < 1

A = 2θ0
π
− 1; B = 4 sin(θ0)

π
; C = 2θ0−π+sin(2θ0)

2π

(14)

In Figure 3 the oscillatory flow effect factor is plotted as a function of the221

velocity ratio, and compared with the expression proposed by Baird and used222

by Mackley and Stonestreet [11].223
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Velocity ratio,

Equation 11
Equation 1 [11]

Figure 3: Oscillatory flow effect factor on the net power consumption according to Equa-

tion 14

As can be seen, both expressions provide seemingly identical results. In order224

to observe in detail the difference between both expressions, Figure 4 shows,225

as a percentage, the deviation of the expression proposed by Baird from the226

one calculated in this section (Equation 14).227
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Velocity ratio,

,

Figure 4: Deviation of the factor used by Mackley and Stonestreet [11] from the factor

obtained from Equation 14

The maximum deviation is around a 4 %, and it decreases significantly for228

higher velocity ratios. For a velocity ratio Ψ > 2, typical in an OBR, the229

deviation between both expressions is lower than a 2 %. Based on these230

observations, it can be concluded that the expression proposed by Baird, in231

spite of not being exact, is precise enough for design purposes.232

2.3. Effect of the net flow on the oscillator power consumption233

In order to solve the integral (Equation 9), the expression of the pressure234

drop in the section A-B (Equation 7) is introduced and the change of variable235

θ = ωt is done:236
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W̄osc =
1

2π

∫ 2π

0

A (x0 ω cos(θ)) Kp (un + x0 ω cos(θ)) |un + x0 ω cos(θ)| dθ
(15)

For the cases with Ψ < 1 and Ψ ≥ 1 we proceed in an analogous way to the237

previous section.238

The factor that accounts for the effect of the net flow rate on the oscillator239

power consumption, Fosc, is calculated as the relation between the oscillator240

power consumption in the presence of a net flow rate, W̄osc, and without it,241

W̄osc,0:242

Fosc =
W̄osc

W̄osc,0
=

⎧⎨
⎩

3
8

(
A
Ψ2 +

2B
Ψ

+ C
)

Ψ ≥ 1

3π
4Ψ

Ψ < 1

A = 4 sin(θ0); B = 2θ0 − π + sin(2θ0); C = 4 sin(θ0)− 4
3
sin3(θ0)

(16)

This factor is represented in Figure 5 as a function of the velocity ratio.243

As can be observed, the factor tends to infinity when the velocity ratio is244

near zero, when the oscillator power consumption would be zero. The factor245

decreases sharply when the velocity ratio is increased. In practice, OBRs246

work with a velocity ratio Ψ > 2, being 2 < Ψ < 4 the optimum range247

proposed by Stonestreet and Van der Veeken [1]. For this range, it would be248

obtained an increase in the oscillator power consumption of around 36 % for249

Ψ = 2 and ∼9 % for Ψ = 4. Therefore, it can be stated that the net flow250

effect on the oscillator power consumption can be significant in the typical251

working range of an OBR.252
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Velocity ratio,

Figure 5: Net flow effect factor on the oscillatory flow power consumption

The implementation of Equation 16 is not simple, so a simplified expression253

is proposed in the form of Equation 1:254

Fosc =

(
1 +

(
3π

4Ψ

)3
) 1

3

(17)

This expression has been obtained from a statistical fitting, obtaining the255

coefficient and the two exponents which provide the best fitting to the values256

predicted by Equation 16 in the range 0 < Ψ < 20. The coefficient and the257

two exponents have been rounded to achieve a more simplified expression.258

The maximum deviation of this expression from the exact solution (Equation259

16) is lower than a 4 % in the range 0 < Ψ < 20. Thus, as Equation 1, it260

can be applied with enough accuracy for design purposes.261
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We can infer that Equation 1 was obtained in a similar way: solving the262

integral for the averaged net flow pumping power (Equation 8), either ana-263

lytically or numerically. Then, a suitable mathematical expression was fitted264

to the values predicted by that solution.265

Application of the flow interaction factors. In this paragraph, a simple scheme266

for applying the flow interaction factors is presented. The first step is to de-267

cide the nominal conditions for the design of the OBR, i.e., net Reynolds268

number, oscillatory Reynolds number and Strouhal number. Then:269

• The net flow pumping power consumption should be calculated from270

the net flow rate and the pressure drop related to that net flow. This271

information is not commonly available in the open literature on OBRs,272

because the studies are commonly focused on the consumption of the273

oscillator. As an example, the net Fanning friction factor can be found274

for single-orifice and tri-orifice baffles in [19] and [18], respectively.275

• The previous power is multiplied by the factor in Equation 1, function276

of the velocity ratio, Reosc/Ren. This power should be used for the277

selection of the net flow pump engine.278

• The oscillator power consumption is calculated by means of experi-279

mental or numerical tests, or alternatively using one of the two models280

available [9].281

• The previous power is multiplied by the factor in Equation 17, function282

of the velocity ratio, Reosc/Ren. This power should be used for the283

selection of the oscillator engine.284
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3. Effect of the energy recovery on the power consumption285

The ability of the system to store/recover energy has been discussed in few286

number of investigations. The flywheel effect, i.e., the ability of the oscillator287

to store kinetic energy, was firstly mentioned by Jealous and Johnson [8],288

but the first attempt to assess if a system fulfils that model was made by289

Hafez and Baird [13]. The authors proposed that the flywheel effect could be290

checked if the power consumption deducted from the pressure drop-velocity291

curves matches the value measured by a wattmeter connected to the motor292

of the oscillator.293

If there is energy recovery, i.e., if the energy is recovered by the system294

during the fraction of the cycle when the pressure drop and the velocity have295

opposite directions, the power consumption, WER, is:296

W̄ER =
1

T

∫ T

0

qmax sin(ω t) Δpmax sin(ω t+ δ)dt (18)

where qmax and Δpmax are the amplitudes of the instantaneous flow rate and297

pressure drop signals, respectively. The only assumption in this procedure298

is that both variables follow a sine function. This assumption is based on299

some experimental results in single-orifice baffles [9] and the fact that, if the300

pressure drop is not sinusoidal, it can be described by a fundamental sine301

wave obtained by statistical fitting [6, 18]. It is important to point out that no302

assumptions have been made regarding the flow behaviour (quasi-steadiness303

or turbulence) or the type of baffle geometry.304

The change of variable: θ = ωt is made:305

W̄ER =
1

T

∫ 2π

0

qmax sin(θ) Δpmax sin(θ + δ)dθ (19)
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The result of the above integral over an oscillation cycle gives the expression306

obtained by Mackay et al. [17]:307

W̄ER =
qmax Δpmax cos(δ)

2
(20)

However, for the case with no energy recovery, the part of the cycle with308

opposite directions of the pressure drop and the flow velocity should not be309

taken into account for the calculation of the averaged power consumption.310

In Figure 6 this part of the cycle is delimited between dashed lines.311

half cycle 1 (+) half cycle 2 (-)

Phase,

velocity
pressure drop

or

Figure 6: Velocity and pressure drop in a pure oscillatory flow

Due to the symmetry of the functions between θ = [0, π] and θ = [π, 2π] it is312

possible to integrate over only one of the ranges. After removing the part of313
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the cycle when the pressure drop and the velocity have opposite directions,314

corresponding to θ = [π − δ, π], the integral to solve is:315

W̄NER =
2

2π

∫ π−δ

0

qmax sin(θ) Δpmax sin(θ + δ)dθ (21)

The amplitudes of the pressure drop and the flow rate are constants, so they316

can be extracted from the integral:317

W̄NER =
qmax Δpmax

π

∫ π−δ

0

sin(θ) sin(θ + δ)dθ (22)

Applying the product-to-sum trigonometric identity, the expression left is:318

W̄NER =
qmax Δpmax

2π

∫ π−δ

0

− cos(2θ + δ) + cos(δ)dθ (23)

W̄NER =
qmax Δpmax

2π

[
−1

2
sin(2θ + δ) + cos(δ) θ

]π−δ
0

(24)

W̄NER =
qmax Δpmax [cos(δ)(π − δ) + sin(δ)]

2π
(25)

This is the power consumption required by the oscillator in a circuit with319

only oscillatory flow and without energy recovery. The relation between the320

power consumption in a system without energy recovery (Equation 25) and321

with it (Equation 20) is given by:322

FNER =
W̄NER

W̄ER

=
cos(δ)(π − δ) + sin(δ)

π cos(δ)
=

π − δ + tan(δ)

π
(26)

The power increase (as a percentage) is plotted in Figure 7 as a function of the323

pressure drop-velocity phase lag. For a low phase lag, δ < 0.5, there is almost324

no increase in the power consumption, lower than a 1.5 %, but the effect is325
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significantly higher when the phase lag is increased above that value. The326

power consumption increase tends to infinity when the phase lag reaches the327

value π/2. This situation corresponds to a null power consumption if there328

is energy recovery in the system.329

Phase lag,
0.25 0.5 0.75 1.25 1.5

Figure 7: Pressure drop-velocity phase lag effect on the power consumption of a system

without energy recovery

It should be noticed that, in order to apply this factor, the phase lag should330

be known. The phase lag for a given condition has to be obtained by ex-331

perimental testing or numerical simulation (assessment of the pressure drop332

and the velocity signals), because there are no predictive models in the open333

literature, and the available experimental data is scant. For the sake of prov-334

ing the relevance of these results in practice, the only experimental results335
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available in the open literature [9] are used as a mere reference: the maxi-336

mum phase lag reported, 1 rad, would imply a power consumption increase337

of around 18 % as compared with the expression proposed by Mackay et al.338

(Equation 20).339

To sum up, in the first place, it should be established if the system is able340

to store/recover energy. If the system is capable of recovering energy, the341

expression proposed by Mackay et al. [17] (Equation 20) for the power density342

can be used to obtain the power consumption. If there is no possibility for343

energy recovery, the factor proposed in this section (Equation 26) should be344

applied, multiplying the power consumption of a system with energy recovery345

(Equation 20).346

4. Conclusions347

• Assuming that the flow is quasi-steady and fully turbulent, a fac-348

tor which considers the nonlinear effect of the oscillatory flow on the349

net pump power consumption has been proposed. This factor is a350

function of the velocity ratio. The factor proposed by Baird: Fn =351

(1 + (4 Ψ/π)3)1/3 is in agreement with the one proposed in this com-352

munication (with deviations lower than 2 % for Ψ > 2), while no jus-353

tification has been found for Baird’s factor. Due to its simplicity we354

recommend the use of the factor proposed by Baird.355

• Assuming that the flow is queasi-steady and fully turbulent, a factor356

which considers the nonlinear effect of the net flow on the oscillator357

power consumption has been proposed. The superposition of the net358

flow can lead to an increase of around 36 % for Ψ = 2.359
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• Assuming that both the velocity and the pressure drop follow a perfect360

sine wave, an expression has been proposed to quantify the increase in361

the power consumption if the system is not able to recover energy. For362

example, an 18 % increase in the oscillator power consumption can be363

observed for a phase lag δ = 1 rad.364
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