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A B S T R A C T

Regarding global warming and climate change, carbon dioxide (CO2) is one of the most important greenhouse 
gases. Simulating CO2 gas at hourly/weekly time intervals and desired vertical resolution is challenging due to 
the coarse horizontal resolution of global models. In this study, both column-averaged CO2 mixing ratio (XCO2) 
and vertical cross sections of CO2 mixing ratio were simulated by the Weather Research and Forecast Green 
House gas (WRF-GHG) model at spatial resolutions of 30 and 10 km for the Middle East region as the first 
domain, and Iran as the second domain. Simulations consider the primary CO2 sources (anthropogenic, biogenic, 
fire, and oceanic) and the Copernicus Atmosphere Monitoring Service (CAMS) dataset. XCO2 retrieved from 
GOSAT satellite observations was employed to evaluate the simulation results of the column-averaged CO2 
concentrations in February and August 2010. The evaluations showed that the spatiotemporal variability of 
meteorological variables was well simulated by WRF-GHG with correlation coefficients r of 0.86–0.92, 
0.67–0.75, and 0.76–0.82 for temperature, wind, and relative humidity, respectively, during February and 
August 2010. The evaluations also indicated that the WRF-GHG simulations outperformed the global model TM3, 
with mean bias error values of − 0.79 and 0.45 PPMV for WRF-GHG in February and August, respectively. The 
percentage contribution of net CO2 emissions from human activities in Iran was calculated as (38.33 % and 
23.70 %) of the total emissions, respectively, with values of 4.4 and 0.85 kg/km2 in each month. The net 
emissions contributions of biogenic, fire, and oceanic sources were evaluated in February and August, with 
biogenic emissions contributing (31.901 % and 27.66 %), biogenic absorption contributing (24.07 % and 46.63 
%), fire emissions contributing (5.7 % and 2.064 %), and oceanic emissions contributing (3.23 × 10− 6 % and 
2.23 × 10− 6 %). Large-scale circulations and biogenic activity are responsible for the major features of the spatial 
and seasonal distribution of CO2 in the area. In February, column mixing ratios are higher in more northern 
latitudes; in August, they are higher to the south. Furthermore, the simulated vertical cross sections show high 
CO2 mixing ratios in the mid-lower troposphere and northerly/northeasterly advection in February; the vertical 
profile is inverted in August with high concentrations in the lower stratosphere associated with southwesterly 
advection. However, the interaction between the synoptic and sub-synoptic features with the topography de-
termines the precise dispersion and distribution of CO2. Despite the negligible emissions in central and eastern 
Iran, these factors play an important role in the observed concentrations in February and August. In August, the 
areas between the 120-day low-level monsoon flow of Sistan in eastern Iran, and the westerlies over western/ 
southwestern Iran and the Zagros Mountain range, interact with the heat-low in the Iranian plains and with the 
Arabian subtropical high. In February, the dominant winds in western Asia were west winds, with the main 
source of pollution coming from the northeastern regions flowing towards central and eastern Iran. The equa-
torward displacement of the polar jet stream and the passage of low-pressure systems from the west in winter 
cause a temporary reduction in CO2 concentrations.
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1. Introduction

Global warming has captured worldwide attention. Atmospheric 
CO2, as a key greenhouse gas, contributes to approximately 60 % of the 
total enhanced greenhouse gases effect and can impact the course of 
climatic changes. This will have serious implications for national secu-
rity, global stability, and sustainable economic development (Jain et al., 
2015; Liu et al., 2018; IPCC, 2021). Carbon dioxide is naturally pro-
duced in the Earth’s atmosphere, acting as an essential nutrient for 
plants and a significant factor in the Earth’s thermal balance (Jain et al., 
2015; IPCC, 2021). According to the WMO Greenhouse Gas Bulletin, the 
global average atmospheric CO2 concentration reached its highest level 
in 2020, at 413.2 ppm (Water, 2019). This value represents a 149 % 
increase in CO2 levels compared to pre-industrial levels (before 1750). 
The CO2 increase from 2019 to 2020 was slightly lower than the rise 
observed from 2018 to 2019 but higher than the average annual growth 
rate in the past decade. This value occurred despite a nearly 5.6 % 
reduction in fossil fuel CO2 emissions in 2020 due to restrictions related 
to the coronavirus (COVID-19) pandemic. The National Oceanic and 
Atmospheric Administration (NOAA) Annual Greenhouse Gas Index 
(AGGI) indicates that from 1990 to 2020, the radiative forcing by 
long-lived greenhouse gases (LLGHGs) has grown by 47 %, with CO2 
accounting for approximately 80 % of this increase (WMO Greenhouse 
Gas Bulletin, 2020). Continuous and reliable observations of atmo-
spheric greenhouse gases such as CO2 are crucial for understanding the 
current global status of the carbon cycle, the spatiotemporal distribution 
of atmospheric CO2, making reliable predictions of climate change 
behavior, controlling the emissions of these gases, and mitigating the 
effects of human activities on global warming.

A large number of ground stations have been established worldwide, 
utilizing methods such as bottle sampling, spectrometry, and eddy 
covariance to obtain concentration information on CO2 and carbon flux 
(Liu et al. (2018). However, due to technical and financial constraints, 
the network of surface observation stations is not optimal and has 
limited regional-scale monitoring capabilities. In recent decades, with 
the development of remote sensing measurement methods, satellite- 
based observations have been adopted to cover some shortcomings of 
ground-based observations. The SCIAMACHY satellite, the first detector 
on the European Space Agency’s (ESA) environmental research satellite 
(ENVISAT), was the first specialized space instrument to measure the 
atmospheric column-averaged CO2 (hereafter XCO2) mixing ratio 
(Bovensmann et al., 1999). The SCIAMACHY sensor is sensitive to the 
boundary layer height and has collected a large number of observations 
during its 10-year orbit. Despite its lower accuracy compared to current 
satellites, it still provides opportunities to study the behavior of the 
terrestrial biosphere and climatic changes (Wang et al., 2011; Barkley 
et al., 2007).

Currently, active satellites specifically conducting CO2 observations 
include Japan’s GOSAT, the United States’ OCO-2, and China’s Tan Sat. 
The objectives of these satellites are to provide global, long-term, and 
continuous monitoring of XCO2 concentrations, improve measurement 
accuracy of carbon emission sources and sinks, as well as regional car-
bon dioxide concentrations, and enhance understanding of their distri-
butional and evolutionary characteristics (Turner et al., 2015; 
Hakkarainen et al., 2016; Fischer et al., 2017). Satellite observations of 
CO2, due to their global coverage and high measurement density, pre-
sent new opportunities for enhancing this understanding. Despite hav-
ing access to accurate and valuable satellite observation tools, 
simulating atmospheric composition, emissions, and transfers in Earth’s 
atmosphere remains challenging.

Chemical transport models are extensively used for studying and 
predicting CO2 on global and regional scales as well as for comparisons 
with observations (Xie et al., 2013; Wang et al., 2014). By combining 
atmospheric chemical transport models with CO2 observations and 
meteorological variables, it is possible to address existing gaps in 
emission inventories and transport errors (Bloom et al., 2017). On the 

other hand, use of CO2 observations can be transformed into a direct and 
effective approach for identifying carbon sources and sinks (Peters et al., 
2007; Peng et al., 2015; Tian et al., 2014). Since the model output is an 
estimate of the real world, its performance is limited by the accuracy of 
the input flux field and the transport mechanism of the model (Liu et al., 
2018).

Since the 1990s, various global models have been used for simulating 
CO2 concentrations (Patra et al., 2008). Most of these models were not 
only characterized by coarse spatial resolution, but some also lacked 
comprehensive meteorological parameterizations for accurately recon-
structing atmospheric boundary layer processes or convection (e.g., 
Taguchi et al., 2011). In recent years, various models have been devel-
oped for simulating regional atmospheric composition transport with 
high spatial resolution (Sarrat et al., 2007; Peylin et al., 2011; Vogel 
et al., 2013). The WRF Greenhouse Gas (WRF-GHG) model has been 
developed for simulating the transport of inert tracers CO2, CH4, and CO 
(Beck and Joshi, 2015). To estimate CO2, CH4, and CO emissions and 
sinks, several flux models and emission inventories are employed.

The quality of the forward simulations largely depends on our ability 
to represent surface flux heterogeneity and model transport behavior 
around each site (Tolk et al., 2008). Recent studies using regional 
chemical transport models have reduced the limitations in horizontal 
model resolution, considered heterogeneity in surface fluxes, and hence 
resolved fine structures in greenhouse gas concentration changes 
(Meinshausen et al., 2017; MacLeod et al., 2020; Huang et al., 2021). 
However, CO2 simulations using a regional model have not been pre-
viously conducted in the Iranian region. This article focuses on CO2 
emissions and atmospheric dispersion in the Iranian region. Iran is a 
unique area in the Middle East for conducting this study.

In this paper, we first introduce and examine CO2 emission sources, 
GOSAT satellite observations, numerical simulation configurations, and 
validation of simulated CO2 distribution using the Weather Research 
and Forecast Green House gas (WRF-GHG) model as a regional atmo-
spheric chemical transport model and evaluate the accuracy of WRF- 
GHG simulation results. Then, we analyze the simulated CO2 concen-
tration field and the regional dispersion pattern of carbon dioxide 
greenhouse gas concentrations, identifying the most significant sources 
and distribution of emissions during both dry and wet months in relation 
to prevailing atmospheric circulations. In other words, this study dis-
cusses the distribution of simulated XCO2, varying transport and atmo-
spheric circulation, and long-range transport originating outside the 
simulation domain.

2. Materials and methods

2.1. Study region

The study area is Iran, a country in southwestern Asia with a highly 
diverse geography. Iran is the second-largest country in the Middle East, 
bordered by Armenia and Azerbaijan to the northwest, the Caspian Sea 
to the north, Turkmenistan to the northeast, Afghanistan and Pakistan to 
the east, the Persian Gulf and the Gulf of Oman to the south, and Iraq and 
Turkey to the west (Fig. 1). Iran’s location between latitudes 25- and 40- 
degrees north places it in the southern part of the temperate zone of the 
Northern Hemisphere, and its longitudes between 44- and 63-degrees 
east have led to a diverse climate. It includes temperate and humid 
climate in the southern coasts and the Caspian Sea, cold climate in the 
western mountains, hot and dry climate in the central plateau, and hot 
and humid climate in the southern coasts .

The primary sources of greenhouse gas emissions of carbon dioxide 
and methane in Iran are various sectors of energy production (industrial 
processes, energy, agriculture and livestock, forestry, waste, etc.). The 
CO2 emission data for the years 1970–2020 are going to be discussed 
regarding the relative relevance of IRAN as compared to other countries 
in Middle east.

The central region of the country comprises the Kavir and Lut plains. 
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In these areas, due to climatic conditions, population density, and the 
absence of air pollution sources such as refineries, greenhouse gas 
concentrations are expected to be lower than in other parts of Iran.

Since anthropogenic emissions have the largest share in the study 
region, we have examined the time series of anthropogenic CO2 emis-
sions from 1970 to 2020 for 10 countries in that region (Iran, Saudi 
Arabia, Iraq, Turkey, Afghanistan, Pakistan, Egypt, Oman, Yemen, and 
Kuwait). The Emissions Database for Global Atmospheric Research 
(EDGAR database), for the first time, includes estimates related to CO2 
emissions and removals due to land use, land-use change, and forestry 
sectors at the regional level. The main findings from the beginning of the 
21st century indicate that global anthropogenic greenhouse gas emis-
sions have been continuously increasing compared to the past three 
decades, primarily due to the growth of CO2 “fossil” emissions by China, 
India, and other emerging economies (Crippa et al., 2023).

2.2. Model configuration

2.2.1. WRF-GHG
In this study, the WRF model version 3.9.1.1 is used along with the 

GHG module. As the aim of this research was to simulate CO2 concen-
trations over Iran, the computational domains, as displayed in Fig. 1, 
were selected and defined. The study area consists of two nested do-
mains, with horizontal grid dimensions of 124 × 173 and 213 × 222 
points and grid spacing of 30 km for the outer domain (d01) plus 10 km 
for the inner domain (d02), respectively, covering the Middle East re-
gion and Iran. WRF uses the terrain-following hydrostatic pressure 
vertical coordinates (Skamarock et al., 2019). In this study, the model 
considers 37 vertical sigma levels with the top level at 65 hPa. To pro-
vide initial and boundary conditions for meteorological fields, ERA5 
reanalysis data with a horizontal resolution of 0.25 degrees, 137 vertical 
layers, and 6-h temporal resolution were retrieved from the Copernicus 
Climate Data Store (CDS) using the CDS API. Copernicus Atmosphere 
Monitoring Service (CAMS) data were used for the initial and boundary 
conditions of carbon dioxide chemical fields in WRF-GHG (Massart 
et al., 2014). CAMS data is based on satellite observations along with 
ground measurements (Verkaik, 2019). CAMS provides CO2 mixing ra-
tios with a spatial resolution of 0.8 degrees on 137 vertical levels and a 
temporal resolution of 6 h (available at https://atmosphere.copernicus. 
eu). This study focuses on two different time periods: the dry season and 
the wet season in the study area, encompassing the simulated time in-
tervals of February 1–28, 2010, and August 1–31, 2010. Table 1 contains 
all the details concerning the model configuration, the number of grid 
points, as well as the horizontal and vertical resolutions for both 

domains, together with details regarding the numerical simulation 
conditions.

2.3. Emission data

The information related to the input emission data to the model has 
been obtained and studied from four different primary sources of carbon 
dioxide emissions on a global scale. Greenhouse gases originate from 
various anthropogenic sources, plus biogenic, biomass burning com-
bustion, and exchanges with the ocean. In this section, a brief expla-
nation of the different models and emission inventories used for 
calculating the CO2 fluxes incorporated into the WRF-GHG model is 
provided.

For anthropogenic greenhouse gas emissions, the global EDGARv5.0 
inventory is used among global datasets such as RETRO, REAS, EDGAR, 
NEI, and others. It includes the three main greenhouse gases (CO2, CH4, 
and N2O) in each sector and country and is available online with a 0.1 by 
0.1-degree resolution at the global level for greenhouse gases such as 
CO2, CH4, and other trace gases for the years 1970–2020 on an annual 
basis. The Emissions Database for Global Atmospheric Research 
(EDGAR) provides a comprehensive inventory of anthropogenic emis-
sions from 1970 to 2020 for CO2 and until 2018 for non- CO2 greenhouse 
gases. A bottom-up calculation method based on the IPCC is applied for 
all countries; it demonstrates that consistent inventories can be devel-
oped for all countries with existing data quality constraints. EDGAR 
complements national inventories and reports prepared by the parties to 
the Paris Agreement. Solazzo et al. (2021) have also complements the 
EDGAR emissions inventory by providing an estimation of the structural 
uncertainty stemming from its base components and making assump-
tions regarding the cross-country uncertainty aggregation of source 
categories and they reported that the anthropogenic emissions covered 
by EDGAR for the combined three main GHGs for the year 2015 are 
accurate within an interval of − 15 % to +20 % (defining the 95 % 
confidence of a log-normal distribution). According this study, although 
CO2 is responsible for 74 % of the total GHG emissions, CO2 has the least 
uncertainty within the EDGAR database, accounting for approximately 
11 % of global uncertainty share.

The calculated emissions are interpolated hourly using the algorithm 
employed in the WRF-GHG model network. Anthropogenic CO2 emis-
sions are divided into four main sectors: residential, industrial, energy, 
and transportation. These emission data are used and adjusted over our 
domain, by applying spatial and temporal factors.

Regarding natural CO2 emissions, Earth’s carbon cycle studies have 
been conducted to better understand the major variables of the net 

Fig. 1. WRF-GHG simulation domains and topography of the study area from 
ERA5 data.

Table 1 
Overview of WRF-GHG model configuration.

Schemes WRF-GHG Options

Microphysics WSM 3-class (Hong et al. 2004, MWR)
Radiation Long Wave: RRTM (Mlawer et al., 1997, JGR) 

Short Wave: Dudhia scheme (Dudhia, 1989, JAS)
Planetary Boundary Layer Mellor-Yamada-Janjic (Janjić, 1994, MWR)
Land Surface Noah Land Surface Model (Chen and Dudhia, 

2001)
Surface Model Monin-Obukhov (Janjic) scheme (Monin and 

Obukhov, 1954)
Cumulus Parameterization Monin-Obukhov (Janjic) scheme (Monin and 

Obukhov, 1954)
Chemistry Grell-Freitas ensemble scheme (Grell and Dévényi, 

2002)
Initial condition and boundary 

conditions
Greenhouse Gas tracer emissions

Time Period CAMS (0.750), ERA5 (0.250)
Spatial resolution and domain 

grid points
d01: 30 km (173 × 124) d02: 10 km (222 × 213)

Time period 2010-02-01_00:00 to 2010-02-28_00:00 and 2010- 
08-01_00:00 to 2010-08-31_00:00

Time Step d01: 180 s, d02: 60 s
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exchange between the biosphere and the atmosphere as well as to 
determine the amount of exchange between the atmosphere and the 
biosphere. The spatial resolution of global inverse simulations, which 
are commonly used to estimate the net biosphere flux, is rather coarse 
(Ballav et al., 2020). To introduce biospheric CO2 emissions (net ex-
change between the biosphere and atmosphere), the NEE.ANN.CRUN-
CEPv6 dataset has been used with a 0.5 by 0.5-degree spatial resolution 
on a daily time scale (Tramontana et al. (2016).

Fire is a complex biophysical process with multiple direct and indi-
rect effects on the atmosphere, biosphere, and hydrosphere. Trace gas 
emissions and airborne particles from biomass burning are calculated 
using the Global Fire Assimilation System (GFAS) fire emission in-
ventory (https://www.ecmwf.int/en/forecasts/dataset/global-fire- 
assimilation-system). The available data coverage is global, with a 
spatial resolution of 0.1 degrees and a daily temporal resolution. The 
accessible data covers the period from 2003 to the present.

The CarboScope (https://www.bgc-jena.mpg.de/CarboScope/) 
database in Jena estimates oceanic CO2 fluxes based on various mea-
surement methods (atmospheric CO2 mixing ratios, partial pressure of 
CO2 at the ocean surface). The dataset has been downloaded from the 
network with a spatial resolution of 0.5 × 0.4 degrees and a daily 
temporal resolution Takahashi et al. (2009).

2.4. GOSAT satellite

The Greenhouse Gases Observing Satellite (GOSAT), also known as 
Ibuki, was launched on February 23, 2009, from the Tanegashima Island 
in Japan (Kuze et al., 2009; Yokota et al., 2009; Parker et al., 2011). The 
GOSAT project is a joint effort of the Japan Aerospace Exploration 
Agency (JAXA), the Ministry of the Environment (MOE), and the Na-
tional Institute for Environmental Studies (NIES) Miao et al. (2013). This 
satellite is the first specifically designed for monitoring CO2and CH4 
concentrations from space and orbits at an altitude of 666 km, syn-
chronized with the sun, with equator crossing time of approximately 
12:48 local time. The satellite’s repeat cycle is three days. GOSAT is 
equipped with two sensors: (1) a thermal and near-infrared sensor for 
carbon observation featuring a Fourier Transform Spectrometer 
(TANSO-FTS), plus (2) a cloud and aerosol imaging system (TANSO-CAI) 
(Tables 2 and 3). With both TIR and NIR/SWIR sensors, GOSAT can 
observe both column amounts and vertical profiles of tracer gases. Es-
timates of global CO2and CH4 distribution, as well as their spatial- 
temporal variations from emission sources, can be obtained Houwel-
ing et al. (2004).

2.4.1. GOSAT SWIR XCO2
Measuring atmospheric CO2 concentration using space-borne in-

struments such as the Greenhouse Gases Observing Satellite (GOSAT) 
relies on observations of sunlight reflected from the Earth’s surface and 
atmosphere.

Since 2013, five major algorithms have been developed by various 
research groups worldwide, focusing on processing GOSAT satellite data 
to retrieve the dry-air mole fraction of CO2 (XCO2) in global and tem-
poral distribution with high spatiotemporal resolution. Column con-
centration retrieval algorithms for CO2 column abundance from GOSAT 
observations include: the National Institute for Environmental Studies 

(NIES) algorithm from Japan Yokota et al. (2009), the RemoTec research 
algorithm from the University of Leicester Butz et al. (2009), the Carbon 
Cycle Modeling (SRON) algorithm from the joint Dutch Research Insti-
tute and the Karlsruhe Institute of Technology (KIT), and the Photon 
Path Length Probability Density Function (PPDF-D) algorithm devel-
oped at the NIES (Frankenberg et al., 2012; Oshchepkov et al., 2013). 
Each algorithm independently employs different methods for pre- 
processing and post-processing GOSAT satellite data to filter errors in 
regions affected by sunlight scattering. The operational NIES algorithm, 
used for regular processing of GOSAT radiance spectra, has been 
developed at the National Institute for Environmental Studies in Japan. 
The error in evaluations performed on the NIES algorithm products is 
less than 1 % compared to observations, with the complete imple-
mentation of this algorithm described by Yoshida et al. (2011).

2.4.2. Satellite observation for chemical validation
The performance of the NIES, ACOS, and Remo Tec algorithms was 

evaluated with GOSAT satellite observations over the mid-latitude re-
gion of the Northern Hemisphere (between 0 and 70 degrees of 
geographical latitude and 170 and 120 degrees of geographical longi-
tude, respectively, east and west) for the years 2009 to 2021. It was 
determined that the NIES algorithm has a higher accuracy in the region 
of interest compared to the other two algorithms Karbasi et al. (2022). 
Accordingly, this study uses the Level 2 product dataset generated by the 
NIES algorithm to validate the simulations and statistical analysis of CO2 
column concentration from the WRF-GHG model at locations where 
remote sensing observations (GOSAT sensor data) are available. This 
evaluation is carried out for the periods February 1–28, 2010, and 
August 1–31, 2010.

The local overpass time of the GOSAT satellite is from 9:00 to 13:00; 
therefore, the simulated concentration values from the WRF-GHG model 
for this time are utilized in the analysis. To account for the spin-up time 
(training), the first 15 days of each simulation period are removed. Since 
the GOSAT XCO2 satellite column concentration dataset is used for 
model evaluation, the simulated concentration values from the WRF- 
GHG model are also converted to column averages, and the monthly 
mean value at each point is considered.

2.5. TM3 model

The TM3 (Tracer Model 3) is an atmospheric transport model 
designed to simulate the distribution and transport of various gases and 
particles in the atmosphere. It is particularly used for tracing greenhouse 
gases such as CO2, CH4, and other long-lived gases at both global and 
regional scale available (Heimann and Körner, 2003). The model is 
usually run at different resolutions, ranging from 4◦ × 5◦ to finer scales, 
depending on the requirements and computational power. In this study 
the nominal resolution has been used.TM3 incorporates a set of physical 
parameterizations to simulate transport, convection, and various 
chemical processes occurring in the atmosphere. It also models the ex-
change processes between the atmosphere and the Earth’s surface, 
which impact the concentration of gases and particles.TM3 is especially 
used for simulating atmospheric flows and the transport of greenhouse 

Table 2 
GOSAT TANSO-FTS Specifications (Yokota et al., 2009).

Band Band1 Band2 Band3 Band4

Polarization P, S P, S P, S –
Spectral coverage (μm) 0.758–0.775 5.56–14.3 1.92–2.08 1.56–1.72
Spectral resolution 

(cm− 1)
0.2 0.2 0.2 0.2

Targeted gases O2 CO2 ⋅ CH4 H2O ⋅ CH4 CO2 ⋅ CH4

FOV/FOV at nadir IFOV: 15.8 mrad (corresponds to 10.5 km when 
projected on the Earth’s surface)

Table 3 
GOSAT TANSO-CAI Specifications (Yokota et al., 2009).

Band Band1 Band2 Band3 Band4

Spectral 
coverage 
(μm)

0.370–0.390 
(0.380)

0.664–0.684 
(0.674)

0.860–0.880 
(0.870)

1.56–1.65 
(1.60)

Targeted 
substances

Cloud and aerosol

Spatial 
resolution 
at nadir 
(km)

0.5 0.5 0.5 0.5
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gases over long and short timescales. It allows researchers to study 
seasonal and annual variations in emissions and the distribution of 
gases. A primary application of the TM3 model is in climate change 
studies. However, like many atmospheric models, its accuracy depends 
on the quality of input data and the parameterizations used for physical 
and chemical processes. Additionally, the model’s resolution and the 
computational power required for its execution can be limiting factors.

3. Results and discussion

3.1. CO2 emission analysis

Table 4 presents the proportion of greenhouse gas emission sources 
in the study area for both the wet (February) and dry (August) months. 
The total emission of CO2 greenhouse gases is divided into four main 
categories, including anthropogenic emissions, biosphere emissions, 
oceanic emissions, and fires. Further, Table 4 outlines the percentage 
share of each category in the total emission sources of greenhouse gases 
for both wet and dry months in the study area. Biogenic and oceanic 
uptakes are included in the table to allow a direct comparison of the 
relative relevance of each term in the CO2 budget.

Among CO2 emission sources, anthropogenic emissions are the 
largest contributor to CO2 greenhouse gas emissions, with a percentage 
share of 38.33 and 23.7 in February and August, respectively. Biosphere 
emissions, following anthropogenic emissions, have a significant share 
in CO2 greenhouse gas emissions. Biosphere emission sources consist of 
two main parts: uptake and emission, with the share of biosphere uptake 
at 24.07 and 46.63 in February and August, respectively, and that of 
biosphere emission at 31.90 and 27.66 in February and August, 
respectively. As expected, the share of absorption is lower in February 
than in August. In addition, CO2 absorption in August is greater than 
anthropogenic emissions and lower than anthropogenic emissions in 
February, as expected. The contribution of fires and oceanic emissions 
(emission and uptake) to CO2 gas formation ranked third and fourth in 
the overall CO2 emission share, respectively, accounting for 5.7 and 
2.064 % for fire emissions and 3.23 × 10− 6% and 0 % as well as 0 and 
2.23 × 10− 6% for oceanic uptake and emissions in February and August, 
respectively.

Fig. 2 displays the monthly average spatial distribution of green-
house gas emission sources (anthropogenic, biosphere, fire, and oceanic) 
in 2010 over Iran. Anthropogenic greenhouse gas emissions during the 
dry and wet months are negligible in the eastern and central regions of 
Iran, as these areas have minimal population density, activities, and 
industries. These emissions are more significant in Tehran, the capital of 
Iran, and most of Iran’s western and southern regions, especially in the 
Khuzestan plain at the head of the Persian Gulf. Anthropogenic emis-
sions in these areas are mainly due to industrial activities, energy con-
sumption for heating in winter, energy conversion industries, and 
transportation. Anthropogenic emission sources for the CO2 pollutant 
show a distinct seasonal cycle, with the highest values in February and 
the lowest in August, with a February share of 14.63 higher, due to the 
increase in energy consumption for heating in winter and the decrease in 
consumption in summer. Biogenic CO2 shows an even more evident 
seasonal pattern, particularly in western Iran and other vegetated areas, 
with net biogenic CO2 emissions in February and net biogenic CO2 

uptake in August (negative values in Fig. 2b). Forest and agricultural 
fires are more frequent in August, as confirmed by the MODIS’s active 
fire detection data (not shown), resulting in higher CO2 release than in 
February. Fig. 2 also shows that in February, the eastern Mediterranean 
and the northern Caspian act like sinks of CO2, while the rest of the 
major water bodies in the region are either weak sinks or sources. In 
contrast, they are all CO2 sources in August, especially the northern part 
of the Indian Ocean.

Since anthropogenic emissions have the largest share in the study 
area, this section examines anthropogenic emissions for the ten coun-
tries in the study region (Iran, Saudi Arabia, Iraq, Turkey, Afghanistan, 
Pakistan, Egypt, Oman, Yemen, and Kuwait) from 1970 to 2020. Fig. 3
includes a time series of anthropogenic emissions (EDGAR_ CO2) from 
1970 to 2020. We observe that fossil CO2 emissions have declined in all 
industrial economies for all countries in 2020, with the latest data on 
CO2 in 2020 clearly showing that the COVID-19 pandemic has affected 
human activities: globally, CO2 emissions dropped by 5.1 % in 2020, 
breaking the upward trend observed in the past four years Crippa et al. 
(2023). It can be observed from the comparison between countries that 
Kuwait has had the highest per capita carbon emissions in recent years, 
followed by Oman, Saudi Arabia, and Iran in second to fourth places, 
respectively. This is associated with the presence of refineries and the 
use of fossil fuels. Afghanistan and Pakistan are also ranked ninth and 
tenth in carbon emissions.

To compare countries with different levels of development and 
population, per capita CO2 emissions have been calculated separately 
for each country. According to Crippa et al. (2023), the highest emission 
factors for most pollutants in the energy sector were found in developing 
regions, such as Africa, Latin America, Indonesia, India, and the Middle 
East, while lower values were observed in industrialized countries 
(United States, Europe, Japan, Korea, and China).

Among the ten countries analyzed, Kuwait had the highest per capita 
CO2 emissions in 1970, 51.34 t CO2/cap/yr, reflecting the intensity of 
human activities associated with industrial development. However, CO2 
emissions in Kuwait decreased from 51.34 to 20.91 t CO2/cap/yr be-
tween 1970 and 2020, equivalent to an average annual decline of 0.8 %. 
This reduction in CO2 emissions is most evident due to the country’s 
high levels of per capita CO2 emissions in 1970 and the sharp decline in 
oil production (and thus emissions) in the following years due to polit-
ical decisions related to tensions in the region before and after the Yom 
Kippur War in 1973, with a minimum in the 1979 energy crisis, but also 
due to the high concern for its own oil reserves since late 1971 relative to 
earlier estimates (Kondo, 2024). The later sharp decline in emissions (oil 
production) following Iraq’s invasion of Kuwait and the Gulf War is well 
seen in the plot for Kuwait and Iraq. The latest smooth and continued 
decline in per capita CO2 emissions, starting in 2005, is mainly related to 
population growth and reduced dependence on oil in favor of gas natural 
for electricity production (EIA, 2023); policies aimed at reducing 
dependence on the oil-based economy and improving efficiency in en-
ergy production and use in the industrial and urban sectors have 
contributed to this reduction (Crippa et al., 2023). Oman shows the 
second-highest level of anthropogenic CO2 emissions among the coun-
tries considered. Oman and other developing regions have seen signifi-
cant changes over time due to a higher share of residential activities and 
the release of more pollutants through fossil fuel combustion. The trend 
of CO2 emissions in Oman increased from 10.13 t CO2/cap/yr in 1970 to 
16.9 t CO2/cap/yr in 2020, equivalent to a 0.66-fold growth. The trend 
of CO2 emissions in Saudi Arabia is similar to that of Oman, with an 
upward trend between 1970 and 2018 from 8.06 t CO2/cap/yr in 1970 
to 17.63 t CO2/cap/yr in 2018. By 2020, the level of CO2 emissions 
decreased to 16.96 t CO2/cap/yr. The sectors with the highest share of 
fossil CO2 emissions in Saudi Arabia are electricity production and other 
industrial combustion (Crippa et al., 2023).

After this group of countries, the next in order of per capita emissions 
is Iran. Anthropogenic emissions in Iran have increased by approxi-
mately 1.96 times from 1970 to 2020, equivalent to an average annual 

Table 4 
Monthly mean average of CO2 emission budget sources, used in the study area of 
WRF-GHG.

Emission sources-sink (mol/km2hr) February (%) August (%)

Anthropogenic Emission 38.33 23.70
Biogenic Uptake 24.07 46.63
Biogenic Emission 31.90 27.66
Biomass Burning 5.7 2.064
Oceanic Uptake 3.23 × 10–6 2.23 × 10− 6
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increase of 2.39 %. The value has risen from 2.79 t CO2/cap/yr in 1970 
to 8.26 t CO2/cap/yr in 2020, indicating a shift towards industrial 
development compared to agriculture in greenhouse gas emissions since 
1970. In Iraq, CO2 emissions have risen from 2.34 in 1970 to 4.61 in 
2020. Emissions decreased by 0.30 tons between 1990 and 2000 but 
then increased until 2020. The average increase in CO2 emissions in Iraq 

from 1970 to 2020 is 0.73 t CO2/cap/yr, equivalent to an annual in-
crease of 2.28 %. Turkey’s CO2 emissions slowed their increase since 
2007. The variations in emissions between 1970 and 2020 are 1.32 t 
CO2/cap/yr and 4.83 t CO2/cap/yr, respectively. The sectors with the 
highest share of fossil CO2 emissions in Turkey include electricity pro-
duction and other industrial combustion (Crippa et al., 2023). The trend 

Fig. 2. Emission budget of different CO2 sources (anthropogenic emission, biosphere emission, biomass combustion emission and oceanic emission, in mol/km2hr) 
as monthly averages. February (a), August (b), 2010.

Fig. 3. Time series of per capita anthropogenic-induced emissions (EDGAR_CO2 dataset (t CO2/cap/yr)) from 1970 to 2020.
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of anthropogenic CO2 emissions in Egypt rose from 0.72 t CO2/cap/yr in 
1970 to 2.62 t CO2/cap/yr in 2020, equivalent to a 1.96-fold growth or 
an average annual increase of 2.73 %.

The lowest annual emission values among the ten countries are in 
Afghanistan, Yemen, and Pakistan. CO2 emissions in Afghanistan 
reached 0.31 t CO2/cap/yr in 2020, compared to 0.15 and 0.23 in 1970 
and 1990, respectively. The changes in CO2 emissions from 1970 to 
2020 are 0.15–0.31 t CO2/cap/yr, 0.26–0.34 t CO2/cap/yr, and 
0.30–1.04 t CO2/cap/yr for Afghanistan, Yemen, and Pakistan, 
respectively.

It is important to note that in all countries where the gross domestic 
product (GDP) has declined, greenhouse gas emissions have decreased at 
a relatively higher rate. In contrast, in low- and middle-income countries 
compared to high-income countries, the lack of pollution control 
equipment results in greater deployment of fossil and biofuels, leading 
to uncontrolled CO2 emissions, primarily in the industrial sector (elec-
tricity production) and other industrial combustions.

Based on the results of EDGAR v6.1 for CO2, this analysis underlines 
the overall robustness of the dataset, as it applies a bottom-up emission 
calculation method consistently across all countries globally, using a 
cross-sectional structure consistent with the IPCC’s methods for green-
house gas estimation. This approach allows for a comprehensive analysis 
of joint air pollutant reduction strategies.

3.2. Model validation

Values of spatiotemporal simulations of meteorological and chemical 
variables are extracted for two simulation periods and can be compared 
using various statistical methods. The statistical metrics used include 
mean bias error (MBE), mean absolute error (MAE), root mean square 
error (RMSE), and Pearson correlation coefficient (r).

3.2.1. Model validation – meteorological fields
Some errors in the simulation of CO2 concentration are related to 

errors in the simulation of atmospheric meteorological variables. The 
sensitivity of atmospheric dispersion to wind fields and atmospheric 
turbulence, as well as the presence of some parameterizations of emis-
sions in CO2 simulation, which are functions of meteorological vari-
ables, are examples of the importance of this issue.

Three key meteorological variables, air temperature (AT), relative 
humidity (RH), and wind speed (WS), were chosen for the selected 
stations (a collection of cities including mountainous, coastal, and plain 
regions) from a set of synoptic meteorological station observations with 
appropriate spatial density (Fig. 4). Table 5 illustrates the evaluation 
metrics, including a comparison of simulated and observed variables for 
the selected stations, and summarizes the results for the evaluation 
period from February 1 to February 28 and August 1 to August 31, 2010.

Statistical parameters show that atmospheric fields and their daily 
variations have been well simulated. Based on the assessments, we have 
found that the 2-m temperature has the best r-values for both months at 
all observational stations. The correlation values of the 2-m temperature 
for every single station, range from 0.85 to 0.96 and from 0.80 to 0.89 
for August and February, respectively, and the RMSE values (averaging 
2.37 ◦C and 3.86 ◦C for dry and wet months, respectively) are small. The 
average mean bias error in the wet and dry months is − 0.3 ◦C and −
0.54 ◦C, respectively. Following temperature, relative humidity has the 
best r-values in the wet month. r ranges from 0.76 to 0.88 during both 
months. Also, r-values in August are lower than in February for many 
stations. The mean bias error for relative humidity is − 2.6 % and − 3.59 
%, respectively.

Although the r-values for the 10-m wind speed are lower than those 
for relative humidity, its RMSE values are also low (averaging 2.29 and 
2.91 m/s for wet and dry months, respectively). The average mean bias 
values are 1.29 and 0.82 m/s for the wet and dry months, respectively.

The model has been able to correctly calculate the temporal varia-
tions of surface temperature, relative humidity, and wind speed, to some 

extent, with the calculated statistical errors for all measurements 
(Table 5 and Fig. 5). The general tendency of the model to underestimate 
temperature and relative humidity over the selected time period can be 
observed in Table 5.

Fig. 5 shows some overestimation of temperatures in the morning, 
and a clearer underestimation in the afternoon. These plots are time 
series averaged over all the synoptic stations studied, including moun-
tain, desert and coastal environments. However, the data for each of the 
stations show this behavior more clearly (only a few days in the middle 
of February, when temperatures are below 0 degrees Celsius, show 
different behavior). Therefore, the ambient air in the model shows some 
sign of a faster warming in the morning and there is a faster cooling in 
the afternoon. This happens in connection with an overestimation in 
wind speed, which has been observed in other simulations in the region 
(Branch et al., 2021).

Several works have pointed out an overestimation by WRF of 
downwelling surface shortwave radiation (i.e., global incident radiation 
at the surface) in arid environments, leading to higher net radiation and 
sensible heating. This would explain the morning overestimation. 
Nevertheless, the positive wind speed bias can affect both the faster 
morning increase and the faster afternoon decrease with respect obser-
vations. The performance of the model is based in the interaction be-
tween different parameterizations, namely soil representation, planet 
boundary layer and radiation schemes (Table 1), which may account for 

Fig. 4. Selected synoptic stations for meteorological validation. Digital eleva-
tion model of Iran (USGS/SRTM data, 30 m).

Table 5 
Basic statistics of the comparison of meteorological parameters from WRF-GHG 
and synoptic observation stations (August–February).

Station Mean Winter (Feb) Summer (Aug)

RH 
(%)

AT 
(◦C)

WS (m/ 
s)

RH 
(%)

AT 
(◦C)

WS (m/ 
s)

Correlation 
(r)

0.82 0.92 0.75 0.76 0.86 0.67

Bias Error − 3.59 − 0.38 1.29 − 2.60 − 0.54 0.82
RMSE 10.45 2.37 2.29 18.37 3.86 2.91
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Fig. 5. Comparison of the three-hourly time series of the means over all the synoptic stations studied, of temperature (◦C), relative humidity (%) and wind speed (m/ 
s), observed and simulated by the WRF-GHG model for the months of February (a) and August (b).
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the model biases. Therefore, these tendencies are part of the inherent 
complexities in modeling atmospheric processes, especially when 
dealing with diurnal variations. The slight deviations are within 
acceptable ranges, given the spatial and temporal scales the model 
operates on.

Fig. 5 also indicates that in both dry and wet months, simulated 
relative humidity is mostly underestimated in most areas, and a 
comprehensive examination of all 30 days in both months reveals that 
the model’s values are closer to observations in August.

The predicted wind speed variations are consistent with the wind 
speed values obtained from measurements most of the time. Fig. 5 also 
indicates that, in most areas, the wind is overestimated.

3.2.2. Model validation – chemical fields
The WRF-GHG model output was both spatially and temporally 

interpolated over the GOSAT satellite measurement points to evaluate 
the model with various statistical parameters. This process was carried 
out for the warm season (August) and the cold season (February) data.

Table 6 presents the statistical evaluation results of the WRF-GHG 
model performance, along with the gas-phase chemistry mechanism 
GHG and the global TM3 model, in simulating carbon dioxide concen-
trations compared to the measured values obtained from the GOSAT 
satellite, and estimating the monthly average concentration for February 
and August.

Examining the error results (RMSE-MAE), it can be inferred that the 
WRF-GHG model represents reasonably well CO2 concentrations 
regionally and performs better in cold seasonal conditions compared to 
warm seasonal conditions in the study area. The linear relationship is 
also good, with correlation coefficients between WRF-GHG XCO2 and 
GOSAT XCO2 that range from 0.71 to 0.87, the lowest value occurring in 
February and the highest in August.

There are several reasons for the discrepancy in the carbon dioxide 
mixing ratios obtained from numerical simulations and observations, 
one of which includes the uncertainty in the emission rates of pollutants 
of the EDGAR data base as input emission values in the model for the 
study area. Similarly, the uncertainty in the initial background values 
and boundary conditions created by CAMS data mainly due to short- 
term changes in local emissions, may lead to a rise in the CO2 mixing 
ratio compared to the GOSAT observational data in the study area.

There are also errors and uncertainties in the simulation of atmo-
spheric transport and dispersion by the WRF model associated with the 
parameterization of surface layer, boundary layer, and convection, 
which involve many approximations, and the selection of parameteri-
zation schemes is subject to debate.

The boundary layer plays a significant role in determining the col-
umn concentration. The simulation of carbon dioxide concentration 
within this section of the column is highly dependent on the thickness of 
this layer as calculated by the model. This calculation is often associated 
with considerable error, which tends to increase with greater boundary 
layer thickness, leading to a larger bias in the column concentration. The 
model is likely to perform better in winter because boundary layer 
thickness is typically thinner than in summer, resulting in less error 

associated with thickness calculations, and therefore yielding more ac-
curate simulations of the column concentration. Conversely, in the 
warm season, the impact of solar radiation is greater and daily tem-
perature fluctuations are more pronounced. This creates additional 
challenges for the model in simulating temperature variations, as the 
intense diurnal changes can introduce errors in the thermal parameters 
of the model. Moreover, anthropogenic emissions are higher during 
winter (Fig. 2, Table 4) and more predictable, because of increased 
heating demands, so it is easier to capture and represent accurately in 
emission inventories such as EDGAR data base. This increase improves 
model accuracy by being in line with emission inventories that are often 
utilized in the models. The last reason is related to having less vegetation 
cover and also lower photosynthetic activity during winter compare to 
summer. Wintertime vegetation absorption of CO2 is minimal and it 
simplifies the modeling, as the CO2 levels are primarily driven by 
anthropogenic sources rather than a mix of natural processes.

In this regard, data assimilation techniques in simulations and the 
use of inverse modeling simulations can improve the performance of 
simulations and the quality of dispersion information. These techniques 
can help reduce uncertainties and improve the accuracy of the simulated 
results.

Table 6 also shows that the error values in the WRF-GHG model are 
lower than those in the global TM3 model, which is expected given the 
resolution of the global model and the interpolation of the global model 
data at GOSAT observational points.

3.3. Spatiotemporal distribution of XCO2 from WRF-GHG and TM3 
global model

Fig. 6 compares the spatial distribution of the column-averaged 
concentration (content from the surface to the top of the atmosphere) 
of simulated CO2 from the WRF-GHG model, the analyzed information 
pattern, and the TM3 global model in the study area during the period of 
investigation (February and August). As observed, the WRF-CHG model 
is capable of simulating the spatial distribution of CO2 for the monthly 
average in both dry and wet months. Additionally, there is minor dif-
ference in the representation of columnar CO2 concentration distribu-
tion between the global model (TM3) and the regional model (WRF- 
GHG). Fig. 6a and b show a similar distribution of CO2 in different parts 
throughout the study region, and the distribution also varies similarly by 
month. The average range of CO2 concentration distribution is higher in 
the wet season (February) than in the dry season (August). In both 
February and August, the highest CO2 mixing ratios are obtained in the 
northwest and western regions of the country. The spatial distribution 
pattern in August is similar to that in February, although areas with 
higher concentrations in February exhibit higher values. This distribu-
tion phenomenon may be related to winter warming and population 
distribution. In the central and eastern parts of the study area, there is a 
low population, resulting in less energy consumption for heating. The 
northern, western, and southwestern regions of the study area have a 
larger population, and thus XCO2 is relatively high. The cities of Tabriz, 
Mashhad, Isfahan, and Abadan, following Tehran, are the most populous 
cities in Iran and have the highest carbon emissions for heating.

With the growth of vegetation cover in terrestrial ecosystems and the 
end of heating appliance use in August, the distribution of CO2 con-
centrations in the northern and western regions rapidly drops, with the 
concentration range changing from 388 to 392.5 ppm in February to 
386–389 ppm in August. Only in the western and northwestern regions 
do concentration values remain high, indicating that carbon emissions 
in these areas are heavily influenced by human activities.

Numerous potential explanations exist for the increase in CO2 
emissions in the Iranian region, one of which is the role of CO2 emissions 
from biomass burning (wildfires). Excessive dry air, coupled with 
intense heat, leads to increased forest fires and, consequently, higher 
carbon dioxide emissions. However, due to the relatively small share of 
biomass burning in the total emissions budget (Table 4), it seems 

Table 6 
Basic statistics of the comparison of XCO2 Colum concentrations from WRF-GHG 
and TM3 with GOSAT.

Statistic 
Parameters

Period Model MAE RMSE MBE r

CO2_Error 
(ppmv)

2010.02.01–2010- 
02-28 WRF- 

GHG

1.43 1.63 − 0.79 0.71

2010.08.01–2010- 
08-31

1.81 1.96 0.45 0.87

2010.02.01–2010- 
02-28

TM3 1.56 1.91 − 0.85 0.24

2010.08.01–2010- 
08-31

1.98 2.01 1.12 0.34
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unlikely that the large increase observed in XCO2 in August in the 
western regions of the country is due to a rise in biomass burning 
compared to the usual conditions for the region.

A different source that may explain the observed CO2 distribution in 
this region is anthropogenic emissions from the extraction of fossil fuels. 
The western and southwestern regions of the country, due to exploita-
tion of mineral resources such as oil and natural gas, which are known 
sources of CO2 (Fig. 6), have emissions resulting from fossil fuel 
extraction recorded in the EDGAR emission database. However, these 
emissions are likely underestimated during the wet months.

Fossil fuel CO2 emissions from EDGAR are used as an inventory of 
anthropogenic emissions in the model, based on the emission inventory 
published from each country to the United Nations Framework 
Convention on Climate Change (UNFCCC) in 2010. Results from simu-
lations with greenhouse gas emissions by Scarpelli et al. (2020) indicate 
that growing emissions from fossil fuel combustion somewhat reduces 
the observed differences between simulations and observations. The 

anthropogenic CO2 emission inventory simulated in this study solely 
relies on the EDGAR v5 database as input for anthropogenic CO2 flux 
and cannot adequately reproduce the observed XCO2 mixing ratios by 
GOSAT for both dry and wet months.

Considering the statistical parameters in Table 6, we expect the 
difference in XCO2 between WRF-GHG simulations and GOSAT to be 
partly due to underestimation of CO2 emissions from fuel exploitation in 
EDGAR. This hypothesis aligns with several other studies that also show 
CO2 emissions from fossil fuel extraction are underestimated by EDGAR 
(Miller et al. 2013; Massart et al., 2014). Another limitation of the 
EDGAR emission database is that it provides data only as annual aver-
ages. For future research involving CO2 emissions, we recommend not 
solely relying on the EDGAR database but also using other inventories of 
pollutant emissions generated from fuel consumption.

Upon examining CO2 concentration distribution in the study area, 
the eastern, central, and to some extent, southern regions show virtually 
no emission sources for CO2; thus, the observed mixing ratios in these 

Fig. 6. Spatial distribution of simulated average column concentration of CO2 by the WRF-GHG and TM3_Global models in (a) February and (b) August of 2010.
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areas can be considered as background values. In addition to the back-
ground concentration values in these regions, the crucial role of trans-
port, reflected by the strong winds present in this area, should be 
mentioned. These winds are a significant factor in transporting emitted 
CO2 eastward across the country. Another interesting pattern observed 
in this simulation is the role of orography. The influence of orography is 
substantial, and it appears that mountains cause recirculation and the 
formation of local circulation, hindering the transport of CO2 and 
leading to restricted atmospheric dispersion, which results in accumu-
lation and persistence of CO2 in the same area.

3.4. Four-dimensional analysis of simulated CO2

The central regions of Iran encompass the desert plains of Kavir and 
Lut and are bounded by the Zagros Mountains to the west and southwest 
and the Alborz Mountains to the north. Due to climatic conditions, low 
population density, and the lack of air pollution sources such as re-
fineries in these regions, it is expected that, unlike other parts, green-
house gases concentrations at lower levels would not be high. Despite 
this, as shown in Fig. 6, the central regions of Iran indicate 387–390 ppm 
of CO2 concentration as an average for February and August.

In this section, we investigate the role of atmospheric dispersion, 
transport, and regional circulation of pollutants under the influence of 
the wind field on the observed concentrations in the central and eastern 
parts of the study area.

Fig. 6 reveals the monthly mean values of columnar CO2 concen-
trations. As observed, during the dry month, the lower latitudes of the 
region experience higher concentrations. The primary sources of CO2 for 
the study area are in western Iran and Saudi Arabia, with the other main 
sources being eastern Iran, the Tibetan Plateau, and the Indian Ocean.

Figs. 8 and 10 show the values related to the wind field and hori-
zontal speed at 200, 500, and 850 hPa levels. The attempt to assess the 
impact of regional seasonal winds and investigate their activity in Iran 
using regional indices based on omega pressure tendency and horizontal 
wind speed spatially represents a simple and flexible method for 
studying regional circulation teleconnections.

Regional synoptic conditions in the summertime are influenced by 
the thermal low-pressure system extending up to the 700 hPa level, 
capped by high pressures over southern Saudi Arabia and western Iran. 
The Indian monsoon activity is observed in the southeastern region. The 
interaction between the heat-low system and the Indian monsoon results 
in a 120-day northerly low-level wind system in Sistan, in the east of 

Fig. 7. Omega (-Pa/s) and horizontal wind at 850 hPa, 500 hPa, and 200 hPa on August 5, 15, and 25, 2010 (a, b, c). Blue (red) colors denote subsidence (ascent). 
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

S. Karbasi et al.                                                                                                                                                                                                                                 Atmospheric Research 314 (2025) 107818 

11 



Iran; the interaction between the heat-low and the subtropical high in 
Saudi Arabia creates the summertime northwesterly winds to the west of 
the Zagros Mountains and northeasterlies to the east of the mountain 
range.

In the analysis of synoptic conditions in August 2010, the days 5, 15, 
and 25 of August were selected instead of the monthly mean pattern. 
Fig. 7 shows the low-level wind field, the mentioned 120-day seasonal 
winds of Sistan, and the north summer monsoon are depicted in all three 
sea level pressure maps for these three times. Additionally, on the 
Arabian Sea, the southwest monsoon wind passing the equator and 
originating from the Mascarene high pressure, which is responsible for 
transporting moisture to the Indian monsoon, has been simulated well. 
The horizontal circulation of the wind field exhibits an anti-clockwise 
rotation (thermal low-pressure) over Iran and a clockwise rotation 
(high-pressure) over the Arabian Peninsula, which can be easily 
identified.

In the wind circulation fields in Fig. 7, it can be observed that (except 
for to the middle of the month, due to temperature drop and sedimen-
tation) there is air descent in the southern and central regions of Iran. 
Central Iran experiences upward air movement under the heat-low 
0.55–0.85 (-Pa/s). Areas involved in air descent have a higher poten-
tial to provide larger column CO2 concentrations than areas experi-
encing upward air movement.

Following the seasonal solar inclination cycle, the structure of the 
Hadley cell and its descending branches move towards the north during 
the summer of the Northern Hemisphere, forming a coverage area of 
descent that extends from the central Mediterranean to Iran. The descent 
is always stronger in the winter hemisphere. The weakening of the 
average descent in a region in the Northern Hemisphere during the 
summer is greater compared to the weakening observed in the Southern 
Hemisphere during the summer of Australia, which is due to the 
opposing upward processes related to seasonal atmospheric activity at 
latitudes up to 40 degrees north (Tyrlis and Lelieveld, 2013).

The summer circulation situation is described by examining the 
vertical cross sections in Fig. 8 of the u-w vector and the vertical velocity 
w along the transect (A, B) in Fig. 4. It shows the geographic longitude 
and latitude of the main regions of ascent and subsidence. Climatic 
conditions in July coincide with the peak activity of the Indian monsoon 
and its stronger influence on the geographical latitude of the Arabian 
Sea and southeastern Iran. During the remaining period of July–Sep-
tember, away from the main monsoon activity, climatic conditions are 
similar but accompanied by gradually descending amplitudes.

Generally, in the middle of summer, the proposed “Walker-type” 
circulation in the ascending and descending regions is located in the 
southern position of the monsoon ascent compared to the subsidence 
regions of the Mediterranean and Iran. A semi-diurnal tropopause slope, 
with some of the highest observed subsidence values, leads to summer 
subsidence over the eastern Mediterranean and Iran (Tyrlis and Lelie-
veld, 2013). This regional subsidence represents significant deviations 
from the regional average and its seasonal speed (and even from 
neighboring areas such as the western Mediterranean), which cannot be 
solely attributed to Hadley circulation.

Subsidence over the Persian Gulf weakens from June to July with a 
northwestward expansion. By analyzing the horizontal wind field (from 
the ERA 5 horizontal wind dataset) in August, as well as the vertical 
cross sections displayed in the figure, it can be observed that this occurs 
from August 1 to 5, despite the high-pressure wind prevailing in 
northwestern Iran, which reduces the transport of pollutants from the 
east and west into Iran. Winds are northwesterly in eastern Iran and 
northwestern Iran (Fig. 7-a1, a2, a3) and (Figure 8_a_right).

The passage of low pressure from the northwest of Iran on February 
16 weakens the lower-level jet stream (north wind in the northwest of 
the country and Sistan wind in the northeast), allowing the transport of 
pollutants from the west of the country (Figure 7_b1, b2, b3) and 
(Figure 8_b_right).

From February 21 to 27, with the presence of a high-pressure system 

from the higher latitudes to the north of the country, climatic conditions 
lead to a decline in the penetration of pollutants from the west and east 
of the country (Figure 7_c1, c2, c3) and (Figure 8_c_right).

Starting on February 27, a low-pressure system entered the country 
from the west. Still, in the last days of the month, the concentration in 
the western region of Iran (Arabia) was not as severe as in the early days. 
However, the passage of the low pressure again caused a change in wind 
direction and allowed pollutants to penetrate from the east of the 
country. The wind direction in the west of the country became westerly, 
and in the east, it became easterly again. The impact of topography is 
also important as it drives the lower-level and large-scale background 
features. On the one hand, the high-level surface warming on highlands 
contributes to the formation of mid-level cyclonic and anticyclonic 
centers during the summer, mainly in northwest Africa, central-west 
Saudi Arabia, and the Zagros Mountains. This leads to a rise in north-
erly flows and, thus, more intense subsidence in the eastern Mediter-
ranean and Iran (Tyrlis and Lelieveld, 2013).

The Alborz Mountain range, which extends from Turkey to Iran, 
blocks the northerly flow and contributes to further warming on its dry 
side. Thus, the topography of the northern regions of Iran plays a sig-
nificant role in shaping the subsidence towards the south of the moun-
tain range axis. In the upper troposphere and lower stratosphere, the 
very large extent of the observed subsidence in the EMME region is 
related to the air coming from South Asia (Tyrlis and Lelieveld, 2013).

Based on the analysis of February, as observed in Fig. 6, the northern 
latitudes of the Caspian Sea have higher concentrations. In this month, 
the dominant winds in the region are westerly, and according to the 
dispersion analysis, the main sources of CO2 are higher latitudes above 
the Caspian Sea and northeastern areas.

As observed in Fig. 9, the development of the seasonal wind impact 
on the summer climate of the Eastern Mediterranean and the Middle 
East (EMME) region expands the subsidence associated with the 
descending branch of the Hadley cell over the geographical latitude 
band 15–30 degrees N during the northern winter (Tyrlis and Lelieveld, 
2013).

The synoptic conditions in Iran during January and February are 
influenced by the penetration of the polar jet into the middle latitudes 
and the passage of western low-pressure systems. In other words, the 
region is under the influence of the Ferrel cell circulation. The passage of 
a Mediterranean low-pressure system will accompany the regional 
ascent of air in its leading edge; additionally, horizontal wind speed will 
experience a significant growth, as can be observed in the sea-level 
checked contour maps in Fig. 10 and during the first week of February 
2010.

Under these conditions, the ascending and descending air regions, 
particularly in southern Iran, possess high power, which is also influ-
enced by the region’s topography. The horizontal speed of the air ascent 
over Iran becomes more uniform.

As observed, from the first to the fifth of February, the concentrations 
at higher latitudes are not very high, and the main winds and currents 
are easterly, with no transfer of CO2 to lower latitudes. It can be seen 
that the winds are westerly in the western Caspian Sea, while in the 
region from Rasht to Semnan (transect R, S in Fig. 4) they have a 
northwestern direction (Figure 10_a_right).

In mid-February, from the 13th to the 19th, the passage of a low- 
pressure system over higher latitudes causes the winds over the Cas-
pian Sea to shift southward. The presence and movement of this low- 
pressure system in the region prevent the transfer of pollutants to-
wards the desert plain. The easterly winds weaken, and the winds that 
cause pollution to transfer become very weak. The transfer towards 
central regions of Iran declines, and the concentrations do not increase 
(Figure 10_b_right).

From February 22 to 28, with the intrusion of a high-pressure system 
(a blocking system), the winds over the Caspian Sea shift northward 
again, and the concentrations increase in the sea. The transfer of pol-
lutants continues towards lower latitudes to the north of the Lut desert, 

S. Karbasi et al.                                                                                                                                                                                                                                 Atmospheric Research 314 (2025) 107818 

12 



Fig. 8. Cross section along A-B of vertical velocity in color shading and (u, w) wind vectors, simulated by WRF-GHG (a,b,c_left). Spatial distribution of WRF-GHG 
simulations of average column CO2 concentration (ppm) (a,b,c_right) every 10 days: August 5, 15, and 25, 2010.

S. Karbasi et al.                                                                                                                                                                                                                                 Atmospheric Research 314 (2025) 107818 

13 



and under these conditions, the wind direction in the Caspian regions 
becomes northwesterly and easterly (Figure 10_c_right).

The vertical cross sections of CO2 concentration and wind provide 
additional insight into the columnar analysis. Fig. 11(a-d) shows that in 
February, the concentrations are higher in the troposphere, and CO2 is 
advected from northern latitudes to Central Iran (on the left of the plots), 
crosses over the Zagros Mountains, and passes over the Persian Gulf and 
the Arabian Peninsula to Oman. Back trajectories calculated every 250 
m from 1000 to 10,000 m asl over a point (340N, 55◦E) in the Kavir plain 
in northern-central Iran trace back the transport at low heights to higher 
latitudes, to the Caspian Sea and beyond to Kazakhstan. Trajectories 
reaching the point at altitudes above the mid-troposphere are subsiding 
over the eastern Mediterranean and reside at low altitudes over Irak and 
the Arabian Peninsula before being uplifted when passing over the 
Zagros Mountains and reaching the site.

In contrast, CO2 advection in August, Fig. 11(e-h), takes place in the 
lower stratosphere. The vertical cross sections show the zonal compo-
nent of the wind, and the back trajectories show the meridional origin of 
the air flows at the highest altitude. There is also a layer with CO2 
concentrations around the middle troposphere that may extend verti-
cally down to the Zagros Mountains. However, the summer circulations 
over the mountains and the heat-low over Central Iran do not favor CO2 
reaching the surface in Central Iran.

The vertically resolved plots show, in agreement with the global CO2 

column concentration (TM3 model) and our simulations (WRF-GHG), 
that the range of the concentrations is higher in winter and there are 
higher CO2 column concentrations in northern latitudes. In contrast, in 
summer, CO2 is advected from the south and concentrations are higher 
at lower levels.

Our results are in accordance with the study of Diallo et al. (2017) on 
the meridional and vertical distribution of CO2 in the atmosphere. These 
authors show, for 2010 as an example, that in winter there are high 
concentrations at low levels in the extra tropics and that there is an 
inversion in the vertical profiles of CO2 concentrations in summer time, 
with high concentrations in the lower stratosphere and low concentra-
tion in the troposphere, in the Northern Hemisphere. Besides the strong 
seasonal cycle induced by the activity in the biosphere, large-scale cir-
culations between the tropics and the extra-tropics explain such an 
inversion in the vertical profile (Diallo et al., 2017).

4. Conclusions

In this study, the WRF-GHG model was used to simulate weather 
variables and carbon dioxide greenhouse gas concentrations in the 
Middle East-Iran region during February and August 2010. The simu-
lations were performed using the GHG gas-phase chemistry scheme and 
the simulated column concentrations were examined using GOSAT sat-
ellite data. The significant contribution of the greenhouse gas CO2 from 

Fig. 9. Omega (-Pa/s) and horizontal wind at 850 hPa, 500 hPa and 200 hPa on February 5, 15 and 25, 2010 (a, b, c). Blue (red) colors denote subsidence (ascent). 
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 10. Cross section along A-B of vertical velocity in color shading, and (u, w) wind vectors simulated by WRF-GHG (a,b,c_left). Spatial distribution of WRF-GHG 
simulations of average column CO2 concentration (ppm) (a,b,c_right) every 10 days: February 5, 15, and 25, 2010.
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Fig. 11. CO2 and wind along vertical cross sections simulated by WRF-GHG at constant longitude 55◦E (a-c) in February, and constant latitude 340N (e-g) in August. 
Back trajectories calculated at different altitudes on 250 m steps from 1000 to 10,000 m over a point in the Kavir plain (d and h).
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local emission sources (such as cities, power plants, etc.) was observed.
We show that the WRF-GHG model is able to reproduce temporal 

variations in surface temperature, relative humidity, and wind. How-
ever, this model underestimates the air temperature and relative hu-
midity in the study area (Iran). In simulating carbon dioxide 
concentrations, the WRF-GHG model overestimates the CO2 concen-
tration compared to GOSAT satellite observations in dry months and 
underestimates it in wet months. The simulation errors of CO2 can be 
attributed to the uncertainty in simulating different input components of 
the CO2 emission inventory. Improving the simulation for various input 
parameters provided to the model as primary CO2 emissions can 
generally help improve the CO2 simulation. Potential sources of errors in 
the CO2 components are predicted to include uncertainty in anthropo-
genic, biogenic, and background concentration emissions as initial 
conditions and boundary fields of pollutant chemistry and background 
values of meteorological fields, which depend on weather predictions. 
The uncertainty in the chemical emission simulation of the model in 
different locations (e.g., rural, urban, suburban), the meteorological 
factors that can affect the concentrations, and the need to improve 
weather forecasts, especially large errors in wind speed predictions, are 
also identified.

Wind is an important factor in the transport of pollutants and also 
affects other processes, such as dry deposition. Wind speed and direction 
errors can lead to poor representation of transport and mixing. One way 
to improve such simulations is to include better initial CO2 emission 
rates and background CO2 fields and use data assimilation techniques to 
initialize the model. Accurate emission rates are also essential for 
improving air quality simulations. Errors may also occur when esti-
mating anthropogenic and biogenic emissions, which need to be 
minimized.

Furthermore, studying the role of atmospheric dispersion, transport, 
and circulation on the observed concentrations of pollutants in the 
central and eastern regions of Iran under the influence of wind fields 
shows high column concentrations of greenhouse gases in these areas 
during February and August. These areas are influenced both by the 
interaction of the heat-low with the Indian monsoon that leads to the 
120-day wind system in north Sistan in the east of the country, and by 
the interaction of the heat-low with the Arabian high-pressure system in 
the west and the Zagros Mountains summer wind.

The simulated vertical cross sections of CO2 in February and August 
show a distinct behavior. In February, concentrations are high in the 
mid-lower troposphere and are advected from the north to central Iran; 
on the contrary, in August, the lower stratosphere has high concentra-
tions that are advected from the south to central Iran. The inverted CO2 
vertical profile observed at the study area is associated with reducing 
CO2 close to the surface due to vegetation in summer and to seasonal 
large-scale circulations between the tropics and the extra tropics that 
involve transport between the troposphere and stratosphere.

The simulated vertical CO2 profiles have only been partially vali-
dated by their column-averaged values in the study area. Further study 
of vertical profiles is relevant because the radiative effect of CO2 is the 
opposite according to the sign of the vertical gradient of CO2 in the 
profile, which shows a marked seasonality. Comparison of regional 
models such as WRF-GHG with vertically-resolved measurements, 
which are still limited in their spatial and temporal coverage, will 
improve the quantification and understanding of the CO2 concentration 
in the atmosphere.
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Grell, G.A., Dévényi, D., 2002. A generalized approach to parameterizing convection 
combining ensemble and data assimilation techniques. Geophys. Res. Lett. 29 (14), 
38–41.

Hakkarainen, J., Ialongo, I., Tamminen, J., 2016. Direct space-based observations of 
anthropogenic CO2 emission areas from OCO-2. Geophys. Res. Lett. 43 (21), 11–400.

Heimann, M., Körner, S., 2003. The Global Atmospheric Tracer Model TM3: Model 
Description and User Manual. Release 3.8a. Max Planck Institute for 
Biogeochemistry, Jena. 

Hong, S.Y., Dudhia, J., Chen, S.H., 2004. A revised approach to ice microphysical 
processes for the bulk parameterization of clouds and precipitation. Monthly 
weather review 132 (1), 103–120.
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