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Abstract
We introduce a new method for the estimation of production technologies in a multi-
input multi-output context, based on OneClass Support Vector Machines with piece-
wise linear transformation mapping. We compare via a finite-sample simulation 
study the new technique with Data Envelopment Analysis (DEA) to estimate tech-
nical efficiency. The criteria adopted for measuring the performance of the estima-
tors are bias and mean squared error. The simulations reveal that the approach based 
on machine learning seems to provide better results than DEA in our finite-sam-
ple scenarios. We also show how to adapt several well-known technical efficiency 
measures to the introduced estimator. Finally, we compare the new technique with 
respect to DEA via its application to an empirical database of USA schools from 
the Programme for International Student Assessment, where we obtain statistically 
significant differences in the efficiency scores determined through the Slacks-Based 
Measure.
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1  Introduction

Measuring the technical efficiency of firms and organizations in the context of pro-
duction processes with multiple inputs and outputs is a problem that has received 
considerable attention in the specialized literature over the last decades [see, for 
example, the recent contributions by Aparicio et al. (2020), Ebrahimi et al. (2021), 
Liao et al. (2022)]. Since the seminal work by Farrell (1957), who dealt with single-
output production frameworks, many methods have been proposed for this task, but 
only a few have received enough attention to develop into their own sub-areas of 
research. These methods include both non-parametric perspectives, such as Data 
Envelopment Analysis (DEA) (Charnes et al. 1978; Banker et al. 1984), as well as 
parametric approaches such as Stochastic Frontier Analysis (SFA) (Aigner et  al. 
1977; Meeusen and van Den Broeck 1977). Between these two approaches, the non-
parametric perspective can be highlighted as being one of the most appealing tech-
niques, due to its flexibility, the set of mild conditions required, and the natural way 
with which it deals with multi-input multi-output production contexts. This paper 
focuses on this type of sub-area of research.

In this context, the usual goal is to estimate the technical efficiency of a set of 
observed production units, usually called Decision Making Units (DMUs). This is 
often done by evaluating each unit against a set of feasible input–output bundles, 
also known as the production possibility set or technology, and considering how 
much each DMU can be modified before leaving this technology following certain 
improvement paths. In this framework, a certain part of the border of the technology, 
the so-called efficient frontier, plays a major role. In particular, a DMU is efficient 
when any permitted modification of the DMU would result in the DMU being pro-
jected outside the technology. In the case of inefficient DMUs, there are many possi-
ble directions in which a DMU can be projected towards the efficient frontier. Some 
of the approaches modify either only the inputs or only the outputs, leaving the rest 
unchanged. Amongst these, the first to be introduced were the Farrell radial input 
(output) measure, see Banker et al. (1984), where every input (output) is scaled by 
the same factor, thus keeping the mix of outputs (inputs) constant. Later, more gen-
eral measures were introduced, such as the Russell measures (Färe and Lovell 1978), 
which allow the use of different scaling factors along each input (output). Further-
more, by considering the ratio between input and output Russell efficiencies, Pastor 
et al. (1999) and Tone (2001) introduced the Slacks-Based Measure (SBM), which 
satisfies additional desirable properties. Another approach considers directional dis-
tance functions (DDF), which chooses a directional vector and then projects each 
DMU in this direction (Luenberger 1992a, b; Chambers et al. 1998). Other alterna-
tive measures have been introduced over the last decades. For example, the Additive 
Model introduced in Charnes et al. (1985) is an alternative formulation of the radial 
and directional models which measures inefficiency via slacks in each input–output 
dimension. Through the weighting of each of the components, a Weighted Additive 
Model (WAM) was introduced in Lovell and Pastor (1995), which, through different 
choices of the weights, results in different technical inefficiency measures (see, e.g., 
Cooper et al. 1999).
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Another attractive area when the focus is quantitatively analysing a data sample, 
and which had practically been growing separately from efficiency estimation, is that 
of Machine Learning (ML). In this area, certain algorithms are applied to determine 
a target function from available data. In our opinion, somehow, DEA can be seen 
as a ML technique where the target is the underlying technology that is responsible 
for generating the set of observations. Under the statistical approach in production 
theory postulated by (Daraio and Simar (2007), Chapter 3), the so-called technology 
coincides with the support of the joint probability distribution of inputs and outputs. 
In this way, determining this support leads to the identification of the technology 
and vice versa.

Amongst machine learning algorithms, a family which is widely used and has 
solid theoretical foundations is that of Support Vector Machines (SVM), introduced 
in Vapnik (1998), Vapnik (2013), which are based on the minimization of two types 
of errors, namely the empirical and the generalization errors, with a hyperparam-
eter-led weighting between the two possibilities. Originally introduced for classi-
fication between two classes of labelled data, many adaptations and extensions to 
other contexts have been proposed. In particular, an adaptation of the classical SVM 
classifier to the context of unsupervised learning is the OneClass Support Vector 
Machine algorithm (OneClassSVM), introduced in Schölkopf et  al. (2001), which 
takes the approach that an unlabelled dataset can be seen as a binary classification 
dataset where only examples from one of the two classes are available, and so trans-
lates the separation of the classes into a problem of estimating the support of the 
available data, and separating it from the rest of the coordinate space. Thus, this 
algorithm estimates the support of a joint probability distribution from which the 
available data are random samples. However, as we are aware, so far, this technique 
has not been adapted to identify technologies in production theory, i.e., input–output 
sets satisfying certain microeconomic axioms (such as convexity or free disposabil-
ity), or to determine the usual technical efficiency measures (radial models, Russell 
measures, directional distance functions and so on). This will be the main objective 
of this paper, thus narrowing the existing gap between machine learning techniques 
and technical efficiency measurement from a non-parametric perspective.

In this paper, for the first time, we show how to determine a list of well-known 
technical efficiency measures as a result of tailoring the so-called OneClassSVM 
technique. As a way of gathering evidence towards the validity of this adaptation, 
we will compare our results with those obtained by the standard DEA methodology. 
We will do that through two different strategies. First of all, we will evaluate the 
goodness of our technology estimator by means of a simulation study based on finite 
samples, along the lines of papers such as Gong and Sickles (1992). Subsequently, 
we will illustrate how the new methodology performs through an empirical example 
and the Slacks-Based Measure. One of the tools which allows the standard SVM 
techniques to be powerful estimators is the introduction of a transformation function 
and associated kernel on the data, which embeds the data into a higher-dimensional 
vector space where the separation can be performed better. For this purpose, and 
taking the piecewise linear technology estimated by DEA as inspiration, we choose 
a piecewise linear (PWL) transformation function introduced in Huang et al. (2013), 
which we adapt to make the estimated technology satisfy the usual microeconomic 
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axioms in Production Theory (such as convexity and free disposability in inputs and 
outputs).

Overall, in this paper, we establish a new link between ML techniques and the 
measurement of technical efficiency, in the same line previously followed by 
authors such as Tsionas (2022), Esteve et  al. (2020, 2022), Valero-Carreras et  al. 
(2021, 2022), Olesen and Ruggiero (2018, 2022), Daouia et al. (2016), Parmeter and 
Racine (2013), and Liao et  al. (2022). In particular, Valero-Carreras et  al. (2021) 
and Valero-Carreras et al. (2022) introduced an adaptation of SVM for regression, 
that is, they tailored a supervised machine learning technique to estimate production 
frontiers. In contrast, in this paper, we focus our attention on the adaptation of One-
ClassSVM, which is an unsupervised methodology. Other recent and related papers 
on ML and efficiency are Tsolas et al. (2020) and Thaker et al. (2022).

This paper follows the distinction between absolute and relative technical effi-
ciency recently introduced by Aparicio and Esteve (2022). DEA identifies relative 
technical efficiency, that is, the degree of efficiency measured in comparative terms 
with respect to the performance of exactly the N observed units in the data sam-
ple. In contrast, absolute technical efficiency corresponds to the efficiency measured 
regarding the unknown Data Generating Process from which the data were drawn. In 
particular, the new method that we introduce attempts to measure absolute technical 
efficiency.

The remainder of the paper is structured as follows. Section 2 introduces the usual 
DEA context, with the netput notation that we will use throughout the paper, the list 
of most well-known efficiency measures as well as the fundamentals of the standard 
OneClassSVM algorithm. Section 3 develops the model that we propose, as well as 
two strategies to obtain the hyperparameters involved. Then, in Sect.  4, we adapt 
multiple measures of efficiency to the context of our algorithm and introduce the lin-
ear problems that will be solved to calculate the efficiency scores. Then, Sect. 5 con-
tains some computational experiments that we use to evaluate the performance of 
our approach and compare it with traditional DEA under a finite-sample analysis. In 
Sect. 6, we apply the new approach to an empirical database from the literature, con-
sisting of schools from the USA involved in the 2015 Programme for International 
Student Assessment (PISA) report, to illustrate and compare the new approach and 
DEA using, in particular, the Slacks-Based Measure. Finally, Sect.  7 contains the 
conclusions of this research and outlines several possible future research lines.

2 � Background

2.1 � Notation

In this section, we describe the notation that we use throughout this paper. We 
denote scalar variables in Roman letters, and in lowercase boldface letters when 
they are vectors. We denote the d-dimensional Euclidean space by ℝd , its non-
negative (non-positive) orthant by ℝd

+
 ( ℝd

−
 ). A dataset Z of DMUs contains N 

DMUs, where I is the number of inputs and O is the number of outputs. Usu-
ally, given a vector � , we denote its j’th component by aj . However, in the 
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case of the DMUs, which we denote by �1, �2, ..., �N ∈ ℝ
I+O , we indicate the 

components of these vectors using brackets, that is � = (z(1), ..., z(I + O)) and 
�i = (zi(1), ..., zi(I + O)) . We similarly denote other vectors indexed in two differ-
ent ways, such as the coefficients of the hyperplanes in our programs, which are 
denoted by �I+O+1, ..., �I+O+H , as well as the slacks vectors. In particular, the j’th 
component of the k’th hyperplane is pk(j) . Bold numbers such as �, � denote con-
stant vectors with this number in every component. The dimension of these vec-
tors is clear from the context in which they appear.

For operations between vectors, given � = (a1, ..., ad), � = (b1, ..., bd) ∈ ℝ
d , 

we use ⟨� ⋅ �⟩ to denote their inner product, that is ⟨� ⋅ �⟩ = ∑d

i=1
aibi . We 

denote the componentwise vector product, also called Hadamard product, by 
�⊙ � = (a1b1, a2b2, ..., adbd) . Vector inequalities indicate that the specified inequal-
ity holds componentwise, e.g. � ≥ � indicates that ai ≥ bi for all i = 1, ..., d . We 
remark that � > � indicates that every component of � is strictly positive, whereas 
� ≥ � and � ≠ � indicates that at least one component of � is nonzero, with every 
component non-negative, but some components may be 0.

2.2 � Data envelopment analysis

Given a set Z of N Decision Making Units (DMUs) to be assessed, we denote the 
DMU k in netput notation by �k = (zk(1), ..., zk(I + O)) = (−�k, �k) ∈ ℝ

I
−
×ℝ

O
+
 . 

This DMU uses �k = (xk(1), ..., xk(I)) > � amounts of inputs and produces 
�k = (yk(1), ..., yk(O)) > � amounts of outputs.

Given this dataset Z , we have an underlying production process which we want to 
understand. In this context, the first goal is to estimate the technology or production 
possibility set, denoted by T, which consists of those pairs of input and output vec-
tors that can be produced by the production process, i.e. the combinations of inputs 
and outputs which are feasible. In the netput notation,

In this context, DEA estimates a technology which coincides with the convex clo-
sure of the dataset, extended in the directions that are appropriate to satisfy the free 
disposability of inputs and outputs.

We denote this estimate technology by T̂DEA . This technology T̂DEA is the unique 
set satisfying the following properties, see Banker et al. (1984): 

1.	 Envelopment: for all � ∈ Z , � ∈ T̂DEA.
2.	 Convexity: for any �1, �2, ..., �k ∈ T̂DEA , and any � ≥ � , with 

∑k

i=1
�i = 1 , we have ∑k

i=1
𝜆i�i ∈ T̂DEA.

3.	 Free disposability of inputs and outputs: for every � ∈ T̂DEA and �′ ≤ � , we have 
�� ∈ T̂DEA.

(1)T ∶= {� ∈ ℝ
I
−
×ℝ

O
+
∶ � is feasible}.
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4.	 Minimal extrapolation principle: T̂DEA is the smallest set satisfying Axioms (1), 
(2) and (3), that is, it is the intersection of all sets which satisfy Axioms (1), (2) 
and (3).

As such, the technology estimated by DEA is conservative, in the sense that it will 
fit perfectly to the data. From a machine learning point of view, this results in over-
fitting, and perhaps its associated relatively weak power of generalization to unseen 
data. This is one of the issues that we wish to address by considering DEA as a 
machine learning problem, that is, we want to estimate technologies that are closer 
to the theoretical, underlying technology, rather than to the particular dataset that we 
have available.

This way of thinking about the underlying Data Generating Process (DGP) was 
formalized by Daraio and Simar in (Daraio and Simar 2007, Chapter 3), and allows 
us to consider the estimation of the technology as a problem of estimating the sup-
port of the underlying DGP.

2.3 � Measures of efficiency in data envelopment analysis

In the context of the measurement of technical efficiency, in particular when work-
ing with DEA and related techniques, technical efficiency measures how much a 
DMU can be modified while staying within the technology. This direction must be 
such that it reduces the inputs, increases the outputs, or a combination of both. In 
terms of netputs, it must either keep constant or increase every component of the 
DMU. The DMUs can be modified in many different ways while satisfying this con-
dition and staying with the technology T, and we now introduce some of the meth-
ods described in the literature to project the DMUs in appropriate directions. We 
can obtain estimates of the technical efficiency by replacing the theoretical T by an 
appropriate estimator, such as T̂DEA.

Some of the first methods for measuring technical efficiency in the DEA context 
are the radial models, both input and output-oriented (Farrell 1957; Charnes et al. 
1978; Banker et  al. 1984). These are usually called the Farrell input (output) dis-
tances, and project along the inputs (outputs) by multiplying all of them by the same 
constant, that is, in a radial direction, while leaving the outputs (inputs) constant.

The output-oriented Farrell distance is:

The input-oriented Farrell distance is:

These measures are radial and scale every output (input) by the same constant. As 
such, they leave the relative proportions (mix) of outputs (inputs) constant. The 
range of values that they can obtain is, whenever � ∈ T  , Fout(�) ∈ [1,+∞) , whereas 

(2)Fout(�) = �(�) = max{� ∶ (−�, ��) ∈ T}.

(3)Fin(�) = �(�) = min{� ∶ (�(−�), �) ∈ T}.
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Fin(�) ∈ (0, 1] where, in both cases, a value of 1 indicates technical efficiency. How-
ever, with the Farrell measures, a DMU may still have some room for improvement 
(slack) along some component of � , and not others, which led to the introduction of 
other measures.

The so-called Russell measures are a generalization of the Farrell measures 
which allow for the rescaling of each input (output) by a different constant, thus 
allowing for the presence of slacks along only some of the inputs (outputs). They are 
non-radial measures of efficiency, introduced in Färe and Lovell (1978), (Färe et al. 
1985, p.149), and are also called the Färe-Lovell efficiency indices in the literature.

The Russell measure of output efficiency, in the netput context, is defined as:

Similarly, the Russell measure of input efficiency is defined as:

We observe that the difference between the two orientations of the Russell measure 
are which coordinates are allowed to be rescaled (outputs or inputs), while the others 
(inputs or outputs) are kept constant, and that, in order to have the appropriate ori-
entation, the ranges for these scaling factors differ. As a result, as written, whenever 
� ∈ T  , we have Rin(�) ∈ (0, 1] , whereas Rout(�) ∈ [1,+∞) . In either case, a DMU is 
considered efficient when it attains a value of 1, which indicates that no improve-
ment is possible along any input (output).

The Farrell measures are special cases of the corresponding Russell measures 
with the additional restriction that �1 = �2 = ... = �I for the input orientation and 
�I+1 = �I+2 = ... = �I+O for the output orientation.

Another non-radial measure of efficiency is the Directional Distance Function 
(DDF), considered in Luenberger (1992b), Luenberger (1992a), Chambers et  al. 
(1998), Färe and Grosskopf (2000). In this model, the netput notation allows for 
a homogeneous treatment of both inputs and outputs. It projects each DMU along 
some pre-specified direction � ∈ ℝ

I+O
+

 such that � ≠ � , as follows:

This is a measure of the distance from � to the boundary of the technology along 
direction � , as such, it takes the value 0 for efficient DMUs (any change along the 
� direction leaves the technology), and, for � ∈ T  , we have �(�, �) ≥ 0 . Therefore, 
� ∈ [0,+∞) . We remark that the Farrell measures are particular cases of the direc-
tional distance function where, for each � , we take �(�) = (−z(1),… ,−z(I), 0,… , 0) 
for the input orientation and �(�) = (0,… , 0, z(I + 1),… , z(I + O)) for the output 
orientation.

(4)

Rout(�) = max

{

1
O

I+O
∑

r=I+1
�r:�⊙ � ∈ T , �r = 1 for r ∈ {1, ..., I} and �r ≥ 1 for r ∈ {I + 1, ..., I + O}

}

.

(5)

Rin(�) = min

{

1
I

I
∑

r=1
�r:�⊙ � ∈ T , �r ∈ [0, 1] for r ∈ {1, ..., I} and �r = 1 for r ∈ {I + 1, ..., I + O}

}

.

(6)�(�, �) = max{� ∶ (� + ��) ∈ T}.
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Aditionally, another alternative is the additive-type measure. It, like the DDF, 
allows for changes in both inputs and outputs simultaneously. Furthermore, by 
assigning an independent slack to each variable via a slacks vector � ∈ ℝ

I+O
+

 (here 
all slacks are non-negative due to the netput notation) and weighting the penalties 
through a vector � ∈ ℝ

I+O
+

 with � > � , they allow for the detection of further inef-
ficiencies along some of the directions. The basic formulation is the Weighted Addi-
tive Model (WAM, Lovell and Pastor 1995), and different choices of weights � then 
result in different measures. This model also treats inputs and outputs in a homoge-
neous way due to the netput notation. The WAM formulation is:

Amongst the choices for weights, we consider the following: 

1.	 Measure of Inefficiency Proportions (MIP, Cooper et al. 1999): vj =
1

|z(j)|.

2.	 Range Adjusted Measure (RAM, Cooper et al. 1999): vj =
1

(I+O)Rj

 , where Rj is the 
range of variable j, that is, Rj = max{zr(j) ∶ r ∈ {1, ...,N}} −min{zr(j) ∶

r ∈ {1, ...,N}}.

With these additive measures, as with the DDF, a DMU is considered to be efficient 
whenever its efficiency value is 0, and their range is [0,+∞) . However, due to the 
variation in normalizing factors, their magnitudes are different and are not directly 
comparable.

We now introduce a Slacks-Based Measure, see Pastor et al. (1999), Tone (2001), 
also called Enhanced Russell Graph measure. This measure combines the ratio 
between the Russell input and Russell output measures. The SBM is based on an 
ordinary linear fractional programming model that can be linearized using a stand-
ard approach in the literature (see Charnes and Cooper 1962). The formulation 
which we take as a starting point for adaptation is the following additive model, that 
is Model (7) in Tone (2001):

In this paper, we will tailor all these measures to the context of our ML model.

2.4 � OneClass Support Vector Machines

We now introduce the unsupervised machine learning algorithm, called OneClass 
Support Vector Machine, sometimes abbreviated as OneClassSVM, 1CSVM or 
1SVM, that we adapt for the estimation of production technologies. It was intro-
duced in Schölkopf et al. (2001) as an adaptation of classification Support Vector 

(7)WAM(�, �(�)) = max

{
I+O∑

j=1

vjs(j) ∶ � + � ∈ T , � ≥ �

}
.

(8)

SBM(�) = min

{(
1 +

1

I

I∑

i=1

s(i)

z(i)

)/(
1 +

1

O

I+O∑

i=I+1

s(i)

z(i)

)
∶ � + � ∈ T, � ≥ �

}
.
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Machines (SVM) to the setting of estimating the support of a high-dimensional 
distribution, bringing us to the context of estimating a technology as the support 
of the probability distribution of inputs and outputs discussed above. An observa-
tion at the core of this approach is that estimating the support of a sample can be 
seen as a particular case of binary classification where only examples of one of 
the classes are available. The OneClassSVM quadratic program is:

This program will obtain a solution (�∗, �∗, �∗) , which defines the estimated support 
of the dataset, of the form:

This program involves a hyperparameter � determining how much weight is given to 
each component of the objective function and it also involves a transformation func-
tion � ∶ ℝ

I+O
→ ℝ

I+O+H , that is, a transformation from the space of netputs into a 
higher dimensional real vector space that is key to determine the properties of the 
estimated set. We choose a transformation function based on the following piece-
wise linear transformation function (PWL) for our algorithm, which will result in a 
polyhedral set.

This piecewise linear transformation function was introduced and studied in [Huang 
et al. 2013, Expression (12)]. We choose it for its parallelism with DEA, which esti-
mates technologries with a piecewise linear boundary, that is, a polyhedral set.

This function � involves a number H of hyperplanes, each defined by its slope 
vector �k ∈ ℝ

I+O , and its intercept qk ∈ ℝ . These can be either considered hyper-
parameters of the model, which involves large amounts of computation to calcu-
late the H(I + O + 1) hyperparameters required, or they can be chosen by a rea-
soned heuristic which is the approach that we take in this paper.

The role of the hyperplanes in the transformation is that the boundary of the 
estimated set will consist of flat portions until it reaches each of the hyperplanes 
where ⟨�k ⋅ �⟩ + qk = 0 , at which point at least one of the hyperplane components 
will change the function chosen in the maximum function, thus allowing the 
boundary to change direction. Therefore, the hyperplanes will determine where 
the edges of the estimated polyhedral set are located.

(9)
min

�∈ℝI+O+H ,�∈ℝN ,�∈ℝ

1

2
‖�‖2 + 1

�N

N�

i=1

�i − �

subject to ⟨� ⋅ �(�i)⟩ ≥ � − �i, ∀i ∈ {1,… ,N}

�i ≥ 0, ∀i ∈ {1,… ,N}

.

(10){� ∈ ℝ
I+O ∶ ⟨�∗

⋅ �(�)⟩ ≥ �∗}.

(11)�(�) =

�
z(k), for k ∈ {1,… , I + O}

max{0, ⟨�k ⋅ �⟩ + qk}, for k ∈ {I + O + 1,… , I + O + H}
.
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3 � The new approach

The model for the estimation of the technology that we use is the following adap-
tation of the OneClassSVM model (9) to the world of efficiency estimation.

The objective function of (12) and restrictions (12a) and (12b) are identical to 
the original OneClassSVM, while restriction (12c) guarantees convexity due to our 
choice of piecewise linear mapping (see Huang et al. 2013), which we use in the fol-
lowing adapted version:

This transformation is changed from the formulation in (11) in two ways. The first 
adaptation is that we take the negatives of each component, so that the estimated 
region coincides with the area where the data lies, and the second modification 
replaces the 0 in the hyperplane components by a hyperparameter � which we will 
tune during the training process. The effect of this change is that, instead of allow-
ing the edges of the technology to be at the hyperplanes satisfying ⟨�k ⋅ �⟩ + qk = 0 , 
now these edges will be located at the regions where ⟨�k ⋅ �⟩ + qk = � . By consider-
ing different values of � , we allow these edges to be in slightly different regions, and 
the hyperparameter tuning will then compare them and select the value of � which 
yields the best estimator. This will, therefore, enable the estimator to select amongst 
various candidate sets, and help reduce overfitting. We will show later in the paper 
how our estimator works through a computational experience.

Problem (12) is solved with given values for � and � . This way, (�∗, �∗, �∗) 
denotes an optimal solution of (12). From it, the technology estimated by program 
(12) is defined by:

The estimated technology T̂(𝜇, 𝜈) then satisfies the following microeconomic 
axioms:

(12)min
�∈ℝI+O+H ,�∈ℝN ,�∈ℝ

1

2
‖�‖2 + 1

�N

N�

i=1

�i − �

(12a)subject to ⟨� ⋅ �(�i)⟩ ≥ � − �i, ∀i ∈{1,… ,N}

(12b)�i ≥ 0, ∀i ∈{1,… ,N}

(12c)wj ≥ 0, ∀j ∈{1,… , I + O + H}

(13)�(�) =

�
−z(k), for k ∈ {1,… , I + O}

−max{�, ⟨�k ⋅ �⟩ + qk}, for k ∈ {I + O + 1,… , I + O + H}
.

T̂(𝜇, 𝜈) ∶= {� ∈ ℝ
I
−
×ℝ

O
+
∶ ⟨�∗

⋅ �(�)⟩ ≥ 𝜌∗}.
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Proposition 3.1  The following hold: 

1.	 (CONVEXITY) T̂(𝜇, 𝜈) is convex.
2.	 (FREE DISPOSABILITY) Suppose that �k ≥ � for all k ∈ {I + O + 1,

… , I + O + H} . Then T̂(𝜇, 𝜈) satisfies free disposability. In other words, if 
� ∈ T̂(𝜇, 𝜈) and �′ ≤ � with �� ∈ ℝ

I
−
×ℝ

O
+
 then �� ∈ T̂(𝜇, 𝜈).

3.	 (ENVELOPMENT) The number of outliers ( nOL ) is at most �N and the number 
of support vectors ( nSV ) is at least �N . In other words, 

Convexity of T̂(𝜇, 𝜈) follows as in (Huang et al. (2013), Section 5), given that the 
defined � is concave and � ≥ � . Free disposability of inputs and outputs is satisfied 
as in CNLS [see (Kuosmanen and Johnson 2010), Section 2.2] when imposing addi-
tionally that �k ≥ � , so we will determine these parameters in a manner consistent 
with this choice. Finally, the bound on the fraction of outliers holds as in (Schölkopf 
et al. (2001), Proposition 3). The following corollary is a consequence of the princi-
ple of minimal extrapolation in DEA and Proposition 3.1(3). It states that the DEA 
estimator of the technology is always a subset of the estimator built from the adapta-
tion of OneClassSVM.

Corollary 3.2  If 𝜈 < 1∕N then T̂DEA ⊆ T̂(𝜇, 𝜈).

Problem (12) with transformation (13) involves hyperparameters � and � , which 
we tune via a train-test split in order to obtain the best ones for each situation. In 
particular, by Proposition 3.1(3), � can be seen to be a lower bound for the frac-
tion of Support Vectors allowed, and an upper bound for the fraction of outliers. 
We choose � in the range [1∕(N + 1), 0.1] , except when N ≤ 10 , where we choose 
� ∈ [0.1, 0.3] . This results in a minimum of 0 outliers, and a maximum of 10% of 
DMUs being outliers. The values of � depend on the hyperplanes chosen for � , and 
we describe its role in the next Section.

3.1 � Hyperplane parameters

The hyperplanes involved in the piecewise linear feature mapping that we use 
have a large impact on the performance of the estimator. The parameters �k, qk 
and � define, as in Huang et  al. (2013), the regions where the boundary of the 
technology has turning points. As such, we are interested in using hyperplanes 
which lay between the dataset and the edge of the theoretical technology. Some 
examples of such hyperplanes are given by the convex closure of the data, in 
other words, the hyperplanes obtained by the DEA estimator. In order to obtain 
them, we solve the directional distance function (DDF) DEA program in its mul-
tiplier form, with directional vector � = � , corresponding to the Chebyshev norm 

nOL ≤ �N ≤ nSV .
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l∞ , see Briec (1999). We solve the program for each �i ∈ Z to obtain its corre-
sponding parameters �k , qk:

This is a netput-adapted form of the DDF program introduced in Equation (6) using 
the DEA-estimated technology, as found in (Pastor et  al. (2012), Program 3). By 
solving this program, we ensure that the sum of the coefficients of the slope of each 
hyperplane add up to one, thus obtaining components in the transformation which 
have comparable magnitudes. Furthermore, they are non-negative, thus ensuring 
free disposability of the obtained estimators [see Proposition 3.1(2)].

Solving this problem for each DMU, we obtain N hyperplanes in the desired 
region. Furthermore, we obtain a set of values �i which determine the distance along 
directional vector � = � of each DMU with respect to the DEA-estimated frontier, 
in other words, the convex closure of the dataset (extended by free disposability). 
This yields a minimum reasonable value for the offset hyperparameter � , given by 
�min ∶= mini{�i} ≤ 0 . When � takes the value �min , the hyperplanes get offset so 
that every DMU is above at least one hyperplane and, if � ≤ �min , the hyperplanes 
are located in the region between the dataset and the origin, not enabling the frontier 
to have edges in the appropriate regions. Therefore, we choose the interval 

[
�min, 0

)
 

as a suitable range of values for �.
We now discuss two possible ways to define larger sets of hyperplanes for the 

PWL mapping: (1) the duplication of the hyperplane slopes with slightly modified 
offsets, and (2) the calculation of linear combinations of the existing hyperplanes, in 
particular via the mean.1

3.1.1 � Duplicate hyperplanes strategy

Following the process above, we obtained N hyperplanes with slopes �k . A way to 
obtain a larger number of hyperplanes is to duplicate the hyperplanes with the same 
slopes and with a small offset both upwards and downwards in order to obtain more 
flexibility in the estimated technologies. After some testing, we choose the offset for 
the duplicated hyperplanes to be 0.05R, where R is the range of values taken by the 
data. This yields a value of H = 3N for the number of hyperplane components of the 
PWL mapping.

Thus, in this case, we work with a set of slopes �k obtained by solving Problem 
(14) once for each DMU and, for each slope �k , we take the corresponding intercept 

(14)

min
�k ,qk

− ⟨�k ⋅ �i⟩ − qk = −�i

subject to ⟨�k ⋅ �r⟩ + qk ≤ 0, ∀r ∈ {1,… ,N}

⟨�k ⋅ �⟩ = 1,

�k ≥ �

.

1  We also considered other methods of obtaining the hyperplane parameters. Treating them as hyper-
parameters results in a large number H(I + O + 1) of hyperparameters to tune, and so involves 
large computational expense without significant improvements. A grid of “flat" hyperplanes with 
�k = (0, ..., 1, ..., 0) performed worse than the DEA hyperplanes alone, and took much smaller weights 
when considered together. Various other pre-set values for the slopes such as �k = �∕(I + O) posed the 
same problem.
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term qk , and consider three hyperplanes defined by (�k, qk − 0.05R) , (�k, qk) , and 
(�k, qk + 0.05R) . As such, the piecewise linear transformation has I + O + H compo-
nents, where H = 3N , which keeps a reasonable size. We provide an illustration of 
the types of hyperplanes thus obtained in Fig. 1a.

3.1.2 � Mean hyperplanes strategy

Another approach we consider in order to obtain a higher number of hyperplanes in 
the transformation consists of, after solving Problem (14) for every DMU, the defini-
tion of new hyperplanes by taking linear combinations of the existing hyperplanes. 
We take the hyperplanes defined by the mean of two existing hyperplanes. In other 
words, given two hyperplanes (�k, qk) , and (�l, ql) , we define the mean hyperplane by 
�k,l = (�k + �l)∕2 , and qk,l = (qk + ql)∕2 . This yields hyperplanes with varying slopes 
which still live in the appropriate region for the edges of the technology, and creates 
N(N − 1)∕2 hyperplanes in the transformation. We illustrate this approach in Fig. 1b.

From our computational experience (Sect.  5), we conclude that the duplicate 
hyperplanes strategy is superior to the mean hyperplanes strategy and is less compu-
tationally expensive.

3.2 � Technical inefficiency: the output‑oriented directional distance function 
program

In order to evaluate and select the most appropriate technology estimator from the 
different choices of the hyperparameters � and � , we need a method to evaluate the 
different candidates and choose amongst them. We do so by calculating the Direc-
tional Distance Function (DDF) measure of inefficiency which, when we estimate a 
technology T̂(𝜇, 𝜈) , is defined by:

Fig. 1   Hyperplanes strategies
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This requires the specification of a directional vector � ∈ ℝ
I+O
+

 , with � ≠ � . For this 
purpose, we choose the vector �i associated to the Farrell output distance for each 
DMU �i , that is: �i = �(�i) = (�, �i) = (0,… , 0, zi(I + 1),… , zi(I + O)) . Further-
more, while Program (15) is not directly implementable by usual solvers, it can be 
rewritten as a standard linear program. We do this in Sect. 4.5, since the lineariza-
tion process and associated proofs are analogous for the measures introduced in that 
Section. The linear program thus obtained is:

3.3 � Description of the algorithm: tuning the hyperparameters

First, for each DMU �i ∈ Z , we solve Program (14) to obtain N basic hyper-
planes, with their appropriate slopes �k and intercepts qk . We also define 
�min ∶= mini{�i} . We then choose a strategy and use it to obtain a larger number 
H of hyperplanes and their corresponding values �k , qk which we use to define the 
transformation function � . At this stage, we have Program (12) ready to be solved 
for each choice of �, �.

The hyperparameters that remain to tune in the algorithm are � and � . Unless 
otherwise specified, we choose 5 values equally spaced in the intervals 

[
�min, 0

)
 for 

� , and we choose � in the range [1/N, 0.1], except when N ≤ 10 , where we choose 
� ∈ [0.1, 0.3].

In order to choose amongst these candidate values, we randomly split the dataset 
Z into a training set Ztrain containing 70% of the DMUs and a test set Ztest contain-
ing the remaining 30% of the data.

For each candidate pair of values of �, � , we train the model by solving (12) on 
the training set, obtaining a candidate estimator T̂(𝜇, 𝜈).

We then evaluate the performance of each estimator T̂(𝜇, 𝜈) on the test set Ztest by 
comparing, on each DMU �i ∈ Ztest , the predicted projections �i + ��i of each DMU 
according to Program (16). This yields estimated output levels for �i , which we use 
for each �i ∈ Ztest in order to calculate the Mean Squared Error (MSE) associated 
with T̂(𝜇, 𝜈) . We then choose as the best hyperparameters those (�∗, �∗) that mini-
mize this MSE on Ztest.

(15)
𝛿(�, �) =max{𝛿 ∈ ℝ ∶ (� + 𝛿�) ∈ T̂(𝜇, 𝜈)}

=max{𝛿 ∶ ⟨�∗
⋅ �(� + 𝛿�)⟩ ≥ 𝜌∗, � + 𝛿� ∈ ℝ

I
−
×ℝ

O
+
}.

(16)

max
�∈ℝ,�∈ℝH

M� −
I+O+H∑
j=I+O+1

�j

subject to −
I+O∑
j=1

w∗
j
(z(j) + �g(j)) −

I+O+H∑
j=I+O+1

w∗
j
�j ≥ �∗,

�j ≥ �∗, ∀j ∈ {I + O + 1,… , I + O + H}

�j ≥
I+O∑
k=1

�
pj(k)(z(k) + �g(k))

�
+ qj, ∀j ∈ {I + O + 1,… , I + O + H}

z(j) + �g(j) ≤ 0, ∀j ∈ {1, ..., I}

z(j) + �g(j) ≥ 0, ∀j ∈ {I + 1, ..., I + O}

.
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Finally, once the best hyperparameters (�∗, �∗) are determined, the model is 
retrained on the whole dataset Z , by solving Program (12) on Z with the chosen 
hyperparameters, yielding the final estimate of the technology T̂(𝜇∗, 𝜈∗) . We refer 
to the method by 1SVMd when the duplicate hyperplanes strategy is used and by 
1SVMm when the mean hyperplanes strategy is employed.

4 � Measures of efficiency

In this section, we introduce the optimization problems that we will use to obtain the 
various efficiency scores with respect to the estimator introduced in this paper, we lin-
earize them, and show equivalence of the solutions to both problems. We begin with 
the Russell measures, as the proofs used in this case can be adapted in a straightforward 
manner to the other measures of efficiency.

We remark that, depending on the value of �∗ , this method may leave some DMUs 
as outliers, and some of the ways to measure efficiency that we present will have 
infeasible problems in this case. This can be avoided by setting the hyperparameter 
0 < 𝜈∗ < 1∕N , where no outliers will be permitted, and thus this issue will not arise.

Similarly, we recall that we assume that the DMUs do not have any 0 values in their 
inputs or outputs. Otherwise, minor adjustments to the problems must be made to avoid 
issues of unboundedness or null denominators.

For every measure, we first obtain the estimated technology T̂(𝜇∗, 𝜈∗) , 
which we recall is defined by taking (�∗, �∗, �∗) to be an optimal solu-
tion of (12) after the tuning of the hyperparameters �∗, �∗ , which is given by 
T̂(𝜇∗, 𝜈∗) = {� ∈ ℝ

I
−
×ℝ

O
+
∶ ⟨�∗

⋅ �(�)⟩ ≥ 𝜌∗} . Therefore, these values are fixed 
and are not variables of the presented programs.

4.1 � Russell output

The Russell input and output measures of efficiency are non-radial measures of effi-
ciency, and we consider them first. They can be seen as generalizations of the corre-
sponding Farrell input or output measures which, instead of scaling every variable by 
the same scalar, allow that there can be slacks along some of the inputs (outputs). Thus, 
the arguments for these measures will also apply to the Farrell measures. We begin by 
introducing the output-oriented Russell measure.

The Russell measure of output efficiency is defined as:

Given � ∈ T̂(𝜇∗, 𝜈∗) , the output-oriented Russell measure takes values Rout(�) ≥ 1 , 
with � being efficient whenever Rout(�) = 1 . Due to the definition of the trans-
formation function � , which has nonlinear components involving a maximum 

(17)

Rout(�) = max

{

1
O

I+O
∑

r=I+1
�r:�⊙ � ∈ T̂(�∗, �∗), �r = 1 ∀r ∈ {1, ..., I}, �r ≥ 1 ∀r ∈ {I + 1, ..., I + O}

}

= max

{

1
O

I+O
∑

r=I+1
�r:⟨�∗ ⋅ �(�⊙ �)⟩ ≥ �∗, �r = 1 ∀r ∈ {1, ..., I}, �r ≥ 1 ∀r ∈ {I + 1, ..., I + O}

}

.
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function, program (17) is not linear. However, we can linearize it by adding a new 
variable � ∈ ℝ

H which attains the value of the maximum at each component, 
�j = max{�∗, ⟨�j ⋅ �⟩ + qj} . In order to force � to attain the maximum at each com-
ponent, we penalize this value in the objective function, and we introduce a constant 
M large enough so that small changes in � affect the objective function more than the 
corresponding changes in � . The linearized model for the output-oriented Russell 
measure is:

Program (18) is a linear program, where M is a large number. We now prove that 
a solution to the linearized program yields a solution to the original definition of 
the measure. We first prove the following auxiliary result that, in an optimal solu-
tion, the linearizing variable � which we introduce as proxy for the terms involving 
the maximum of two numbers indeed attains this maximum value. In other words, 
at least one of the second and third restrictions becomes equality at an optimal 
solution.

Lemma 4.1  Let (�∗,�∗) be an optimal solution of (18). Then, 
𝜎∗
j
= max{𝜇∗, ⟨�j ⋅ (�∗ ⊙ �)⟩ + qj} for all j ∈ {I + O + 1,… , I + O + H}.

Proof  Suppose (�∗,�∗) is an optimal solution to (18). By the second and third 
restrictions of (18), for each j ∈ {I + O + 1, ..., I + O + H} , we have 
𝜎∗
j
≥ max{𝜇∗, ⟨�j ⋅ (�∗ ⊙ �)⟩ + qj} . Now, assume that 

𝜎∗
j�
> max{𝜇∗, ⟨�j� ⋅ (�∗ ⊙ �)⟩ + qj� } for some j� ∈ {I + O + 1, ..., I + O + H} . Then, 

we consider the potential solution (�∗,��) where ��
l
= �∗

l
 for l ≠ j′ and 

𝜎�
j�
= max{𝜇∗, ⟨�j� ⋅ (�∗ ⊙ �)⟩ + qj� } < 𝜎∗

j�
 . This is still a feasible point of (18), as the 

LHS of the first restriction becomes greater, and the last two restrictions are still sat-
isfied, so it is still a solution to the optimization problem with a larger objective, 
contradicting the assumption that (�∗,�∗) was optimal. 	�  ◻

We can now prove the following link between the solutions of both programs.

Proposition 4.2  Whenever (�∗,�∗) is an optimal solution of (18), then �∗ is an opti-
mal solution of Program (17).

(18)

max
�∈ℝI+O,�∈ℝH

M
1

O

I+O∑
r=I+1

�r −
I+O+H∑
j=I+O+1

�j

subject to −
I+O∑
j=1

w∗
j
�jz(j) −

I+O+H∑
j=I+O+1

w∗
j
�j ≥ �∗,

�j ≥ �∗, ∀j ∈ {I + O + 1,… , I + O + H}

�j ≥
I+O∑
k=1

�
pj(k)�kz(k)

�
+ qj, ∀j ∈ {I + O + 1,… , I + O + H}

�r = 1, ∀r ∈ {1, ..., I}

�r ≥ 1, ∀r ∈ {I + 1, ..., I + O}

.
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Proof  Let (�∗,�∗) be an optimal solution of (18) and suppose that �∗ is not an opti-
mal solution of (17). Then, there exists �′ satisfying 1

O

∑I+O

r=I+1
𝛿r�>

1

O

∑I+O

r=I+1
𝛿∗
r
 such 

that �′ is a feasible solution of (17). That is, �� ⊙ � ∈ T̂(𝜇∗, 𝜈∗) and, by definition of 
T̂(𝜇∗, 𝜈∗) , ⟨�∗

⋅ �(�� ⊙ �)⟩ ≥ 𝜌∗.
Define �′ by 𝜎�

j
= max{𝜇∗, ⟨�j ⋅ (�� ⊙ �)⟩ + qj} for all j ∈ {I + O + 1,… , I

+O + H} . Then, (��,��) is a feasible solution of (18), since the first constraint of (18) is 
satisfied because:

the second and third constraints of (18) are directly met by definition of �′ , and the 
last two constraints of (18) are satisfied because �′ is a feasible solution of (17). 
Since 1

O

∑I+O

r=I+1
𝛿r� >

1

O

∑I+O

r=I+1
𝛿∗
r
 and M is large enough (to offset the effect of the 

change in �′
j
 ), we have:

hence (�∗,�∗) is not an optimal solution of (18), contradicting our assumption. Thus, 
whenever (�∗,�∗) is an optimal solution of (18), �∗ is an optimal solution of (17). 	
� ◻

Thus, we can solve the linear program (18) to obtain the output-oriented Rus-
sell measure scores when the underlying technology is estimated by our proposal 
based on OneClasSVM. Next, we similarly linearize the other programs, and the 
same proof, adapted, holds true for the other measures.

4.2 � Russell input

The Russell measure of input efficiency, analogously to the output one, is defined 
as:

In this case, 0 ≤ Rin(�) ≤ 1 , and a DMU is efficient when Rin(�) = 1 , which happens 
when � = � ; in other words, when we cannot decrease any input without making 
the DMU infeasible. That is, any decrease in any input would result in an infeasible 
DMU.

As before with the output Russell distance, we can linearize this problem. The 
arguments above hold mutatis mutandis, as the only changes are the change of 
maximizing to minimizing in the objective function (hence the penalization term 

−

I+O�

j=1

w∗
j
𝛿jz(j) −

I+O+H�

j=I+O+1

w∗
j
𝜎�
j
= ⟨�∗

⋅ �(�� ⊙ �)⟩ ≥ 𝜌∗,

M
1

O

I+O∑

r=I+1

𝛿�
r
−

I+O+H∑

j=I+O+1

𝜎�
j
> M

1

O

I+O∑

r=I+1

𝛿∗
r
−

I+O+H∑

j=I+O+1

𝜎∗
j
,

(19)

Rin(�) = min

{

1
I

I
∑

r=1
�r:�⊙ � ∈ T̂(�∗, �∗), �r ∈ [0, 1] ∀r ∈ {1, ..., I}, �r = 1 ∀r ∈ {I + 1, ..., I + O}

}

.
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for � has different sign), the � that appears in the objective function, and the range 
of possible values for � , whereas everything else stays the same:

Thus, we obtain the following result:

Proposition 4.3  If (�∗,�∗) is an optimal solution of (20) then �∗ is an optimal solu-
tion of Program (19).

Proof  The proof in Proposition 4.2 holds with the appropriate changes. 	� ◻

4.3 � Farrell output

The output-oriented radial measure or output-oriented Farrell measure for our 
technology estimator is:

Regarding the various equalities, the first formulation is the definition of the Farrell 
output distance, the second expression expands the values in the vector involved, 
implicitly showing that this is a particular case of the Russell output meas-
ure. Finally, the third and fourth formulations show how, via the transformation 
� = � − 1 , this can be seen as a particular case of the DDF with directional vector 
�(�) = (�, �).

The Farrell output distance, given � ∈ T̂(𝜇∗, 𝜈∗) , satisfies � ≥ 1 , with � = 1 
whenever � is efficient. However, in case of outliers, this value � = 1 does not 

(20)

min
�∈ℝI+O,�∈ℝH

M
1

I

I∑
r=1

�r +
I+O+H∑
j=I+O+1

�j

subject to −
I+O∑
j=1

w∗
j
�jz(j) −

I+O+H∑
j=I+O+1

w∗
j
�j ≥ �∗,

�j ≥ �∗, ∀j ∈ {I + O + 1,… , I + O + H}

�j ≥
I+O∑
k=1

�
pj(k)�kz(k)

�
+ qj, ∀j ∈ {I + O + 1,… , I + O + H}

0 ≤ �r ≤ 1, ∀r ∈ {1, ..., I}

�r = 1, ∀r ∈ {I + 1, ..., I + O}

.

(21)

Fout(�) = max{�:(−�, ��) ∈ T̂(�∗, �∗)} = max{�:(z(1),
..., z(I), �z(I + 1), �z(I + 2), ..., �z(I + O)) ∈ T̂(�∗, �∗)}
= max{�:⟨�∗ ⋅ �(� + (� − 1)(�, �))⟩ ≥ �∗, (� + (� − 1)(�, �)) ∈ ℝI

− ×ℝO
+}}

= max{�:⟨�∗ ⋅ �(� + �(�, �))⟩ ≥ �∗, (� + �(�, �)) ∈ ℝI
− ×ℝO

+}+1.
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yield a feasible solution, and so, to prevent leaving the quadrant, we will add a 
restriction of the form � ≥ 0 to the corresponding linearized program.

As before, program (21) is not linear, due to the dependence on a maximum in 
the definition of �(�) , but we can linearize it by using the same big-M technique 
as before. The resulting linear program, with variables � , � , is:

As before, we can obtain an optimal solution to (21) from one of (22):

Proposition 4.4  If (�∗,�∗) is an optimal solution of (22) then �∗ is an optimal solu-
tion of Program (21).

Proof  The Farrell output measure is a special case of the output-oriented Russell 
measure, so this statement is a particular case of Proposition 4.2. 	�  ◻

4.4 � Farrell input

The input-oriented Farrell measure of efficiency is analogous to the Farrell output 
measure, but with the scaling factor on the inputs instead of the outputs. In our setting, 
it is defined by:

In this case, Fin(�) ∈ (0, 1] whenever � ∈ T̂(𝜇∗, 𝜈∗) , with Fin = 1 when-
ever � is efficient. The last equality in (23) shows that the Farrell input dis-
tance can be seen as a special case of the Directional Distance Function with 
� = (�, �) = (−z(1), ...,−z(I), 0, ..., 0) . Note that, in this latter case, the problem is to 
minimize, which is due to the relationship � = 1 − � , which inverts the goal of the 
problem.

In the case of this distance, we can linearize the nonlinear problem above as in the 
output case, to obtain the following linear program:

(22)

max
�∈ℝ,�∈ℝH

M� −
I+O+H∑
j=I+O+1

�j

subject to −
I∑

j=1

w∗
j
z(j) − �

I+O∑
j=I+1

w∗
j
z(j) −

I+O+H∑
j=I+O+1

w∗
j
�j ≥ �∗,

�j ≥ �∗, ∀j ∈ {I + O + 1,… , I + O + H}

�j ≥
I∑

k=1

pj(k)z(k) + �

�
I+O∑
k=I+1

pj(k)z(k)

�
+ qj, ∀j ∈ {I + O + 1,… , I + O + H}

� ≥ 0

.

(23)

Fin(�) = min{�:(�(−�), �) ∈ T̂(�∗, �∗)} = min{�:

(�z(1), ..., �z(I), z(I + 1), ..., z(I + O) ∈ T̂(�∗, �∗)}

= min{�:⟨�∗ ⋅ �(� + (1 − �)(�, �))⟩ ≥ �∗, (� + (1 − �)(�, �)) ∈ ℝI
− ×ℝO

+}

= 1−max{�:⟨�∗ ⋅ �(� + �(�, �))⟩ ≥ �∗, (� + �(�, �)) ∈ ℝI
− ×ℝO

+}.
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As before, we have the following relationship between the solutions to these 
programs:

Proposition 4.5  If (�∗,�∗) is an optimal solution of (24) then �∗ is an optimal solu-
tion of Program (23).

Proof  This is a special case of the input-oriented Russell function, so it is a particu-
lar case of Proposition 4.3. 	�  ◻

4.5 � Directional distance function

We now consider the directional distance function (DDF), as described in Sects. 2.3 
and 3.2. This is a measure of inefficiency, which measures how much � can be moved 
along a direction � ∈ ℝ

I+O
+

 before leaving the technology. In order to obtain the inef-
ficiency of a DMU � , we solve Problem (15) in its linearized form (16).

The DDF takes values where efficient DMUs have inefficiency score � = 0 , and 
DMUs within the technology have � ≥ 0 . Furthermore, the DDF also allows for those 
DMUs outside the technology which can be projected along � into the technology to 
obtain inefficiency scores, but in these cases 𝛿 < 0 . Then, the following holds, with 
proof analogous to that of Proposition 4.2:

Proposition 4.6  If (�∗,�∗) is an optimal solution of (16) then �∗ is an optimal solu-
tion of Program (15).

Proof  Analogous to Proposition 4.2. 	�  ◻

4.6 � Weighted additive model

Another well-known family of measures of efficiency consists of the measures based 
on the Weighted Additive Model (WAM), introduced in Lovell and Pastor (1995). 
Through various choices of weights, a variety of measures is defined such as the 
Measure of Inefficiency Proportions (MIP) and Range Adjusted Measure (RAM), see 
Cooper et al. (1999).

Regarding notation, since the slacks vector is going to depend on the corresponding 
DMU, we denote it by � = (s(1), ..., s(I + O)) , so that, when necessary, we can refer to 
the slacks of DMU �i by �i . This measure allows for slacks in both the inputs and the 

(24)

min
�∈ℝ,�∈ℝH

M� +
I+O+H∑
j=I+O+1

�j

subject to − �
I∑

j=1

w∗
j
z(j) −

I+O∑
j=I+1

w∗
j
z(j) −

I+O+H∑
j=I+O+1

w∗
j
�j ≥ �∗,

�j ≥ �∗, ∀j ∈ {I + O + 1,… , I + O + H}

�j ≥ �

�
I∑

k=1

pj(k)z(k)

�
+

I+O∑
k=I+1

pj(k)z(k) + qj, ∀j ∈ {I + O + 1,… , I + O + H}

� ≥ 0

.
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outputs. The Weighted Additive Model in the netput notation and with respect to the 
estimator introduced in this article is:

We remark that, as with the property of free disposability, the change of signs of 
the inputs in the netput notation also allows a homogeneous treatment of the slacks, 
without the need to split the sum into its input and output terms. In this model, we 
require that the weights � > � are strictly positive.

We linearize Program (25) with the same technique as before. Hence, once the 
weights are chosen, the linearized model for WAM(�) becomes:

We remark that the last constraint in Model (26) is redundant whenever 
� ∈ ℝ

I
−
×ℝ

O
+
 , since � ≥ � , but we include it for parallelism with the other pro-

grams. The same proofs as before also work here to prove the following relationship 
between solutions to both programs.

Proposition 4.7  If (�∗,�∗) is an optimal solution of (26) then �∗ is an optimal solu-
tion of Program (25).

4.7 � Slacks‑based measure

The last measure that we adapt to the context of our estimator is the Slacks-Based 
Measure (SBM), see Pastor et al. (1999), Tone (2001). Denominated Enhanced Rus-
sell Graph Measure in Pastor et  al. (1999), its original formulation has fractional 
terms in the objective, and we adapt the original linearization procedure to our con-
text. We take the formulation in terms of the additive model as a starting point, i.e. 

(25)

WAM(�, �(�)) =max

�
I+O�

j=1

vjs(j) ∶ � + � ∈ T̂(𝜇∗, 𝜈∗), � ≥ �

�

=max

�
I+O�

j=1

vjs(j) ∶ ⟨�∗
⋅ �(� + �)⟩ ≥ 𝜌∗, � ≥ �, � + � ∈ ℝ

I
−
×ℝ

O
+

�
.

(26)

max
�∈ℝI+O

+ ,�∈ℝH

M
I+O∑
j=1

vjs(j) −
I+O+H∑
j=I+O+1

�j

subject to −
I+O∑
j=1

w∗
j
(z(j) + s(j)) −

I+O+H∑
j=I+O+1

w∗
j
�j ≥ �∗,

�j ≥ �∗, ∀j ∈ {I + O + 1,… , I + O + H}

�j ≥
I+O∑
k=1

�
pj(k)(z(k) + s(k))

�
+ qj, ∀j ∈ {I + O + 1,… , I + O + H}

� ≥ �,

z(j) + s(j) ≤ 0, ∀j ∈ {1, ..., I}

z(j) + s(j) ≥ 0, ∀j ∈ {I + 1, ..., I + O}

.
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model (7) in Tone (2001), where the ratio terms appear in terms involving the input 
and output slacks.

The fractional program to be solved with respect to the estimator, in the netput 
notation, can be expressed as:

In order to linearize this program, we first use the following substitution of vari-
ables, following Charnes and Cooper (1962). This change of variables is also men-
tioned in Cooper et al. (2006) as an exercise:

We remark that 𝛽 > 0 . With these variables in mind, we notice that 1∕� is the 
denominator of the objective function of (27), so that this objective function can be 
rewritten as �

�
1 +

1

I

∑I

i=1

s(i)

z(i)

�
= � +

1

I

∑I

i=1

�s(i)

z(i)
= � +

1

I

∑I

i=1

t(i)

z(i)
 , which is linear 

in � and � . This is the new, linear, objective function.
In order to ensure that � takes the desired value, we add an extra restriction of the 

form � 1

�
= 1 to (27), i.e. � 1

�
= �

�
1 +

1

O

∑I+O

i=I+1

s(i)

z(i)

�
= � +

1

O

∑I+O

i=I+1

t(i)

z(i)
= 1.

Furthermore, we expand the definition of the technology, taking into account that 
� = �∕� . The effect of this change of variables on the first restriction is 
� + � = � + �∕𝛽 =

1

𝛽
(𝛽� + �) ∈ T̂(𝜇∗, 𝜈∗) , yielding the following intermediate 

program:

At this stage, we have linearized the objective function, and it remains to linearize 
the maximum function in the PWL mapping, which we do using the same big-M 
technique that we have used previously. We begin by expanding the definition of �:

(27)
min
�∈ℝI+O

1+
1

I

∑I

i=1
s(i)

z(i)

1+
1

O

∑I+O

i=I+1
s(i)

z(i)

subject to � + � ∈ T̂(𝜇∗, 𝜈∗),

� ≥ �

(28)� =

(
1 +

1

O

I+O∑

i=I+1

s(i)

z(i)

)−1

,

(29)� = ��.

(30)

min
𝛽>0,�∈ℝI+O

𝛽 +
1

I

I∑
i=1

t(i)

z(i)

subject to 𝛽 +
1

O

I+O∑
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t(i)

z(i)
= 1,

�
�∗

⋅ �
�

1

𝛽
(𝛽� + �)

��
≥ 𝜌∗,

1

𝛽
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I
−
×ℝ

O
+
,

� ≥ �
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Then, we introduce the usual auxiliar variable � ∈ ℝ
H and, for each hyperplane 

component of � , we add, for each j ∈ {I + O + 1, ..., I + O + H} , the restrictions:

We also add a penalization term with big M in the objective function to ensure that 
at least one of these bounds is tight, that is, �j takes the maximum value of the two 
compared expressions. Restriction (33) is not linear, since it contains terms involv-
ing both � and � nonlinearly, as �∕� . We linearize it by multiplying both sides by � , 
to obtain:

Thus, we also change variable from � to � = �� ∈ ℝ
H . Notice that we also multiply 

restriction (31), the one describing � , by � , in order to get rid of the 1
�
 term (which 

creates a nonlinear term of the form t(j)∕� ), as well as the �j ≥ �∗ term in order to 
express it with respect to the same variables. After all these changes, the final linear 
problem, in �, �, � , is:

After solving program (35), we obtain the efficiency measure, in terms of �, � , as the 
optimal value of (30), that is, � +

1

I

∑I

i=1

t(i)

z(i)
 . Finally, we have the following result 

relating the solutions to both programs:

(31)

⟨
�∗

⋅ �

(
1

�
(�� + �)

)⟩
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I+O∑
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j

(
1

�
(�z(j) + t(j))
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⟨
�j ⋅

(
1

�
(�� + �)

)⟩
+ qj

}
.

(32)�j ≥�
∗,

(33)�j ≥

⟨
�j ⋅

(
1

�
(�� + �)

)⟩
+ qj.

(34)�j ∶= ��j ≥ ⟨�j ⋅ (�� + �)⟩ + �qj.

(35)
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M

(

� + 1
I

I
∑

i=1
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∑

j=1
w∗
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Proposition 4.8  If (�∗, �∗, �∗) is an optimal solution of (35) then �∗ = �∗∕� is an opti-
mal solution of (27)).

Proof  This proof has two stages, one where the equivalence with the changes of var-
iables are performed, and another one where the linearization is performed. 	�  ◻

5 � Computational experiments: a finite‑sample study

In order to evaluate the new method introduced in this paper, this section shows 
the results obtained from a computational experience, based on a finite-sample 
analysis, comparing the DEA method with the duplicate and mean hyperplanes 
strategies, denoted by 1SVMd and 1SVMm , respectively. We summarize the results 
of the simulated technologies in Table 1.

We compare them with the 2 input, 2 output technology proposed by Perelman 
and Santín (2009) created in a way to ensure the satisfaction of microeconomic 
behavioral regularity conditions. In this simulation context, the input values are 
generated from a uniform distribution Uni[5, 50], while the values for the output 
variables are generated according to the formula:

Following Perelman and Santín (2009), we generate points on the frontier of 
the technology via Equation (36), and then we introduce an inefficiency term 
u ∼ �N(0,

√
0.3)� with a half-normal distribution. We also incorporate random 

noise. This is indicated in the “Noise" column of Table 1. Furthermore, we allow 
for a proportion of 0%, 10% and 25% of the simulated DMUs to be on the true fron-
tier. Moreover, we ran 100 trials for each combination of sample size, presence or 
absence of noise, and percentage of units on the frontier, and we report in Table 1 
the average values for the Mean Squared Error (MSE) and bias, as well as % of 
improvement over the DEA estimator. We tested with sample sizes of 30, 50, 70, 
100 and 200 DMUs.

Regarding the results in Table 1, the improvements in MSE range from 20% 
to 72% in the duplicate hyperplanes strategy, while the improvements in MSE 
ranged from 15% to 53% in the mean hyperplanes strategy, depending on the 
sample size and the number of DMUs on the true frontier. On the other hand, 
the improvements in bias were up to 47% in the first strategy, while the larg-
est improvement in bias was 41%, depending on the sample size and the num-
ber of DMUs on the true frontier. Furthermore, the absence of noise in the data 

(36)
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increases the MSE and bias in both 1SVMm and 1SVMd strategies. From a com-
putational point of view, it is worth mentioning the computing time spent in the 
new approach in comparison with the DEA technique. The simulations were exe-
cuted on a PC with a 1.8 GHz dual-core Intel Core i7 processor, 8 Gigabyte of 
RAM and a Microsoft Windows 10 Enterprise operating system. The algorithm 
was implemented in Python code. So, for an experiment composed by 50 DMUs, 
the 1SVMd technique with the strategy of duplicating hyperplanes used 5.16s for 
calculating all the estimations, while the DEA technique utilized 0.63s (approxi-
mately eight times less than 1SVMd ). The strategy 1SVMm of averaging the 

Table 1   Comparison of the proposed strategies

Num. Front. Noise  MSE  Bias

Obs.

DEA 1SVM
d

1SVM
m

DEA 1SVM
d

1SVM
m

30 0 No 0.299 0.126 (58%) 0.175 (42%) 0.406 0.256 (37%) 0.272 (33%)
0 Yes 0.258 0.160 (38%) 0.140 (46%) 0.363 0.260 (28%) 0.239 (34%)
10 No 0.210 0.118 (44%) 0.174 (17%) 0.315 0.205 (35%) 0.229 (27%)
10 Yes 0.311 0.141 (55%) 0.149 (52%) 0.334 0.211 (37%) 0.233 (30%)
25 No 0.172 0.118 (31%) 0.120 (30%) 0.210 0.195 (7%) 0.196 (7%)
25 Yes 0.179 0.144 (20%) 0.091 (49%) 0.229 0.164 (28%) 0.161 (29%)

50 0 No 0.212 0.081 (62%) 0.119 (44%) 0.332 0.192 (42%) 0.209 (37%)
0 Yes 0.212 0.086 (59%) 0.125 (41%) 0.314 0.198 (37%) 0.211 (33%)
10 No 0.173 0.086 (51%) 0.099 (43%) 0.265 0.158 (40%) 0.158 (41%)
10 Yes 0.171 0.077 (55%) 0.145 (15%) 0.245 0.161 (34%) 0.182 (26%)
25 No 0.094 0.039 (59%) 0.054 (43%) 0.182 0.102 (44%) 0.118 (35%)
25 Yes 0.102 0.053 (48%) 0.078 (24%) 0.168 0.117 (31%) 0.141 (16%)

70 0 No 0.172 0.101 (42%) 0.096 (44%) 0.300 0.182 (39%) 0.183 (39%)
0 Yes 0.140 0.092 (35%) 0.093 (33%) 0.263 0.190 (28%) 0.188 (28%)
10 No 0.113 0.068 (40%) 0.068 (40%) 0.213 0.125 (41%) 0.132 (38%)
10 Yes 0.124 0.090 (28%) 0.058 (53%) 0.218 0.173 (21%) 0.138 (37%)
25 No 0.082 0.029 (64%) 0.052 (36%) 0.143 0.096 (32%) 0.111 (22%)
25 Yes 0.095 0.065 (31%) 0.049 (48%) 0.151 0.128 (16%) 0.124 (18%)

100 0 No 0.130 0.048 (63%) 0.074 (43%) 0.255 0.148 (42%) 0.159 (38%)
0 Yes 0.113 0.069 (39%) 0.063 (44%) 0.235 0.162 (31%) 0.148 (37%)
10 No 0.084 0.047 (44%) 0.051 (39%) 0.179 0.118 (34%) 0.129 (28%)
10 Yes 0.075 0.052 (31%) 0.048 (36%) 0.169 0.127 (25%) 0.133 (21%)
25 No 0.065 0.032 (51%) 0.045 (31%) 0.133 0.087 (35%) 0.120 (9%)
25 Yes 0.052 0.036 (30%) 0.037 (29%) 0.117 0.109 (7%) 0.096 (18%)

200 0 No 0.131 0.037 (72%) 0.069 (47%) 0.249 0.148 (41%) 0.161 (35%)
0 Yes 0.101 0.069 (32%) 0.062 (39%) 0.230 0.162 (30%) 0.148 (36%)
10 No 0.089 0.036 (60%) 0.049 (45%) 0.157 0.118 (25%) 0.138 (12%)
10 Yes 0.080 0.052 (35%) 0.048 (40%) 0.157 0.113 (28%) 0.128 (18%)
25 No 0.069 0.033 (52%) 0.043 (38%) 0.148 0.079 (47%) 0.132 (11%)
25 Yes 0.056 0.033 (42%) 0.037 (34%) 0.129 0.112 (13%) 0.104 (19%)
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hyperplanes used 7.56s in the same experiment (approximately twelve times the 
time taken by DEA, and 1.5 times the time spent with the duplication strategy).

We conclude that both strategies seem to obtain better results than DEA in the 
finite-sample study carried out, with the duplicate hyperplanes strategy perform-
ing better than the mean hyperplanes strategy in MSE, bias and runtime, so we 
choose it for the empirical application and as the superior strategy.

6 � Empirical illustration: USA schools from PISA report 2015

In this section, we present the results of the application of the estimator intro-
duced in this paper in an empirical database from the literature, using in particular 
the Slacks-Based Measure (SBM) for illustration. This database consists of results 
from USA schools participating in the PISA (Programme for International Stu-
dent Assessment) in 2015, used in Aparicio et  al. (2019), and further details can 
be found in OECD (2017). The dataset that we use contains 162 DMUs (schools), 
and we report the descriptive statistics in Table 2. We used the following variables 
for inefficiency estimation: three inputs and two outputs. The three inputs were the 
Economic, Social and Cultural Status (ESCS), the school’s educational resources 
(SCMATEDU) and the number of teachers per 100 students (TEACHERS). The 
outputs were their scores in math and reading (PVMATH and PVREAD). Regarding 
the hyperparameters used in 1SVMd , for this application we fix �∗ = 0.001 . This is 
because the SBM, as well as some of the other measures introduced, are not defined 
for units outside the estimated technology, so by fixing a small value for �∗ we weigh 
the estimator towards the exclusion of outliers. In fact, there are no outliers with 
this setting. We consider � as a hyperparameter, and tune it via the usual train-test 
(70%-30%).   

With this dataset, we estimate the technology by using the standard DEA meth-
odology and our introduced estimator with the duplicate hyperplanes strategy 
( 1SVMd ). We then calculate the efficiencies estimated by DEA and 1SVMd for 
each school with respect to the SBM, and we compare them by means of the Li test 
(Simar and Zelenyuk 2006).

Table 2   Descriptive statistics of the USA PISA 2015 dataset

Variable ESCS SCMATEDU TEACHERS PVMATH PVREAD

Mean 4.165 4.565 7.530 479.314 495.658
Median 4.191 4.590 6.055 485.665 501.365
Std. Dev 0.560 0.560 8.954 48.812 52.413
Max 5.250 5.650 113.895 586.230 599.750
90% 4.899 5.299 9.020 537.489 555.567
75% 4.591 4.990 7.791 513.610 529.108
25% 3.821 4.223 5.376 447.013 464.213
10% 3.506 3.910 4.407 422.461 430.290
Min 2.195 2.590 0.849 283.110 274.690
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The train-test process selects the value �∗ = −0.1813 as the best one. The average 
efficiency reported by DEA is 0.739, whereas 1SVMd attains 0.697, which indicates 
lower estimates of the efficiency. We report descriptive statistics of these efficiency 
scores in Table 3. The DEA estimate of the technology classifies 7 DMUs as efficient 
under the application of the SBM, whereas the proposed approach estimate indi-
cates only 5 units as efficient, all of which were already deemed efficient by DEA. 
The remaining 2 are deemed not completely efficient, attaining efficiency scores of 

Table 3   Descriptive statistics of 
the SBM efficiency scores, USA 
PISA 2015 dataset

Estimator 1SVMd DEA

Mean 0.697 0.739
Median 0.680 0.720
Std. Dev 0.089 0.089
Max 1.000 1.000
90% 0.812 0.863
75% 0.726 0.768
25% 0.645 0.682
10% 0.613 0.645
Min 0.512 0.574

Table 4   SBM Efficiency scores for selected DMUs

DMU ESCS SCMATEDU TEACHERS PVMATH PVREAD SBM

1SVMd DEA

18 2.884 3.28 3.431 402.66 390.20 1.000 1.000
39 4.610 5.01 4.492 586.23 590.58 0.889 1.000
104 2.881 3.28 4.268 437.91 462.13 1.000 1.000
115 2.518 2.92 5.963 428.42 435.69 1.000 1.000
120 4.301 4.70 4.662 565.90 587.02 1.000 1.000
128 2.195 2.59 4.810 283.11 274.69 0.919 1.000
143 4.633 5.03 0.849 536.67 568.18 1.000 1.000
Top 5 least efficient DEA DMUs
25 3.863 4.26 12.781 429.20 437.12 0.588 0.602
42 3.735 4.13 113.895 439.60 523.44 0.531 0.574
90 4.317 4.72 19.616 498.57 501.79 0.593 0.613
117 4.579 4.98 5.928 386.29 407.50 0.512 0.622
139 4.930 5.33 11.297 500.94 536.77 0.593 0.611
Top 5 biggest changes in efficiency
46 3.901 4.30 5.963 369.65 351.00 0.546 0.682
84 4.844 5.24 4.990 581.31 591.39 0.730 0.922
132 4.059 4.46 2.718 445.77 449.24 0.737 0.889
159 4.593 4.99 4.275 566.83 574.19 0.768 0.897
162 3.319 3.72 8.097 346.88 297.16 0.530 0.677
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Table 5   SBM efficiency scores

DMU 1SVMd DEA DMU 1SVMd DEA DMU 1SVMd DEA

1 0.660 0.751 55 0.632 0.704 109 0.776 0.829
2 0.811 0.838 56 0.683 0.703 110 0.677 0.697
3 0.694 0.726 57 0.716 0.741 111 0.660 0.706
4 0.695 0.747 58 0.724 0.755 112 0.621 0.689
5 0.619 0.642 59 0.674 0.741 113 0.550 0.641
6 0.591 0.630 60 0.750 0.790 114 0.803 0.897
7 0.676 0.717 61 0.678 0.690 115 1.000 1.000
8 0.612 0.637 62 0.689 0.723 116 0.607 0.624
9 0.733 0.801 63 0.676 0.711 117 0.512 0.622
10 0.660 0.727 64 0.675 0.693 118 0.666 0.744
11 0.611 0.637 65 0.654 0.741 119 0.799 0.836
12 0.696 0.728 66 0.674 0.729 120 1.000 1.000
13 0.707 0.752 67 0.701 0.747 121 0.641 0.682
14 0.708 0.746 68 0.671 0.767 122 0.683 0.725
15 0.741 0.779 69 0.602 0.668 123 0.684 0.707
16 0.647 0.677 70 0.619 0.669 124 0.724 0.759
17 0.708 0.743 71 0.673 0.692 125 0.636 0.657
18 1.000 1.000 72 0.639 0.675 126 0.815 0.874
19 0.570 0.636 73 0.644 0.689 127 0.647 0.679
20 0.796 0.835 74 0.639 0.690 128 0.919 1.000
21 0.726 0.768 75 0.637 0.662 129 0.657 0.677
22 0.773 0.795 76 0.678 0.721 130 0.688 0.730
23 0.756 0.783 77 0.634 0.674 131 0.700 0.723
24 0.676 0.695 78 0.649 0.698 132 0.737 0.889
25 0.588 0.602 79 0.688 0.728 133 0.691 0.736
26 0.694 0.757 80 0.707 0.763 134 0.676 0.693
27 0.702 0.722 81 0.767 0.803 135 0.765 0.788
28 0.630 0.658 82 0.645 0.700 136 0.827 0.851
29 0.703 0.747 83 0.676 0.704 137 0.829 0.847
30 0.697 0.777 84 0.730 0.922 138 0.703 0.737
31 0.680 0.717 85 0.624 0.686 139 0.593 0.611
32 0.634 0.656 86 0.652 0.711 140 0.658 0.674
33 0.778 0.836 87 0.682 0.709 141 0.638 0.647
34 0.690 0.708 88 0.704 0.746 142 0.614 0.645
35 0.829 0.864 89 0.576 0.630 143 1.000 1.000
36 0.722 0.747 90 0.593 0.613 144 0.661 0.679
37 0.683 0.712 91 0.662 0.687 145 0.849 0.866
38 0.836 0.845 92 0.821 0.911 146 0.728 0.795
39 0.889 1.000 93 0.735 0.770 147 0.660 0.683
40 0.671 0.726 94 0.649 0.670 148 0.646 0.697
41 0.641 0.656 95 0.888 0.920 149 0.760 0.790
42 0.531 0.574 96 0.645 0.661 150 0.642 0.661
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0.889 and 0.919. The efficiencies of these and other selected DMUs are reported in 
Table 4. We also report on the 5 DMUs where the change in the efficiency score is 
the largest between the 1SVMd and the DEA scores with respect to the SBM, as well 
as the 5 DMUs deemed least efficient by DEA. Furthermore, Table  5 reports the 
SBM efficiency obtained by each DMU in the dataset with respect to both 1SVMd 
and DEA, where values in bold indicate that the DMU is efficient.

In order to compare the vectors of efficiencies associated with DEA and the new 
approach, we use the Li test, following Simar and Zelenyuk (2006), which considers 
whether there is a statistically significant difference between two random samples 
ZA , ZB , with distribution densities fA , fB . It considers as the Null Hypothesis that 
H0 ∶ fA(ZA) = fB(ZB) , and calculates the corresponding p-value for its possible rejec-
tion. We apply the Li test to compare the SBM efficiency scores obtained by DEA 
and 1SVMd in order to check whether the differences are statistically significant, and 
obtain a p-value of 0.0008, indicating that the estimated scores show statistically 
significant differences.

From the density distribution curves associated with the SBM efficiency scores 
(see Fig. 2), we observe that the efficiency scores obtained by 1SVMd on the dataset 
classify fewer DMUs as technically efficient, and have consistently slightly higher 
inefficiencies than the corresponding DEA scores. This indicates results consist-
ent with our goal of estimating slightly larger technologies than those estimated by 
DEA, which suffers from overfitting (Esteve et al. 2020).

7 � Conclusions and future work

In this paper, we have explored methods to estimate a production technology by 
adapting the 1SVM algorithm, with a piecewise linear feature mapping. We have 
thus built a bridge between the fields of unsupervised machine learning and effi-
ciency estimation via DEA in the context of multi-input multi-output production 

Table 5   (continued)

DMU 1SVMd DEA DMU 1SVMd DEA DMU 1SVMd DEA

43 0.712 0.754 97 0.732 0.768 151 0.607 0.635
44 0.813 0.852 98 0.693 0.717 152 0.621 0.707
45 0.720 0.760 99 0.919 0.972 153 0.660 0.686
46 0.546 0.682 100 0.637 0.677 154 0.643 0.666
47 0.680 0.701 101 0.620 0.672 155 0.693 0.717
48 0.688 0.720 102 0.606 0.629 156 0.660 0.693
49 0.617 0.636 103 0.679 0.698 157 0.652 0.711
50 0.751 0.780 104 1.000 1.000 158 0.704 0.750
51 0.690 0.722 105 0.741 0.767 159 0.768 0.897
52 0.710 0.749 106 0.661 0.679 160 0.785 0.794
53 0.703 0.734 107 0.701 0.733 161 0.651 0.689
54 0.668 0.708 108 0.669 0.694 162 0.530 0.677
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processes. We have introduced the corresponding methodology and some variations 
on the hyperplane parameters involved in the feature mapping in order to estimate 
the technology.

We have evaluated the performance of the proposed estimators by comparing the 
results obtained in a finite-sample simulated environment using multiple inputs and out-
puts. From our results, we conclude that the approach which duplicates the DEA hyper-
planes ( 1SVMd ) is superior to that which calculates the mean of the existing hyper-
planes ( 1SVMm ), in addition to being less computationally expensive. Also, it is worth 
mentioning that both proposed approaches seem to obtain better results than the stand-
ard DEA approach regarding MSE and bias under our finite-sample analysis. However, 
this superiority cannot be claimed in general. From a statistical point of view, the fron-
tier estimators could also be compared regarding some properties such as consistency, 
which indicates whether the estimator converges to the true target value as the sample 
size increases. Additionally, when the objective is to report the average efficiency score, 
the satisfaction of the central limit theorem is also a relevant property. Regarding the 
DEA estimator, these properties have been studied in detail, even establishing the rate 
of convergence (see, for example, Kneip et al. (1998, 2008, 2011, 2015). One of the 
advantages of this knowledge is that, in the case of DEA, it is relatively easy to cor-
rect the potential bias of the estimator to determine, for example, suitable confidence 
intervals through bootstrapping. Unfortunately, we cannot reach the same conclusion 
regarding the new approach. Consequently, a complete comparison of our technique 
and the standard DEA model is neither possible nor fair. This way, our approach could 
be seen as a complementary technique to DEA when the data sample is not large.

Moreover, we have introduced and adapted multiple measures of efficiency found 
in the non-parametric literature on performance measurement to our context. For 
illustrative purposes, we have also shown the results obtained by applying, in par-
ticular, the Slacks-Based Measure to an empirical database involving schools in the 
USA from the PISA study. We have compared the scores determined by our pro-
posed approach to those obtained by classical DEA. In our empirical application, the 

Fig. 2   Density distribution of the efficiency scores with respect to the SBM
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new approach yields fewer efficient DMUs; thus showing a higher discriminating 
power than DEA, although this topic deserves further exploration.

Finally, we mention some possible avenues for further research. The choices we 
have made for the hyperplanes will allow for different approaches and exploration, 
as well as different transformation functions altogether. Different choices of hyper-
planes, or even of other types of transformation functions may be worth pursuing 
to further improve the methodology. Furthermore, these parameters could be con-
sidered as hyperparameters to tune, although this would be very computationally 
expensive. This contribution takes part in the larger context of machine learning 
algorithms adapted to estimate production technologies, and another possible future 
line of research would be the comparison amongst them and their performance. 
Another possible area of interest is the enrichment of this approach with feature 
selection methods, since one of the ever-arising issues is the curse of dimensionality, 
and these methods may be extended to approach problems where direct computation 
may not be possible or may yield insufficient results. In addition, the possibility of 
using the new approach to measure productivity change over time and decompose 
this measure into its usual drivers, i.e., efficiency change, scale efficiency change and 
technical change, is a topic that deserves further explorations. And, as was pointed 
out above, the study of the asymptotic properties of the new frontier estimator can 
be understood as one of the most important possible extensions of the method.
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