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A review of vegetation indices as applied to Landsat-TM and ETM+ mul-
tispectral data is presented. The review focuses on indices that have been 
developed to produce biophysical information about vegetation biomass/
greenness, moisture and pigments. In addition, a set of biomass/green-
ness and moisture content indices are tested in a Mediterranean semiarid 
wetland environment to determine their appropriateness and potential for 
carrying redundant information. The results indicate that most vegetation 
indices used for biomass/greenness mapping produce similar information 
and are statistically well correlated. 
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1. Introduction

In the last decades a broad range of vegetation indices 
has been developed, showing an increased interest 
by the scientific community in measuring vegetation 

properties through remote sensing techniques. A great 
number of indices are developed with the aim to reduce 
their sensitivity to extraneous factors such as soil back-
ground or atmosphere [1], and several reviews of vegeta-
tion indices have been published [2-7].

Remote sensing tools are used for a large number of 
studies of natural areas [8,9], to assess the state of vegeta-

tion or crop yield [10], or for vegetation classification [11]. In 
addition, several authors [12,13] have highlighted the role of 
vegetation indices as valuable biophysical data for models 
and simulations. 

This work focuses on three biophysical properties, 
which are vegetation biomass/greenness, vegetation mois-
ture, and plant pigments. Remote sensing of vegetation 
biomass is of great value in modelling vegetation stress 
and crop yield [14]. Numerous researches have shown the 
direct relationship that exists between spectral response 
in the near-infrared region and various biomass measure-
ments [15-19]. Spatial and temporal change of vegetation 
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moisture can be used for plant water stress estimations. 
Water stress detection by remote sensing as based on plant 
physiology can be successfully conduced for different 
vegetation types with little adjustment [20-22]. A great num-
ber of research work has been conducted for estimating 
vegetation moisture content [6, 21-23] with a common goal: 
vegetation moisture content can be estimated more accu-
rately using medium-infrared reflectance data. Chrolo-
phylls, carotenoids and anthocyanins are optically detect-
able and have either photosynthetic or photoprotective 
functions [24]. Moreover, they also provide an accessible 
‘handle’ for evaluating relative photosynthetic activity, 
which can vary with leaf type [25]. Reflectance assessment 
of leaf pigments can potentially provide indicators of in-
tegrated leaf physiology under a wide range of conditions 
[24]. For quantitative pigment content estimations, accurate 
data calibration methods must be carefully applied. As 
Gamon and Surfus (1999) [24] observed, comparisons of 
reflectance indices with extracted pigment levels suggest 
specie-specific relationships influenced by leaf structure 
properties [26]. This indicates a need for empirical calibra-
tion when using reflectance indices.

A great number of studies deal with vegetation index 
estimations for specific locations. These kinds of studies 
are of great value for these local studies, because vegeta-
tion indices can be estimated with great accuracy. In addi-
tion, due to the high availability of images, it is possible to 
monitor the state of the vegetation over time [27]. However, 
applying these locally tested methods to other study areas 
is sometimes not possible because of the different vegeta-
tion species and communities, as well as the different soils 
and lithology encountered in other areas. 

The objective of this paper is the review of several veg-
etation indices that can be computed with Landsat TM and 
ETM+ data in order to select the most representative of 
the Mediterranean wetland areas by first determining po-
tentially redundant information among the tested indices.  

2. Vegetation Indices

Jensen (2000) [4] defines vegetation indices as “dimension-
less, radiometric measures that function as indicators of 
relative abundance and activity of green vegetation, often 
including leaf-area-index (LAI), percentage green cover, 
chlorophyll content, green biomass, and absorbed photo-
synthetically active radiation (APAR)”. Huete and Justice 
(1999) [28] summarize as follows the main characteristics 
that a vegetation index must satisfy:

1) Maximize sensitivity to plant biophysical parame-
ters, with mathematical relations as simple as possible.

2) Normalize or model external effects, such as Sun 
angle, scene geometry, and space-temporal atmospheric 
characteristics.

3) Normalize internal effects, such as canopy and soil 
background variations, illumination geometry, and pheno-
logical state.

4) Respond to specific measurable biophysical param-
eters, such as biomass, LAI, APAR, etc., that can be field 
validated and qualitatively controlled.

Vegetation spectral indices try to enhance the spectral 
contrast among different wavelengths as a response to 
characteristic absorption and/or reflectance features. A 
crucial aspect is that the absorptions from different plant 
materials are similar and overlap, so that a single absorp-
tion band cannot be isolated and directly related to, for 
example, chemical abundances of one plant constituent [29]. 
Vegetation indices have been classified into four catego-
ries as a function of the following computation concepts 
(based partially on: Jackson and Huete (1991) [30] and 
Eastman (2003) [31]):

1) Slope-based indices: any particular value of the in-
dex can be produced by a set of two bands (for example 
red/infrared reflectance values) that form a line emanating 
from the origin of coordinates of a bi-spectral plot (scat-
tergram). Different levels of the index can be envisioned 
as producing a spectrum of such lines that differ in their 
slope [32].

2) Distance-based indices: measure the degree of veg-
etation present by gauging the difference of any pixel’s 
reflectance from the reflectance of bare soil [32]. A key con-
cept here is that a plot of the positions of bare soil pixels 
of varying moisture levels (and soil organic matter con-
tents [33] in a bi-spectral plot will tend to form a line (known 
as the soil line). As vegetation canopy cover increases, 
this soil background will become progressively obscured, 
with vegetated pixels showing a tendency towards in-
creasing along a perpendicular distance from this soil line. 
All of the members of this group require that the slope 
and intercept of the soil line be defined for the particular 
image being analysed.

 3) Orthogonal transformations: undertake a transfor-
mation of the available spectral bands to form a new set of 
uncorrelated bands within which a green vegetation index 
band can be defined.

4) Continuum Removal and Band Depth: the continu-
um is an estimate of the other absorptions present in the 
spectrum, not including the one of interest [33]. The contin-
uum-removal process isolates spectral features, removes 
the continuum, and scales the band-depth (or band area) to 
be equal, to allow identification of subtle band shifts and 
shapes [34].
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Table 1 provides a classification of the indices as a 
function of the calculation concept. All presented indices 
have been adapted so that they can be utilized with reflec-
tance imagery provided by the Landsat Thematic Mapper 
sensor. 

Technical information about the Thematic Mapper sen-
sor can be found at the U.S. Geological Survey Landsat 
Project web site (http://landsat.usgs.gov).

Table 1. A classification of the indices as a function of the 
calculation concept

Index computation concept Index

Slope-based

SR
NDVI
TVI

OSAVI
ARVI
NDII
LWCI
MSI

Red/Green ratio
WDVI

Distance-based

PVI
SAVI

MSAVI
TSAVI1
TSAVI2
GESAVI
SARVI

MSARVI
EVI

Orthogonal transformation
Tasseled Cap-Greenness
Tasseled Cap-Wetness

Integral
Continuum Removal and Band Depth Band-Depth TM5 (B-DTM5)

2.1 Slope-based Indices
Generally, slope-based indices are easier to calculate than 
other indices. Some indices are normalized ratios where 
possible results are comprised between the range of −1 to 1. 
This approach facilitates the interpretation of the index.

2.1.1 Normalized Difference Vegetation Index 
(NDVI)
NDVI original formulation is attributed to Rouse et al. 
(1974) [35]. This index has been widely used and tries to 
enhance reflectance differences between red and NIR 
spectral regions of plant spectral signatures. The NDVI 
index evolved from the Simple Ratio (SR) proposed by 
Birth and McVey (1968) [36].

4

3

TM

TM

SR ρ
ρ

= � (1)

The NDVI is formulated as:
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Deering et al. (1975) [37] proposed the Transformed 
Vegetation Index (TVI) by adding a constant value of 0.5 
to the NDVI to avoid negative values. They also included 
the square root transformation of the NDVI with the addi-
tional constant, to stabilize the variance. TVI is computed 
as:

5.0
34

34 +







+
−

=
TMTM

TMTMTVI
ρρ
ρρ

� (3)

NDVI has been related with a great number of parame-
ters, such as changes in the amount of green biomass and 
chlorophyll content [4]. Several types of relationships with 
numerous parameters have been reported. A synthetic 
summary of some of them is presented below ([38] and 
references therein):

a.  Leaf chlorophyll content
b.  Leaf water content
c.  CO2 net flux
d.  Absorbed Photosynthetically Active Radiation 

(APAR)
e.  Vegetation net productivity
f.  Leaf Area Index (LAI)
g.  Rainfall amount received by a vegetation canopy
h.  Phenological dynamics
i.  Potential plant transpiration

2.1.2 Optimized Soil-Adjusted Vegetation Index 
(OSAVI)

Additional modifications of NDVI have been devel-
oped to minimize the effect of soil background and at-
mospheric attenuation for the maximization of vegetation 
spectral response. Rondeaux et al. (1996) [39] proposed the 
OSAVI (Optimized Soil-Adjusted Vegetation Index) with 
the inclusion of an adjusting factor X to the NDVI denom-
inator. They estimated, using the SAIL model [40] enhanced 
by the hot-spot effect [41], that the optimum X value was 
0.16 units. OSAVI values range between the NDVI and 
SAVI estimations.

  

4 3

4 3 0.16
TM TM

TM TM

OSAVI ρ ρ
ρ ρ

−
=

+ + �
(4)

Rondeaux et al. (1996) [39] also provided a test of the 
sensitivity to soil background for many vegetation indi-
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ces. They evaluated the sensitivity of OSAVI to soil back-
ground effects and its relationship with NDVI and SAVI 
[42,43]. They concluded that: a) with low or relative low 
vegetation cover (< 50%, LAI ≤ 1) this index performs 
slightly worse than SAVI but better than NDVI; b) with 
high or relative high vegetation cover, (<50%, LAI ≥ 1) 
the index performs slightly worse than NDVI but better 
than SAVI. Steven (1998) [44] evaluated the OSAVI with a 
canopy model to observational parameters and concluded 
that the index can be used successfully for agricultural 
monitoring.

2.1.3 Atmospherically Resistant Vegetation Index 
(ARVI)
ARVI was proposed by Kaufman and Tanre (1992) [45]. 
The index tries to minimize atmospheric effects (molecular 
scattering and ozone absorption) due to the normaliza-
tion of the blue, red, and near-infrared reflectance bands. 
Kaufman and Tanre (1992) [45] indicated that atmospheric 
aerosol influences vegetation indices in two ways[28]:

1) Influence as path radiance: By an additive, effect due 
to land surface brightness.

2) Influence through transmittance: By a multiplicative, 
effect due to surface 

brightness.
The ARVI uses blue band to reduce atmospheric effects 

in the red band, by using an experimental aerosol model 
(γ). Kaufman and Tanre (1992) [45] provided guidelines for 
aerosol model values selection. γ is normally equal to 1 to 
minimize atmospheric effects.

4

4

TM rb

TM rb

ARVI ρ ρ
ρ ρ

∗ ∗

∗ ∗

−
=

+
� (5)

( )3 1 3·rb TM TM TMρ ρ γ ρ ρ∗ ∗ ∗ ∗= − − � (6)

where:
∗
kρ = apparent reflectance of band k

γ = aerosol model
ARVI is similar to NDVI with respect to potentially 

related biophysical parameters.

2.1.4 Normalized Difference Infrared Index 
(NDII)
The original Infrared Index (II) was proposed by Hardisky 
et al. (1983) [46] and was cited by Hunt and Rock (1989) 
[22] as Normalized Difference Infrared Index (NDII). NDII 
differs from NDVI in that TM band 3 (red spectral region) 
is replaced by band 5 (mid-infrared spectral region). TM 

band 5 can be related with a leaf water absorption band 
[4]. Carter (1991) [47] showed that mid-infrared reflectance 
increases are related with decreases in plant moisture.

4 5
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TM TM

TM TM

NDII ρ ρ
ρ ρ

−
=

+
� (7)

NDII is highly correlated with canopy water content [46]. 
Jensen (2000) [4] highlighted that NDII is more sensitive 
to changes in plant biomass and water stress than NDVI 
in wetland studies. Several studies have shown that these 
kinds of indices that combines near-infrared with mid-in-
frared bands is more appropriate than NDVI for estimat-
ing vegetation water contents [6,23,48].

A similar index to NDII is the Leaf Water Content 
Index (LWCI) proposed by Hunt et al. (1987) [21] for leaf 
Relative Water Content (RWC) estimations. It is based on 
the principle that, according to Beer’s law, absorbance of 
infrared radiation by leaf water (A) is equal to the product 
of the equivalent water thickness (l), the extinction coeffi-
cient (εw), and the concentration of water (cw, [21] comput-
ed it as 55.6 mol/L). The ratio of leaf absorbance to leaf 
absorbance at full turgor (A/AFT) is equal to the ratio of 
equivalent thickness (l/lFT) because εw and cw cancel out. 
Consequently, A/AFT is equal to the ratio of water volumes 
averaged over the leaf area (V/VFT), which is RWC.

[ ]
[ ]

4 5

4 5

log 1 ( )
log 1 ( )

TM TM

TM FT TM FT

LWCI
ρ ρ

ρ ρ
− − −

=
− − −
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where:
kTM FTρ  = reflectance of TM band k when leaves area 

at full turgor
Hunt and Rock (1989) [22] reported that LWCI can mea-

sure leaf RWC directly and is useful to determine when 
certain plants are water stressed. However, the required 
reflectance measurements and two different but known 
RWC make it impractical for field applications.

2.1.5 Red/Green Ratio
This index was proposed by Gamon and Surfus (1999) 

[24] to assess anthocyanin content. The role of this kind of 
plant pigment is unclear [24]: being both photoprotective [50] 
and defensive [51,52]. Gamon and Surfus (1999) [24] suggest-
ed the possible role of anthocianyns: “the complementary 
patterns of xanthophyll and anthocyanin pigmentation 
during early leaf development suggest that anthocianyns 
provide a critical, photoprotective role before xanthophylls 
pigments reach final levels” (not fully developed photosyn-
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thetic competence). The index is formulated as:

3

2

/ TM

TM

R G ρ
ρ

= � (9)

Gamon and Surfus (1999) [24] observed that the Red/
Green ratio was strongly related to anthocyanin pigment 
content estimated by destructive sampling and spectro-
photometric quantification.

2.2 Distance-based Indices
A key concept for distance-based vegetation indices is the 

soil line. Richardson and Wiegand (1977) [53] discovered the 
concept of the soil line. It results from a linear relationship 
between the red and near-infrared reflectance values of bare 
soils:

y ax b= + � (10)

where:
x = reflectance of red band
y = reflectance of near-infrared band
a = slope of the soil line
b = intercept of the soil line
The soil line is dependent on individual soil types. Fox 

et al., (2004) [54] affirmed that a global soil line represent-
ing all soil types is not possible due to the fact that the 
line would be linear in some portions of the entire range 
as a result of soil condition variations (soil type, moisture, 
organic matter content, etc.).

The original index for this group is the Perpendicular 
Vegetation Index (PVI) proposed by Richardson and Wie-
gand (1977) [53]. The derivation of the index requires several 
steps (based on Eastman, 2003 [31]):

A. Determination of the soil line equation by bare soil 
reflectance values for red (independent variable) vs. infrared 
(dependent variable) bands.

ba gg += 34 ·ρρ � (11)

where:
ρg3 = an x position on the soil line
ρg4 = the corresponding y coordinate
a = the slope of the soil line
b = the y-intercept of the soil line
B. Determine the equation of the line that is perpendic-

ular to the soil line, with the form:

dc pp += 34 ·ρρ � (12)

where:
ρp3 = red reflectance
ρp4 = infrared reflectance
c = -1/a
d = ρp4- c·ρp3

C. Find the intersection of the two lines (i.e., the coor-
dinate ρgg3, ρgg4).

4
··

gg
c b d a

c a
ρ −

=
−

� (13)

3gg
b d
c a

ρ −
=

−
� (14)

D. Find the distance between the intersection and the 
pixel coordinate using Pythagoras’ Theorem.

( ) ( )2 2

4 4 3 3( gg gg gg ggPVI ρ ρ ρ ρ= − + − � (15)

2.2.1 Soil Adjusted Vegetation Index (SAVI)
SAVI results from a modification of NDVI by the addi-

tion of a soil adjustment factor (L)[42,43]. L value varies as 
a function of soil characteristics. The index is formulated 
as:

4 3

4 3

( ) ·(1 )
( )

TM TM

TM TM

SAVI L
L

ρ ρ
ρ ρ

−
= +

+ +
� (16)

where:
L = soil adjustment factor
Originally, a graphical method was used for L value ex-

traction. If L = 0, SAVI = NDVI, and if L = 100, SAVI ≅ 
PVI. Huete (1988) [42] suggested an L value of 1 for areas 
with low vegetation, L value of 0.5 for intermediate areas, 
and L value of 0.25 for densely vegetated areas. SAVI is 
similar to NDVI with respect to potentially related bio-
physical parameters.

Qi et al. (1994) [52] developed the MSAVI (Modified 
Soil Adjusted Vegetation Index) with the inclusion of a 
new L adjustment factor that considers the soil line, the 
NDVI and the WDVI (Weighted Difference Vegetation In-
dex) [55, 56]. The new L factor is formulated as:

WDVINDVIaL ···21−= � (17)

where:

4 3·TM TMWDVI aρ ρ= − � (18)
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and:
a = slope of the soil line (for L and WDVI)
They proposed two formulations to the MSAVI, the 

first is identical to the original SAVI but with the new L 
soil adjustement factor, and the last one is as follows:

   

(19)

2.2.2 Transformed Soil Adjusted Vegetation Index 
(TSAVI)

Baret et al. (1989) [57] argued that SAVI was only valu-
able if the soil line constants are a=1 and b=0. They devel-
oped the first modification of SAVI, the TSAVI1, which is 
formulated as:

  �(20)

where:
a = slope of the soil line
b = intercept of the soil line
TSAVI1 tries to combine the potentials of SAVI and 

PVI. The problem of TSAVI1 is that the index does not 
give good results in areas of heavy vegetation, because 
it is designed for semiarid areas. Baret et al. (1991) [57] 
proposed a modification of the first TSAVI. The TSA-
VI2 included a correction factor of 0.08 to minimize soil 
brightness background effects.

   

(21)
where:
a = slope of the soil line
b = intercept of the soil line

2.2.3 Generalized Soil-Adjusted Vegetation Index 
(GESAVI)
Gilabert et al. (2002) [58] used the concept of vegetation 
isolines for the development of the Generalized Soil-Ad-
justed Vegetation Index (GESAVI), an index that belongs 
to the SAVI family. The index is based on the angular 
distance between the soil line and the vegetation isolines. 
They assume that vegetation isolines are linear but not 
parallel to the soil line, and the soil line is intercepted by 
the vegetation isolines at a cross point with a given red 
reflectance equal to:

aa
bbRcross −
−

−=
'
'

� (22)

where:
a = slope of the soil line
a’ = slope of the vegetation isoline
b = intercept of the soil line
b’ = intercept of the vegetation isoline
They also provided a geometrical interpretation of the 

index. The index is formulated as:

4 3

3

·TM TM

TM

a bGESAVI
Z

ρ ρ
ρ
− −

=
+

   � (23)

where:
Z ≡ - Rcross

2.2.4 Soil and Atmospherically Resistant Vegeta-
tion Index (SARVI)
SARVI results from the integration of the soil adjustment 
factor (L) of SAVI with the normalization of the blue, red, 
and near-infrared reflectance bands of ARVI [59]. The index 
is formulated as:

4

4

TM rb

TM rb

SARVI
L

ρ ρ
ρ ρ

∗ ∗
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−
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+ +
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3 1 3( )rb TM TM TMρ ρ γ ρ ρ∗ ∗ ∗ ∗= − ⋅ − � (25)

where:
∗
kρ false= apparent reflectance of band k

L = soil adjustment factor
γ = aerosol model
Huete and Liu (1994) [59] also proposed the MSARVI, a 

modification of SARVI.

�

� (26)

( )3 1 3rb TM TM TMρ ρ γ ρ ρ∗ ∗ ∗ ∗= − ⋅ − � (27)

where:
∗
kρ false= apparent reflectance of band k

L = soil adjustment factor
γ = aerosol model
Huete and Liu (1994) [59] provided a sensitivity analysis 

of SAVI, ARVI, SARVI, and MSARVI with respect to 
NDVI. Jensen (2000) [4] reports several cases:
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Case 1. Only soil noise (total atmospheric correction): 
SAVI and MSARVI are the best indices, and NDVI and 
ARVI are the worst.

Case 2. Partial atmospheric correction (Rayleigh and 
ozone components removed): SARVI and MSARVI are 
the best indices, and NDVI and ARVI are the worst.

Case 3. No atmospheric correction: SARVI are the best 
index, and NDVI and ARVI are the worst.

2.2.5 Enhanced Vegetation Index (EVI)
The EVI was developed by Huete and Justice (1999) [28] 
based on the MODIS sensor as an index with “improved 
sensitivity into high biomass regions and improved veg-
etation monitoring through a de-coupling of the canopy 
background signal and a reduction in atmosphere influ-
ences”. EVI is formulated as:

4 3

4 1 3 2 1

(1 )TM TM

TM TM TM

EVI L
C C L
ρ ρ

ρ ρ ρ

∗ ∗

∗ ∗ ∗

−
= ⋅ +

+ ⋅ − ⋅ +
� (28)

where:
∗
kρ false= apparent reflectance of band k

L = soil adjustment factor
C1, C2 = use of the blue band in correction of the red 

band for atmospheric aerosol scattering.
EVI has been formulated for global vegetation studies 

and for the improvement in the extraction of canopy bio-
physical parameters. EVI application to global MODIS 
data is accessible as part of the NASA-Earth Observing 
System (EOS) program. 

2.3 Orthogonal Transformations
The derivation of orthogonal transformation indices is 
complicated. Principal Component Analysis can be con-
sidered as a reference point for orthogonal transformation 
indices. Selected indices are:

2.3.1 Tasseled Cap Transformation
Kauth and Thomas (1976) [60] derived an orthogonal trans-
formation with four components from original Landsat 
MSS data. They used an imagery repository of an agricul-
tural area, and tried to make a synthesis of crops spectral 
variation axes. They obtained a 3-D figure, the ‘Tasseled 
Cap’. The four components that Kauth and Thomas cal-
culated, are soil brightness (B), vegetation greenness (G), 
yellow stuff (Y), and non-such (N):

4321 ·262.0·675.0·603.0·332.0 mmsmmsmmsmmsB ρρρρ +++=
� (29)

4321 ·388.0·577.0·66.0·283.0 mmsmmsmmsmmsG ρρρρ ++−−=
� (30)

4321 ·041.0·076.0·428.0·899.0 mmsmmsmmsmmsY ρρρρ −++−=

� (31)
4321 ·882.0·452.0·131.0·016.0 mmsmmsmmsmmsN ρρρρ +−+−=

� (32)

Crist (1985) [61] derived computed Tasseled Cap compo-
nents for TM data. He derived three components, bright-
ness (B), greenness (G), and wetness (W).
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5 7
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1 2 3 4

5 7

0.0315 0.2021 0.3102 0.1594
0.6806 0.6109

TM TM TM TM

TM TM

W ρ ρ ρ ρ
ρ ρ

= ⋅ + ⋅ + ⋅ + ⋅

− ⋅ − ⋅
� (35)
TM brightness component is related with total reflectivity 

of the scene, the greenness component can be related with 
the concept of NDVI, and the wetness component is related 
with plant moisture [4,6]. A great amount of research work 
has been focused on the Tasseled Cap transformation 
concept  [62-65]. For the computation of Tasseled Cap coef-
ficients to local condition and for various sensors, Jackson 
(1983) [66] provides useful guidelines.

2.3.2 Integral
The basis of this index relies on the absorption effect 

of water on visible and SWIR bands. The index has been 
developed in the framework of forest fires research [6]. In-
tegral is computed as:
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7

0.07 0.08 0.06 0.2
0.27

TM TM TM TM

TM

Integal ρ ρ ρ ρ
ρ
= ⋅ + ⋅ + ⋅ + ⋅

+ ⋅
� (36)

Integral is negatively related with Fuel Moisture Con-
tent (FMC). Chuvieco et al. (2002)[6] do not consider the 
near-infrared band to avoid indirect effects (LAI, grass 
curing) on FMC estimation.

2.4 Continuum Removal and Band Depth
Clark and Roush (1984) [67] established the bases of the 
Continuum Removal concept. This technique can be con-
sidered as the core of Imaging Spectroscopy. Absorptions 
in a spectrum have two components [67,68]:

• Continuum: is the ‘background absorption’ onto 
which other absorption features are superimposed.

• Individual features: attributed to individual compo-
nents.

The depth of absorption can be related to the abun-
dance of the absorber and the grain of the material [68]. By 
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searching specific absorption features for individual compo-
nents (e.g. H2O, Fe2S, lignin), and calibrating data with other 
analytical methods (e.g. X-ray chromatography, HPLC), 
an accurate quantitative estimation of components can be 
done.

Clark et al. (2003) [69] indicated that the apparent depth 
of an absorption feature (D) relative to the surrounding 
continuum in a reflectance or emittance spectrum [67] is:

 
c

b

R
R

D −= 1 � (37)

where:
Rb = reflectance of the absorption-band centre (mini-

mum of the continuum-removed feature)
Rc = reflectance value of the continuum at the wave-

length of the band centre
Adapted from Kokaly and Clark (1999) [29], Van Niel 

(2003) [70] provided equations for continuum-removed 
band depth analysis of vegetation moisture. They used 
a very simplified version of band depth analysis with 
only tree bands, TM4 and TM7 as respectively left and 
right extremes of the continuum, and TM5 as the absorp-
tion-band centre. As previously mentioned, TM band 5 
can be related with a leaf water absorption band [4]. TM 
adapted continuum-removed band depth analysis equa-
tions are as follow:

5 1 'TMD R= − � (38)
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3. Test Site Example: Imagery and Pre-pro-
cessing

The selected test site is located in the southeast coast 
of Spain, in Alicante (figure 1). With a Mediterranean 
climate (hot summers and warm winters), and a semi-
arid rainfall regimen (mean annual rainfall lower than 
300 mm), this test site is composed by a set of coastal 
wetlands surrounded by salt flats, agricultural and urban 
areas. These wetlands are included in the list of Ramsar 
sites and protected as Natural Parks (Salinas de Santa 

Pola and El Hondo in Crevillente-Elche). A key factor that 
characterizes these wetlands and their biodiversity is the 
electrical conductivity of the water bodies, ranging from 
2.5 mS/cm, 10 mS/cm for salty waters to more than 220 
mS/cm for hypersaline waters (in salt flats). Water inputs 
of these ecosystems are in the form of in situ rainfall, nat-
ural river basin runoff, agricultural channels, and seawater 
channels (for salt flats).

Figure 1.  Test area (Ramsar wetland site) located in 
south-eastern coast of Spain, in Alicante province

A LANDSAT 5 Thematic Mapper scene (path 199, row 
33, WRS-2) acquired on 14/08/2005 (10:31:49 a.m.) by 
ESA (European Space Agency) ground receiving station 
in Matera (Italy) was used for the analysis. TM bands 2, 3, 
and 4 covering the study site are shown in figure 2.

An image to map geometric correction using the bi-
linear function and nearest neighbour resampling method 
was performed [6,71] using high precision vectorial cartog-
raphy obtained by digitalisation of aerial orthophotogra-
phies at 1 m spatial resolution. The RMS error of the geo-
metrically corrected TM scene was less than half a pixel 
(13.84 m).
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Figure 2. LANDSAT-TM bands 2, 3, and 4 (from top to 
bottom) shown as greyscale images of the test area. The 
image was acquired on 08/14/2005 for path 199, row 33 

(WRS-2) by Landsat-5

Radiometric calibration of optical bands was carried 
out according to the guidelines reported by Chander and 
Markham (2003) [72] for the calculation of exoatmospheric 
reflectance. They defined two necessary steps. The first 
one is the conversion of calibrated digital numbers (Qcal) 
to at-sensor spectral radiance (Lλ):

λ
λλ

λ LMINQ
Q

LMINLMAX
L cal

cal

+
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


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


 −
= ·
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� (41)

where: 
Lλ = spectral radiance at the sensor’s aperture (W/m2·s-

r·µm)
Qcal = quantized calibrated pixel value in DNs
Qcal max = maximum quantized calibrated pixel value 

(DN = 255) corresponding to LMAXλ

LMINλ = spectral radiance as scaled to Qcal min in W/
(m2·sr·µm)

LMAXλ = spectral radiance as scaled to Qcal max in W/
(m2·sr·µm)

LMAXλ and LMINλ values are provided by Chander 

and Markham [72]. The second step is the conversion from 
at-sensor radiance (Lλ) to exoatmospheric reflectance (ρP):

S
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dL
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π
ρ

λ

λ

·cos
·· 2

= � (42)

where:
ρP = planetary or apparent reflectance
Lλ = spectral radiance at the sensor’s aperture (W/m2·s-

r·µm)
d = Earth-Sun distance (A.U.)
ESUNλ = mean solar exoatmospheric irradiances
θS = solar zenith angle (degrees)
Chander and Markham [72] also list the ESUNλ and d 

values.
Because haze is the most important atmospheric attenu-

ation element [73], a simple dark object subtraction by min-
imum value of histogram [71] was done in order to obtain 
an approximation of ground reflectance. Previous studies 
in Spain have used this atmospheric correction successful-
ly[6,74,75]. 

In order to improve the visual interpretation of the re-
sults and the statistical analysis, a water body mask was 
built. A normalized ratio of TM bands 1 and 5 reflectance 
data was calculated based on the singularity of spectral 
characteristics of water bodies, which show higher reflec-
tance values in the blue spectral region and lower reflec-
tance values in the SWIR spectral region. This ratio was 
designed as the Normalized Water Bodies Surface Index 
(NWBSI) and the following formulation is proposed for 
TM bands based on the spectral characteristics of the wa-
ter bodies:

1 5

1 5

TM TM

TM TM

NWBSI ρ ρ
ρ ρ

−
=

+ � (43)

The selection of TM band 5 as the band representing 
the SWIR spectral region is due to the occurrence of very 
intense water band absorption in soils and vegetation with 
very high moisture contents (typical in wetland ecosys-
tems) in TM band 7 [76] which may generate some con-
fusion. The thresholds selected for the discrimination of 
water bodies are: NDWSI > 0 for water bodies; NDWSI ≤ 
0 for non-water bodies.

For distance-based indices, slope line calculation was 
done by extracting reflectance data at known bare soil 
areas. 1,013 pixels were used for the slope line regression 
analysis (figure 3). Slope coefficient (a = 1.0657) and 
interception coefficient (b = 0.1059) were calculated. A 
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correlation coefficient (r2) of 0.915 was then obtained.

Figure 3. Linear regression analysis for estimating the 
soil line using reflectance values of TM bands 3 and 4 

(1,013 pixels were used for the regression analysis)

The high variability within the soils (in relation to 
moisture, organic matter content, salinity, etc.) required 
the sampling of a great number of pixels to capture the 
different soil variations. A smaller number of pixel sam-
pling may provide a higher correlation coefficient value 
but will not capture accurately the soil variations found in 
the study area.

4. Experiment: Statistical Procedure

The computed vegetation indices are presented in Table 
1 as classified by the mathematical conceptualization. 
All the indices were analyzed and tested to determine 
their potentially redundant information content. Several 
descriptive values and statistics were computed for all re-
viewed indices (Table 2). 

Table 2. Descriptive values obtained by the application of 
the indices to the test area

Vegetation Index Mean Min. Max. Std.dev. Error

ARVI 0.095 -0.600 0.773 0.131 3.286E-04
B-DTM5 0.280 -0.154 0.734 0.058 1.455E-04

EVI 0.207 -0.111 0.793 0.088 2.207E-04
Greenness 0.089 -0.163 0.556 0.080 2.007E-04
Integral 0.237 0.000 0.45 0.075 1.881E-04

MSARVI 0.009 -0.055 0.07 0.013 3.261E-05
MSI 0.656 0.000 2.000 0.122 3.060E-04
NDII 0.214 -0.333 0.773 0.093 2.333E-04
NDVI 0.282 -0.471 0.844 0.128 3.211E-04

R/G ratio 1.025 0.000 1.458 0.088 2.207E-04
SARVI 0.058 -0.252 0.502 0.080 2.007E-04

SAVI 0.251 -0.185 0.802 0.103 2.584E-04
TSAVI2 0.111 -0.964 0.675 0.114 2.860E-04
Wetness -0.256 -0.705 0.071 0.094 2.358E-04

For the analysis, 158,938 pixels were used within the 
study area (and outside the water mask). Mean value, 
minimum and maximum values, standard deviation, and 
error (as standard deviation divided by the square root of 
the number of pixels) were determined for each vegetation 
index.

For testing the redundant information, a pixel by pixel 
linear regression analysis was performed on all indices 
(each index was compared individually against all other 
indices) in order to evaluate their respective degree of cor-
relation. Slope (a) and correlation coefficient (r2) parame-
ters of the linear regression analysis were used for testing 
the redundant information. Slope coefficient indicates the 
type of relation between two indices. This relation can be 
direct if the slope coefficient is positive, or it can be indi-
rect if the slope coefficient is negative. 

Correlation coefficient (r2) provides a method to assess 
the degree of similarity between a pair of variables. A 
high correlation coefficient value indicates a great degree 
of similarity between both independent and dependent 
variables. Correlation coefficients (r2) vary between 0 and 
1. As the correlation coefficient nears to 1, the larger is the 
similarity between the variables.

Slope (a) and correlation coefficient (r2) parameters 
can provide a method of comparison among vegetation 
indices. Differences in atmospheric effects, vegetation 
patterns, and other local characteristics can be ignored, 
because we assume that they have the same effect on all 
indices. With this assumption, we can estimate if there are 
potentially redundant information in the selected indices. 
Linear regression analysis was done for those indices that 
provide the same kind of vegetation biophysical infor-
mation. The two groups are: greenness/biomass indices 
(ARVI, EVI, Greenness, MSARVI, NDVI, SARVI, SAVI, 
TSAVI2), and vegetation moisture indices (B-DTM5, Inte-
gral, MSI, NDII, Wetness). Other third group can be dif-
ferentiated based on specific vegetation pigment contents. 
Within this last group, only Red/Green ratio was included.

5. Results of the Experiment

Table 2 provides descriptive values and statistics as ob-
tained from the application of the indices in the test area. 
Greenness/biomass indices mean values are comprised 
within the range of 0.009 for MSARVI to 0.282 for NDVI. 
Vegetation moisture indices mean values are comprised 
within the range of -0.256 for Wetness to 0.656 for MSI. 
Error values are low and homogeneous between indices. 
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The lower error value corresponds to MSARVI with an 
order of magnitude lower than the other indices.

Tables 3 and 4 provide slope (a) and correlation coeffi-
cient (r2) values of greenness/biomass indices for the redun-
dant information test. Slope coefficients are presented in ta-
ble 3 where independent variables are ordered by columns 
and dependent variables are ordered by rows. In all cases, 
slope coefficient values are positive, showing that all green-
ness/biomass indices have a direct relationship.

Table 3. Slope coefficients (a) of linear regression analy-
sis for greenness/biomass indices

Slope coefficients of regression lines (a)

D
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bl
es

 (y
)

ARVI 1.44 1.50 10.04 1.01 1.63 1.22 1.09

EVI 0.64 1.05 6.63 0.64 1.08 0.83 0.76
Greenness 0.56 0.87 5.86 0.58 0.94 0.76 0.67
MSARVI 0.10 0.14 0.15 0.10 0.16 0.12 0.11

NDVI 0.96 1.37 1.50 9.65 1.57 1.20 1.07
SARVI 0.60 0.89 0.94 6.17 0.61 0.75 0.67
SAVI 0.76 1.16 1.26 7.81 0.78 1.26 0.90

TSAVI2 0.81 1.25 1.33 8.23 0.83 1.34 1.07
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Table 4. Correlation coefficients (r2) of linear regression 
analysis for greenness/biomass indices

Correlation coefficients (r2)

EVI 0.919

Greenness 0.835 0.914

MSARVI 0.971 0.949 0.891

NDVI 0.969 0.877 0.871 0.941

SARVI 0.987 0.957 0.883 0.992 0.952

SAVI 0.925 0.967 0.957 0.947 0.941 0.951

TSAVI2 0.879 0.944 0.895 0.884 0.883 0.893 0.967
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The correlation coefficients for greenness/biomass 
indices are shown in table 4. In general, a high degree of 
correlation between all selected greenness/biomass indices 
was found as the number of high correlation coefficients 
shows (for r2 ≥ 0.9). As an example, SAVI is highly cor-
related with all other selected greenness/biomass indices. 
EVI is also highly correlated with all other selected green-
ness/biomass indices except for NDVI. On the contrary, 
Greenness and TSAVI2 are only highly correlated with 

EVI and SAVI. ARVI, MSARVI, NDVI and SARVI are 
highly correlated with 4 or 5 indices. SAVI is the highest 
correlated index for selected greenness/biomass indices.

Tables 5 and 6 provide slope (a) and correlation coef-
ficient (r2) values of vegetation moisture indices. Slope 
coefficients are presented in table 5 where independent 
variables are ordered by columns and dependent variables 
are ordered by rows. 

Table 5. Slope coefficients (a) of linear regression analy-
sis for vegetation moisture indices

Slope coefficients of regression lines (a)

D
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B-DTM5 -0.15 -0.35 0.46 0.25
Integral -0.27 0.40 -0.53 -0.71

MSI -1.54 0.97 -1.29 -1.02
NDII 1.21 -0.76 -0.77 0.79

Wetness 0.66 -1.06 -0.63 0.82
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Selected vegetation moisture indices show direct or in-
verse relations as a function of the cross-pair of indices. 
Therefore, their relation is not as clear as greenness/bio-
mass indices. As an example, MSI shows a direct relation 
with Integral, and an inverse relation with B-DTM5, NDII, 
and Wetness. In other case, B-DTM5 shows a direct relation 
with NDII and Wetness, and an inverse relation with Inte-
gral and MSI. 

Table 6 shows that highly correlated indices (for r2 ≥ 
0.9) are not frequent within selected vegetation moisture 
indices. Only MSI and NDII show a high correlation (r2 = 
0.988) between them.

Table 6. Correlation coefficients (r2) of linear regression 
analysis for vegetation moisture indices

Correlation coefficients (r2)

Integral 0.039
MSI 0.544 0.384
NDII 0.563 0.402 0.988

Wetness 0.161 0.755 0.645 0.648
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6. Conclusion

The great pool of existing vegetation indices provides 
important tools for vegetation monitoring and analysis. 
These indices have the potential to be applied as a com-
mon tool for agricultural and natural resources management 
studies. The indices of greenness/biomass, vegetation 
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moisture, and vegetation pigments content were reviewed 
and formulated so that they can be easily computed with 
reflective values of LANDSAT Thematic Mapper (TM) 
data. 

Additionally, a simple method for redundant informa-
tion testing has been used in order to discriminate similar 
information contained in these indices. Linear regression 
analysis has the potential for providing an ubiquitous test, 
since similar scene conditions are assumed for all comput-
ed indices. Detection of direct or inverse relations and the 
degree of correlation or similarity between indices can be 
successfully determined.

Although these indices can be grouped according to the 
purpose for which they were designed and the correlated 
between them, assuming that they lead to the same bio-
physical parameter information, several differences have 
been observed, especially in the magnitude of the values 
calculated from the reflectance of the bands used. For the 
area used in this experiment, SAVI appears to be the most ap-
propriate index for greenness/biomass determination although 
no specific index appears to be the most appropriate in the 
case of vegetation moisture estimation.

References

[ 1 ] Steven, M.D., Malthus, T.J., Baret, F., Xu, H., Chop-
ping, M.J. (2003). Intercalibration of vegetation 
indices from different sensor systems [C]. Remote 
Sensing of Environment, 88: 412-422. (https://doi.
org/10.1016/j.rse.2003.08.010) 

[ 2 ] Richardson, A.J., Everitt, J.H. (1992). Using Spectral 
Vegetation Indices to Estimate Rangeland Produc-
tivity [C]. Geocarto International, 1: 63-77.  (DOI: 
10.1080/10106049209354353) 

[ 3 ] Lyon, J.G., Yuan, D., Lunetta, R.S., Elvidge, C.D. 
(1998) A Change Detection Experiment Using Veg-
etation indices [C]. Photogrammetric Engineering & 
Remote Sensing, 64, 2: 143-150.

[ 4 ] Jensen, J.R. (2000). Remote Sensing of the Environ-
ment: An Earth Resource Perspective [M]. Upper 
Saddle River (NJ), USA: Prentice Hall.

[ 5 ] Jensen, J.R. (2004). Introductory Digital Image Pro-
cessing. A Remote Sensing Perspective. Third edi-
tion. [M] Upper Saddle River (NJ), USA: Prentice 
Hall.

[ 6 ] Chuvieco, E., Riaño, D., Aguado, I., Cocero, 
D. (2002). Estimation of fuel moisture content 
from multitemporal analysis of Landsat Themat-
ic Mapper reflectance data: applications in fire 
danger assessment [C]. International Journal of 
Remote Sensing, 23, 11: 2145-2162. (https://doi.
org/10.1080/01431160110069818) 

[ 7 ] Xue, J., Su, B. (2017). Significant Remote Sensing 
Vegetation Indices: A Review of Developments and 
Applications [C]. Journal of Sensors, 2017, Article 
ID 1353691. (https://doi.org/10.1155/2017/1353691) 

[ 8 ] Cetin, M., Sevik, H. (2016). Evaluating the recreation 
potential of Ilgaz Mountain National Park in Turkey 
[C]. Environmental Monitoring and Assessment, 188, 
52. (https://doi.org/10.1007/s10661-015-5064-7) 

[ 9 ] Potapov, P., Yaroshenko, A., Turubanova, S., Dubi-
nin, M., Laestadius, L., Thies, C., Aksenov, D., Egor-
ov, A., Yesipova, Y., Glushkov, I., Karpachevskiy, 
M., Kostikova, A., Manisha, A., Tsybikova, E., Zhu-
ravleva, I. (2008). Mapping the World’s Intact Forest 
Landsacapes by Remote Sensing [C]. Ecology and 
Society, 13, 2: 51. (http://www.ecologyandsociety.
org/vol13/iss2/art51/) 

[10] Curran, P.  (1980). Multiespectral remote sensing of 
vegetation amount [C]. Progress in Physical Geogra-
phy: Earth and Environment, 4, 3: 315-341. (https://
doi.org/10.1177/030913338000400301) 

[11] Running, S.W., Loveland, T.R, Pierce, L.L., Nema-
ni, R.R., Hunt, E.R. Jr. (1995). A Remote Sensing 
Based Vegetation Classification Logic for Global 
Land Cover Analysis [C]. Remote Sensing of Envi-
ronment, 51: 39-48. (https://doi.org/10.1016/0034-
4257(94)00063-S) 

[12] Estes, J.E., Jensen, J.R., Simonett, D.S. (1980). Im-
pacts of remote sensing on the U.S. Geography [C]. 
Remote Sensing of Environment, 10: 43-80. (https://
doi.org/10.1016/0034-4257(80)90098-X)

[13] Houborga, R., Soegaard, H., Boeghb, E. (2007). 
Combining vegetation index and model inversion 
methods for the extraction of key vegetation biophys-
ical parameters using Terra and Aqua MODIS reflec-
tance data [C]. Remote Sensing of Environment, 106, 
1: 39-58. (https://doi.org/10.1016/j.rse.2006.07.016)

[14] Jensen, J.R. (1983). Biophysical Remote Sensing. 
Review Article [C]. Annals of the Association of 
American Geographers, 73, 1: 111-132. (https://doi.
org/10.1111/j.1467-8306.1983.tb01399.x) 

[15] Jensen, J.R., Coombs, C., Porter, D., Jones, B., Schill, 
S., White, D. (1998). Extraction of Smoth Cordgrass 
(Sparthina alterniflora) Biomass and Leaf Area In-
dex Parameters from High Resolution Imagery [C]. 
Geocarto International, 13, 4:25-46. (https://doi.
org/10.1080/10106049809354661) 

[16] Hanna, M.M., Steyn-Ross, D.A., Steyn-Ross, M. 
(1999). Estimating Biomass for New Zealand Pas-
ture Using Optical Remote Sensing Techniques [C]. 
Geocarto International, 14, 3: 89-94. (https://doi.
org/10.1080/10106049908542121) 

[17] Haboudane, D., Miller, J.R., Pattey, E., Zarco-tejada, 

DOI: https://doi.org/ 10.30564/jgr.v2i1.499



47

Journal of Geographical Research | Volume 02 | Issue 01 | January 2019

Distributed under creative commons license 4.0

P., Strachan, I.B. (2004). Hiperespectral vegetation 
indices and novel algorithms for predicting green 
LAI of crop canopies: Modelling and validation 
in the context of precision agriculture [C]. Re-
mote Sensing of Environment, 90: 337-352. (DOI: 
10.1016/j.rse.2003.12.013) 

[18] Muukkonen, P. & Heiskanen, J. (2005). Estimating 
biomass for boreal forests using ASTER satellite data 
combined with standwise forest inventory data [C]. 
Remote Sensing of Environment, 99, 4: 434-447. 
(DOI: 10.1016/j.rse.2005.09.011) 

[19] Gitelson, A.A. (2004) Wide Dynamic Range Veg-
etation Index for Remote Quantification of Bio-
physical Characteristics of Vegetation [C]. Journal 
of Plant Physiology. 161, 2: 165-173. (https://doi.
org/10.1078/0176-1617-01176) 

[20] Jackson, R.D. (1982). Canopy temperature and crop 
water stress [C]. Advances in Irrigation Research, 1: 
45-85. (https://doi.org/10.1016/B978-0-12-024301-
3.50009-5) 

[21] Hunt, E.R., Rock, B.N., Nobel, P.S. (1987). Mea-
surement of Leaf Relative Water Content by Infra-
red Reflectance [C]. Remote Sensing of Environ-
ment, 22: 429-435. (https://doi.org/10.1016/0034-
4257(87)90094-0) 

[22] Hunt, E.R., Rock, B.N. (1989). Detection of Changes 
in Leaf Water Content Using Near- and Middle-In-
frared Reflectances [C]. Remote Sensing of Envi-
ronment, 30: 43-54. (https://doi.org/10.1016/0034-
4257(89)90046-1) 

[23] Gao, B.C. (1996). NDWI. A normalized difference 
water index for remote sensing of vegetation liquid 
water from space [C]. Remote Sensing of Environ-
ment, 58: 257-266. (https://doi.org/10.1016/S0034-
4257(96)00067-3) 

[24] Gamon, J.A., Surfus, J.S. (1999). Assessing leaf 
pigment content and activity with a reflectometer 
[C]. New Phytologist, 143: 105-117. (https://doi.
org/10.1046/j.1469-8137.1999.00424.x) 

[25] Gamon, J.A., Serrano, L., Surfus, J.S. (1997). The 
photochemical reflectance index: an optical indica-
tor of photosynthetic radiation use efficiency across 
species, function types, and nutrient levels [C]. Acta 
Oecologica, 112: 492-501. (https://doi.org/10.1007/
s004420050337)

[26] Sims, D.A., Gamon, J. (2002). Relationships be-
tween leaf pigment content and spectral reflectance 
across a wide range os species, leaf structures and 
developmental stages [C]. Remote Sensing of Envi-
ronment, 81, 2-3: 337-354. (DOI: 10.1016/S0034-
4257(02)00010-X)

[27] Schultz, M., Clevers, J.G.P.W., Carter, S., Verbesselt, 

J., Avitabile, V., Quang, H.V., Herold, M. (2016). 
Performance of vegetation indices from Landsat time 
series in deforestation monitoring [C]. International 
Journal of Applied Earth Observation and Geoin-
formation, 52: 318-327. (https://doi.org/10.1016/
j.jag.2016.06.020) 

[28] Huete, A., Justice, C. (1999). MODIS Vegetation 
Index (MOD 13) Algorithm Theoretical Basis Doc-
ument. Version 3 [S]. Greenbelt (MD), USA: NASA 
Goddard Space Flight Center.

[29] Kokaly, R.F., Clark, R.N. (1999). Spectroscopic De-
termination of Leaf Biochemistry using Band-Depth 
Analysis of Absorption Features and Stepwise Multiple 
Linear Regression [C]. Remote Sensing of Environ-
ment, 67: 267-287. (https://doi.org/10.1016/S0034-
4257(98)00084-4) 

[30] Jackson, R.D., Huete, A.R. (1991). Interpreting 
vegetation indices [C]. Preventive Veterinary Med-
icine, 11: 185-200. (https://doi.org/10.1016/S0167-
5877(05)80004-2) 

[31] Eastman, J.R. (2003). IDRISI Kilimanjaro. Guide 
to GIS and Image Processing [S]. Worcester (MA), 
USA: Clark University.

[32] Fox, G.A., Sabbagh, G.J. (2002). Estimation of Soil 
Organic Matter from Red and Near-Infrared Remote-
ly Sensed Data Using a Soil Line Euclidean Distance 
Technique [C]. Soil Science Society of America Jour-
nal, 66, 6: 1922-1929. (DOI:10.2136/sssaj2002.1922) 

[33] Clark, R.N., Roush, T.L. (1984). Reflectance spec-
troscopy: quantitative analysis techniques for remote 
sensing applications [C]. Journal of Geophysical 
Research, 89: 6329-6340. (https://doi.org/10.1029/
JB089iB07p06329) 

[34] Clark, R.N. (1999). Chapter 1: Spectroscopy of 
Rocks and Minerals, and Principles of Spectroscopy. 
In: Rencz, A.N. (ed.) [M]. Manual of Remote Sens-
ing, Volume 3, Remote Sensing for the Earth Scienc-
es. New York (USA): John Wiley & Sons, Ltd.: 3-58. 
(ISBN: 0471-29405-5)

[35] Rouse, J.W., Haas, R.H., Schell, J.A., Deering, D.W. 
(1974). Monitoring Vegetation Systems in the Great 
Plains with ERTS [S]. Proceeding, Third Earth Re-
sources Technology Satellite-1 Symposium, NASA 
SP-351. Goddard Space Flight Center, Greenbelt 
(MD), USA: 309-317.

[36] Birth, G.S., McVey, G. (1968). Measuring the Color 
of Growing Turf with a Reflectance Spectrophotom-
eter [C]. Agronomy Journal, 60, 6: 640-643. (DOI: 
10.2134/agronj1968.00021962006000060016x)

[37] Deering, D.W., Rouse, J.W., Haas, R.H., Schell, J.A. 
(1975). Measuring Forage Production of Grazing 
Units from Landsat MSS data [S]. Proceedings of the 

DOI: https://doi.org/ 10.30564/jgr.v2i1.499



48

Journal of Geographical Research | Volume 02 | Issue 01 | January 2019

Distributed under creative commons license 4.0

10th International Symposium on Remote Sensing 
of Environment, ERIM 2. Ann Arrbor, USA: 1169-
1178.

[38] Chuvieco, E. (2002). Teledetección ambiental. La 
observación de la Tierra desde el espacio [M]. Barce-
lona (Spain): Ariel Ciencia. (ISBN: 8434480727)

[39] Rondeaux, G., Steven, M., Baret, F. (1996) Optimiza-
tion of Soil-Adjusted Vegetation Indices [C]. Remote 
Sensing of Environment, 55: 95-107. (https://doi.
org/10.1016/0034-4257(95)00186-7) 

[40] Verhoef, W. (1984). Light scattering by leaf layers 
with application to canopy reflectance modelling: 
the SAIL model [C]. Remote Sensing of Environ-
ment, 16, 2: 125-141. (https://doi.org/10.1016/0034-
4257(84)90057-9) 

[41] Kuusk, A. (1991). The hot-spot effect in plant caopy 
reflectance [M]. In R.B. Myneni and J. Ross Eds.), 
Photon-Vegetation interactions, Application in Op-
tical Remote Sensing and Plant Ecology. New York: 
Springer Verlag.: 139-159. (DOI: 10.1007/978-3-
642-75389-3_5) 

[42] Huete, A.R. (1988) A Soil Adjusted Vegetation In-
dex (SAVI) [C]. Remote Sensing of Environment, 
25, 3: 295-309. (https://doi.org/10.1016/0034-
4257(88)90106-X) 

[43] Huete, A.R., Hua, G., Qi, J., Chehbouni, A., Van 
Leeuwem, W.J. (1992). Normalization of Multidi-
rectional Red and Near-Infrared Reflectances with 
the SAVI [C]. Remote Sensing of Environment, 
41, 2-3: 143-154. (https://doi.org/10.1016/0034-
4257(92)90074-T) 

[44] Steven, M.D. (1998). The sensitivity of the OSAVI veg-
etation index to observational parameters [C]. Remote 
Sensing of Environment, 63, 1: 49-60. (https://doi.
org/10.1016/S0034-4257(97)00114-4) 

[45] Kaufman, Y.J., Tanre, D. (1992). Atmospherically 
Resistant Vegetation index (ARVI) for EOS-MODIS 
[C]. IEEE Transactions on Geosciences and Remote 
Sensing, 30, 2: 261-270. (DOI: 10.1109/36.134076)

[46] Hardisky, M.A., Klemas, V., Smart, M. (1983). The 
Influence of Soil Salinity, Growth From, and Leaf 
Moisture on the Spectral Radiance of Spartina al-
ternifolia Canopies [C]. Photogrammetric Engineer-
ing and Remote Sensing, 49, 1: 77-83. (DOI: 0099-
1112183/4901-77$02.25/0) 

[47] Carter, G. (1991). Primary and Secondary Effects of 
Water Content on the Spectral Reflectance of Leaves 
[C]. American Journal of Botany, 78, 7: 916-924. 
(https://doi.org/10.1002/j.1537-2197.1991.tb14495.x) 

[48] Ceccato, P., Flasse, S., Tarantola, S., Jacquemound, 
S., Grégoire, J.M. (2001). Detecting vegetation leaf 
water content using reflectance in the optical domain 

[C]. Remote Sensing of Environment, 77, 1: 22-33. 
(https://doi.org/10.1016/S0034-4257(01)00191-2) 

[49] Gould, K.S., Kuhn, D.N., Lee, D.W., Oberbauer, S.F. 
(1995). Why leaves are sometimes red [S]. Nature, 
378, 6554: 241-242. (DOI: 10.1038/378241b0)

[50] Coley, P.D., Aide, T.M., (1989). Red coloration of 
tropical young leaves: a possible anti-fungal defence? 
[C]. Journal of Tropical Ecology, 5, 03: 293-300. (DOI: 
10.1017/S0266467400003667) 

[51] Coley, P.D., Barone, J.A. (1996). Herbivory and plant 
defenses in tropical forest [C]. Annual Review of 
Ecology and Systematics, 27: 305-335. (https://doi.
org/10.1146/annurev.ecolsys.27.1.305) 

[52] Qi, J., Chehbouni, Al, Huete, A.R., Kerr, Y.H., 
Sorooshian, S. (1994). A modified soil adjusted 
vegetation index (MSAVI) [C]. Remote Sensing of 
Environment, 48, 2: 119-126. (DOI: 10.1016/0034-
4257(94)90134-1)

[53] Richardson, A.J., Wiegand, C.L. (1977). Distinguish-
ing vegetation from soil background information [C]. 
Photogrammetric Engineering & Remote Sensing, 
43, 12: 1541-1552. (ISSN: 0099-1112)

[54] Fox, G.A., Sabbagh, G.J., Searcy, S.W., Yang, C. 
(2004). An Automated Soil Line Identification Rou-
tine for Remotely Sensed Images [C]. Soil Science 
Society of America Journal, 68, 4: 1326-1331. (DOI: 
10.2136/sssaj2004.1326)

[55] Clevers, J.G.P.W. (1988). The derivation of a simpli-
fied reflectance model for the estimation of leaf area 
index [C]. Remote Sensing of Environment, 25, 1: 
53-69. (https://doi.org/10.1016/0034-4257(88)90041-
7) 

[56] Clevers, J.G.P.W., Verhoef, W. (1993). LAI esti-
mation by means of the WDVI: A sensitivity anal-
ysis with a combined PROSPECT-SAIL model 
[C]. Remote Sensing Reviews, 7, 1: 43-64. (DOI: 
10.1080/02757259309532165)

[57] Baret, F., Guyot, G.; Major, D. (1989). TSAVI: A 
Vegetation Index Which Minimizes Soil Bright-
ness Effects on LAI and APAR Estimation [S]. 12th 
Canadian Symposium on Remote Sensing and IG-
ARSS’90. Volume 4. Vancouver, Canada.: 10-14. 
(DOI: 10.1109/IGARSS.1989.576128)

[58] Gilabert, M.A., González-Piqueras, J., García-Haro, 
F.J., Meliá, J. (2002). A generalizad soil-adjusted 
vegetation index [C]. Remote Sensing of Environ-
ment, 82, 2-3: 303-310. (https://doi.org/10.1016/
S0034-4257(02)00048-2) 

[59] Huete, A.R., Liu, H.Q. (1994). An Error and Sensitiv-
ity Analysis of the Atmospheric- and Soil-Correcting 
Variants of the Normalized Difference Vegetation 
Index for the MODIS-EOS [C]. IEEE Transactions 



49

Journal of Geographical Research | Volume 02 | Issue 01 | January 2019

Distributed under creative commons license 4.0

on Geosciences and Remote Sensing, 32, 4: 897-905. 
(DOI: 10.1109/36.298018)

[60] Kauth, R.J., Thomas, G.S. (1976). The Tasseled Cap: 
A Graphic Description of the Spectral Temporal De-
velopment of Agricultural Crops as Seen By Landsat 
[S]. In Proceedings, Machine Processing of Remote-
ly Sensed Data. Laboratory for the Applications of 
Remote Sensing (LARS), Purdue University, West 
Lafayette (IN), USA: 41-51. (http://docs.lib.purdue.
edu/lars_symp/159) 

[61] Crist, E.P. (1985). A Thematic Mapper Tasseled Cap 
Equivalent for Reflectance Factor Data [C]. Remote 
Sensing of Environment, 17, 3: 301-306. (https://doi.
org/10.1016/0034-4257(85)90102-6) 

[62] Crist, E.P. (1983). The TM tasselled cap: A prelim-
inary formulation [S]. In Proceedings of the Sym-
posium on Machine Processing of Remotely Sensed 
Data. Laboratory for the Applications of Remote 
Sensing (LARS), Purdue University, West Lafayette 
(IN), USA: 357-364.

[63] Crist, E.P., Cicone, R.C. (1984a). Comparison 
of the dimensionality and features of simulated 
Landsat-4 MSS and TM data [C]. Remote Sens-
ing of Environment, 14, 1-3: 235-246. (https://doi.
org/10.1016/0034-4257(84)90018-X) 

[64] Crist, E.P., Cicone, R.C. (1984b). A physically-based 
transformation of thematic mapper data – the TM 
Tasseled Cap [C]. IEEE Transactions on Geoscience 
and Remote Sensing, 22, 3: 256-263. (DOI: 10.1109/
TGRS.1984.350619)

[65] Crist, E.P., Kauth, (1986). The Tasselled Cap de-mys-
tified [C]. Photogrammetric Engineering and Remote 
Sensing, 52, 1: 81-86. (DOI: 0099-1112186/5201-
0081$02.25/0)

[66] Jackson, R.D. (1983). Spectral Indices in n-Space [C]. 
Remote Sensing of Environment, 13, 5: 409-421. 
(https://doi.org/10.1016/0034-4257(83)90010-X) 

[67] Clark, R.N., Roush, T.L. (1984). Reflectance spec-
troscopy: quantitative analysis techniques for remote 
sensing applications [C]. Journal of Geophysical 
Research, 89, B7: 6329-6340. (DOI: 10.1029/
JB089iB07p06329)

[68] Clark, R.N. (1999). Chapter 1: Spectroscopy of 
Rocks and Minerals, and Principles of Spectroscopy 
[M]. In: Rencz, A.N. (ed.). Manual of Remote Sens-
ing, Volume 3, Remote Sensing for the Earth Scienc-

es. New York (USA): John Wiley & Sons, Ltd.: 3-58.
[69] Clark, R. N., Swayze, G. A., Livo, K. E., Kokaly, 

R. F., Sutley, S. J., Dalton, J. B., McDougal, R. R., 
Gent, C. A. (2003). Imaging Spectroscopy: Earth 
and Planetary Remote Sensing with the USGS 
Tetracorder and Expert Systems [C]. Journal of 
Geophysical Research, 108, E12: 5131. (DOI: 
10.1029/2002JE001847.v)

[70] Van Niel, T.G., McVicar, T.R., Fang, H., Liang, S. 
(2003). Calculating environmental moisture for per-
field discrimination of rice crops [C]. International 
Journal of Remote Sensing, 24, 4: 885-890. (DOI: 
10.1080/0143116021000009921)

[71] Mather, P.M. (2004). Computer Processing of Re-
motely-Sensed Images. An Introduction [M]. Third 
edition. West Sussex (England), UK: John Wiley & 
Sons, Ltd. (ISBN: 9780470849187)

[72] Chander, G., Markham, B. (2003). Revised Landsat-5 
TM radiometric calibration procedures and post-
calibration dynamic ranges [R]. IEEE Transactions 
of Geosciences and Remote Sensing, 41, 11: 2674-
2677. (DOI: 10.1109/TGRS.2003.818464) 

[73] Chavez, P. (1988). An improved dark-object sub-
traction technique for atmospheric scattering 
correction of multispectral data [C]. Remote Sens-
ing of Environment, 24, 3: 459-479. (https://doi.
org/10.1016/0034-4257(88)90019-3) 

[74] Koch, M. (2000). Geological controls of land deg-
radation as detected by remote sensing: a case study 
in Los Monegros, north-east Spain [C]. International 
Journal of Remote Sensing, 21, 3: 457-473. (DOI: 
10.1080/014311600210687)

[75] Dewa, R.P., Danoedoro, P. (2017). The effect of im-
age radiometric correction on the accuracy of vegeta-
tion canopy density estimate using several Landsat-8 
OLI’s vegetation indices: A case study of Wonosari 
area, Indonesia [S]. IOP Conference Series: Earth 
and Environmental Science, 54, 012046. (DOI: 
10.1088/1755-1315/54/1/012046)

[76] Hoffer, R.M. (1978). Biological and physical con-
siderations in applying computer-aided analysis 
techniques to remote sensor data. In Swain, P.H. and 
Davis, S.M. (eds.), Remote Sensing: The Quantita-
tive Approach, McGraw- Hill Book Company, New 
York: 227-289.


