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Abstract: We experimentally demonstrate how to accurately retrieve the refractive index profile
of photonic structures by standard di!raction experiments and use of the rigorous coupled-wave
analysis in the multi-wave coupling regime, without the need for taking any auxiliary data. In
particular, we show how the phases of the Fourier components of a periodic structure can be fully
recovered by deliberately choosing a probe wavelength of the di!racting radiation much smaller
than the lattice constant of the structure. In the course of our demonstration, we accurately
determine the slight asymmetry of the structure of nanocomposite phase gratings by light and
neutron di!raction measurements.

© 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Di!raction experiments are usually a method of choice to determine the internal structure of bulk
materials. Instead of a crystal, let us consider here the simple case of a planar one-dimensional
phase grating, which is characterized by the spatial profile of the refractive index

ñ(x) =
+→)︄

s=↑→
ñseısGx. (1)

Here, G is the spatial frequency with G = 2ω/ω, where ω is the grating spacing, and
|ñs | = ns ↓ R is the amplitude of the Fourier component at the index s. In the case of
phase gratings (ñ↑s = ñ↔s ↓ C) the Fourier-series of the real-valued refractive index reads
n(x) = n0 + 2

[︄→
s=1 |ñs | cos(sGx + εs), where εs = arg(ñs) is the relative phase of the Fourier

component at the index s. By determining the Fourier components, i.e. amplitudes and phases of
the Fourier components, the structure is fully retrieved. However, by measuring the intensities
of di!racted signals – as it is usually done in standard di!raction experiments – only the
magnitude of the s-th Fourier component that corresponds to the s-th di!raction order, can be
obtained, whereas the phases εs are lost. The latter is sometimes called the phase problem
of crystallography or di!raction (see, for instance, [1]). In principle, it can be overcome by
measuring the phase di!erences between the wave incident to a sample of interest and each
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di!racted wave interferometrically, which, however, is found to be utterly di"cult in many
relevant cases.

Sophisticated techniques have been developed to recover the phase information [1,2] either
by so-called non-physical methods (direct methods, isomorphous replacement and anomalous
scattering) or by introducing – sometimes demanding – experimental procedures to provide a
physical solution [3–6]. Due to the importance of this problem that – as seen from a general point
of view – remains unsolved to this day, discussions and suggestions of solutions for important
particular cases have been provided for decades and are ongoing within the frame of many
theoretical as well as some experimental studies (see, for instance, [7–17]). Surprisingly, sticking
to traditional di!raction experiments combined with the well-known rigorous coupled-wave
analysis (RCWA) [18] can indeed provide all necessary information in many cases if experimental
settings are chosen carefully, as we will show here. In particular, we demonstrate by means
of simple examples – one-dimensional, non-sinusoidal phase gratings – how such an approach
to a solution to the phase problem of di!raction can be obtained with not more than the usual
experimental e!ort in di!raction experiments. The technique is applicable to samples generating
di!raction patterns for any type of radiation useful for structure determination (X-rays, electrons,
laser light, and neutrons, for instance). We apply our approach to the problem of determining
deviations of the periodic refractive index profiles of holographic nanoparticle-polymer composite
(NPC) gratings [19] from their ideal sinusoidal form. NPCs consist of a photopolymer host
that is uniformly dispersed with inorganic or organic nanoparticles having a large di!erence in
refractive index between nanoparticles and the cured photopolymer. Because nanoparticles can
be assembled under holographic exposure by means of the so-called "holographic assembly of
nanoparticles in polymer" [20], this holographic assembling technique provides NPC volume
gratings with very large refractive index modulation amplitudes (εn), for example, as high as
0.045 and 0.030 at recording wavelengths of 532 and 640 nm [21,22], respectively, to be used
as volume holographic di!ractive elements in head-mounted displays for augmented/mixed
reality. Other holographic applications of NPC gratings include holographic data storage, display
technology and slow-neutron beam control [19,23–26]. The information on obtained grating
profiles is also useful for our understanding of holographic formation processes in NPCs [27,28].

2. Statement of the problem

Holographic gratings were prepared from a photopolymerizable NPC material. As reported in the
past [29], SiO2 nanoparticles (with the average diameter of 13 nm and the bulk refractive index nn
of 1.46) dispersed in a solution of methyl isobutyl ketone are mixed with methacrylate monomers,
2-methyl-acrylic acid 2-4-[2-(2-methyl-acryloyloxy)-ethylsulfanylmethyl]-benzylsulfanyl-ethyl
ester (the formed polymer refractive index np is 1.59 at 589 nm). The doping concentration of
SiO2 nanoparticles was 34 vol.%. Photoinitiator titanocene (Irgacure 784, Ciba) is also mixed in
1 wt.% with respect to the monomer to provide photosensitivity in the green. The above chemical
mixture is cast on a glass plate. It is dried in an oven and finally covered with another glass plate,
separated from the first one by spacers of known thickness. We employ a two-beam interference
setup to write an unslanted transmission NPC grating by superposition of two mutually coherent
s-polarized beams of equal light intensities from a diode-pumped frequency-doubled Nd:YVO4
laser operating at 532 nm. Two NPC gratings were prepared: G1 at grating spacing ω of 5 µm
and with the thickness d of about 13 µm, and G2 at spacing ω of 1 µm and with d ↗ 50 µm. In
the bright regions of the interference pattern irradiating the sample, the photoinitiator triggers
photopolymerization. Monomer is consumed there by the formation of polymer. Due to the
resulting chemical potential gradient, a mutual di!usion process of unreacted monomer and
nanoparticles sets in, leaving the dark regions enriched with nanoparticles [19]. It is important to
note that, while the interference pattern is sinusoidal, the phase grating will be non-sinusoidal
with nonzero higher Fourier components (|s|>1 in Eq. (1)) due to the interplay of nonlinear
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processes governed by the photopolymerization-driven mutual di!usion process for the formation
of spatial density modulations of the formed polymer and nanoparticles. (Such characteristic
features of the nanoparticle density profile can also be assessed by various theoretical models
[27,30].) Thus, however elaborate the described production process might be, it is subject to
continuing optimization of material parameters and recording conditions which a!ect grating
formation. Therefore, information as accurate as possible about the process outcome is desired,
i.e. information about the redistribution of the nanoparticles dispersed in monomer under
holographic exposure, which would eventually determine the exact form of the periodic refractive
index profile given by Eq. (1). It is the latter we investigate by our proposed method here.

Figure 1 (a) shows an optical micrograph of G1 taken close to the maximum contrast position
of the Talbot carpet [31–33], which can be observed for pure phase gratings using an optical
microscope. It can be seen that SiO2 nanoparticles (narrow, dark fringes, corresponding to
lower refractive index regions) and the formed polymer (wide, bright fringes, corresponding to
higher refractive index regions) are periodically arranged as a result of holographic assembly
of nanoparticles [20]. Their distribution, shown in Fig. 1 (b), is not perfectly sinusoidal. In
Fig. 1 (c), a section of a map of the optical path length di!erence of a sibling of G1 (also at
ω = 5 µm) measured by digital holographic microscopy (DHM-R2100 by Lyncée Tec) is shown.
The measurements were made with a 20X objective at a wavelength of ϑ = 684.9 nm. Also in
this case, it is clearly seen from the sum of about 100 lines taken along the grooves of the optical
path length di!erence map that the pattern is not purely sinusoidal, as shown in Fig. 1 (d). Thus,
the Fourier series describing both distribution patterns and, therefore, the refractive index profiles
must certainly include higher order Fourier terms, at |s|>1.

Fig. 1. (a) Optical micrograph of the holographic SiO2 nanoparticle dispersed NPC grating
G1 in transmission mode. (b) Sum of 100 lines of grayscale values of the micrograph in
Fig. 1 (a). (c) Optical path length di!erence (εOPL, in units of nanometers; optical path
length is defined as refractive index times distance) as a function of position on a grating
similar to G1, measured by digital holographic microscopy. (d) Average over 100 lines
in Fig. 1 (c). It is clearly seen that both profiles [(b) and (d)] exhibit higher order Fourier
components.
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3. Retrieval of the Fourier components’ relative phases – experimental design
and analysis

In many di!raction experiments aiming at structure determination, di!raction by a sample occurs
in Bragg regime [34]: For optically thick samples and for relatively large Bragg angles, at most
two waves propagate simultaneously and interfere within the sample at a given angle of incidence.
One typically measures the dependence of the di!racted intensities upon the sample’s rotation
through angles of incidence ϑ on a screen or a detector. In Bragg regime, peaks of the di!raction
e"ciency (DE, ϖ) plotted versus ϑ are relatively sharp and do not overlap as can be seen in
Fig. 2 (a). Coupling (interference) of the two waves propagating within the sample’s periodic
structure (the refractive index modulation given by Eq. (1)) results in energy exchange between
di!raction order pairs (the zero order beam and only one of the ±1,±2,±3, . . . orders) as a
function of ϑ. The first Born approximation does not hold in such a case, but theories such as
dynamical di!raction theory or Kogelnik’s theory (see, for instance, [35,36]) can be deployed for
modelling data taken in Bragg regime. However, the relative phases εs of Fourier components
cannot be retrieved since multi-wave coupling of the corresponding waves does not occur at any
ϑ.

Fig. 2. (a) Plot of typical DE in the Bragg regime as a function of angle of incidence ϑ. (b)
Multi-wave coupling data of the grating G1 are obtained di!racting a He-Ne laser of a few
mm beam width at a wavelength of ϑ = 633 nm, much shorter than the grating spacing of
5 µm. A grating is placed on a motorized stage which is rotated about the y-axis.

Now, in order to achieve such multi-wave coupling in di!raction and, thereby, to determine the
relative phases εs of G1’s structure, we apply visible light of wavelength ϑ ↘ ω as a probe in our
di!raction experiment, such that ω is about an order of magnitude longer than the wavelength
of the probe beam. By intentionally choosing ϑ much shorter than it would seem appropriate,
we can leave the Bragg regime behind and allow for multi-wave coupling to occur within the
periodic structure of the sample. From the Bragg equation sϑ = 2ωs sinϑs ( ϑs is the Bragg
angle for the Fourier component at the index s) it is clear that the di!raction angle decreases
with a decrease in ϑ, so that di!raction peaks of a given width overlap and the experiment
can no longer be described in the Bragg regime. Clearly, more than just two waves propagate
and interfere inside the sample at angles ϑ for which observed peaks overlap considerably [see
Fig. 2 (b)]. A rule of thumb on how to achieve multi-wave coupling can be derived by looking for
parameter value combinations that provide for su"cient peak overlap of neighboring di!raction
orders of considerable strength, which can be expressed as

ϑd
2n0ω2 <1. (2)
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The angular dependence data obtained by multi-wave coupling di!raction can be modelled by
multiwave analysis theories such as the RCWA [18,37]. Here, the strategy is to solve Maxwell’s
equations in each of three regions (input, grating, output) such that the tangential components
of the solutions of neighbouring regions match at these interfaces. Phase information of the
Fourier components of the refractive index profile given by Eq. (1) is inherently included in the
RCWA. A set of coupled-wave equations is solved by calculating eigenvalues and eigenvectors of
a matrix directly related to those Fourier components. The amplitudes at arbitrary di!raction
orders are found by employing the boundary conditions. In our work RCWA was used to fit the
experimental DE defined as ϖs = Is/Itot, with the di!racted intensity Is at the di!raction order
s and the sum of all di!racted intensities behind the sample Itot, and yield the amplitudes and
phases of the corresponding Fourier components at the index s required to fully reconstruct n(x).

4. Experimental results

To measure the angular dependence data, an s-polarized beam of a He-Ne laser (ϑ = 633 nm) was
used to observe di!raction signals from G1 being rotated about the y-axis (perpendicular to the
plane of incidence) at angles ϑ (↑55≃ . . . + 55≃), as is shown in Fig. 2 (b). Angular dependences
of the di!racted intensities Is(ϑ) at s = 0,±1,±2,±3 were recorded by Si-photodiodes placed at
the locations of the di!raction spots observed on a screen. The results are shown in Fig. 3. Due
to the small ratio ϑ/ω ↗ 0.1 in our experiment, the Bragg angles ϑs = ± 3.6≃,± 7.3≃,± 10.9≃ at
s = ±1,±2,±3, respectively, are small, too. All seven observable di!raction orders overlapped
within ±20≃ and exhibited su"ciently large DE to be readily detected. Solid curves in Fig. 3 are
least-squares fits to the RCWA. Fitting was performed including all data points. The RCWA is
in excellent agreement with the experimental data, by which we can achieve accurate structure
determination as is shown below: Estimations for the amplitudes |n1 |, |n2 | and |n3 | of the Fourier
components as well as their phases ε2 and ε3 as obtained by the RCWA fit are given in the
second column of Table 1.

Fig. 3. Measured angular dependence (data points) of the DE for the ±2,±1, 0 orders for G1
at a wavelength of 633 nm. Error bars are much smaller than the symbols. The ±3 orders
were measured and included in the fitting procedure, but their DE is small and not shown
here. Solid curves are RCWA fits to the data at seven di!raction orders, yielding ε2 and ε3
(see Table 1).

The values of ε2 and ε3 were – without loss of generality – obtained with respect to ε1 set to
zero. The spatial refractive index profile as calculated from fit parameter estimations is shown in
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Table 1. Amplitudes and relative phases for the Fourier coefficients of refractive index profiles for
G1 and G2. The values were determined by RCWA fits to the data with ω1 set to zero (see text).

Resulting profiles obtained from light and neutron diffraction measurements are shown in Figs. 4
and 6, respectively.

Grating: G1 G2

Parameters: ω = 5µm, d ↗ 13 µm ω = 1µm, d ↗ 50 µm

Probe beam: light @ ε = 633 nm neutrons @ ε = 1.7 nm

|n1 | 4.9382(37) ⇐ 10↑3 2.592(28) ⇐ 10↑6

|n2 | 1.072(15) ⇐ 10↑3 5.03(58) ⇐ 10↑7

|n3 | 1.72(48) ⇐ 10↑4 n. a.

ω1 := 0 := 0

ω2 1.0581(39)ϑ 0.995(27)ϑ
ω3 0.37(15)ϑ n. a.

Fig. 4 (solid, black curve). Since the refractive index modulation amplitude of a recorded NPC
grating is proportional to nn ↑ np [38], the SiO2 rich regions correspond to the low refractive
index regions. Comparison with the data of Fig. 1 (b) (filled, red circles in Fig. 4) makes the
qualitative agreement obvious, thereby demonstrating the validity of our approach. Even the
slight asymmetry in the profile (slight flattening on the left side of each peak), which may be
caused by spatially nonuniform lateral shrinkage during holographic exposure, is captured by the
RCWA analysis of the di!raction data as can be seen from the inset in Fig. 4.

Fig. 4. Plotted are the data points (filled, red circles) extracted from the grayscale image
in Fig. 1(a) [as shown in Fig. 1 (b)]. The refractive index profile of G1 obtained from the
RCWA fit-parameter estimation (as given in Table 1) was rescaled and shifted (solid, black
curve) for direct comparison to the data points in the present plot. Peaks correspond to the
polymer ridges of the structure. Inset: Third peak from the left, magnified. Even detailed
features of the micrograph data are reproduced, as shown in the inset.

Next, the refractive index profile of G2 (ω = 1 µm, d ↗ 50 µm) is to be retrieved. Accurately
resolving such structures by an optical microscope is possible but not straightforward, which
underlines the potential impact of our solution to the phase problem, especially for refractive
index profiles, which have structural dimensions of the order of light wavelengths. In the case
of G2, Kogelnik’s theory [36] allows to roughly estimate the expected peak width (the angular
distance between the minima adjacent to the Bragg angle ϑ1 at s = 1 in an angular dependence
plot of DE) as 2n0ω/d ↗ 3.4≃. For wavelengths around the higher and lower limits of the visible
range, one expects ϑ1 ↗ 17≃ at ϑ = 633 nm and ϑ1 ↗ 10≃ at a UV wavelength of ϑ = 351 nm.
Thus, it is di"cult to produce peak overlap to transfer the di!raction process from the Bragg
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regime to the multi-wave coupling regime for the determination of the refractive index profile of
G2, by use of table-top laser light sources. However, a key point of our approach is that depending
on the particular material class investigated, there might be other kinds of radiation available for
di!raction experiments to obtain data similar to the ones shown in Fig. 3. For instance, since the
refractive index profile is produced by the density modulation of one of the involved material
components (nanoparticles, in our case), it is known that small angle neutron scattering (SANS;
see, for instance, [39]) provide well-established tools [40]: For a typical de Broglie wavelength
of neutrons in a SANS experiment of 1 nm, say, one may expect Bragg angles ϑ1 ↗ ϑ/(2ω)
of the order of 0.03≃, which can be detected with state-of-the-art SANS instruments, thanks to
long sample-detector distances (up to 20 m) and su"cient spatial resolution of detectors. Thus,
considerable peak-overlap for G2 and, therefore, multi-wave coupling is achievable with neutrons.

The neutron experiment was performed by use of the instrument SANS-I of the SINQ neutron
source of Paul-Scherrer Institute in Villigen, Switzerland. Cold neutrons at a mean wavelength
of 1.7 nm (width of wavelength distribution εϑ/ϑ ↗ 10%) were di!racted from G2. The beam
divergence was limited to about 1 mrad, using collimation slits. The di!racted intensities were
measured using a two-dimensional detector of 7.5 ⇐ 7.5 mm2 pixel size. To adjust the peak width
(estimated by 2ω/d, see our above discussion) and the peak height for our purpose, G2 was tilted
around its grating vector by ϱ ↗ 60≃ which increases the e!ective thickness to d ⇒ d/cos ϱ , i. e.
by a factor of two [40,41]. The results are shown in Fig. 5. Similarly to the DE of G1 shown
in Fig. 3, the observed di!raction took place in the multi-wave coupling regime, that is, many
(five, in this case) di!raction orders are observable within the angular range of ϑ = ±0.25≃.
Applying the RCWA fit, we were, again, able to extract the full information (amplitudes and
phases) of the grating’s Fourier components up to the 2nd-order. They are given in Table 1 (third
column). Simulations of the DE assuming ε2 = 0 instead of the experimentally obtained value
are also plotted (red, dashed curves) in Fig. 5. The disagreement of simulation at ε2 = 0 and
data is easily resolved in a standard SANS experiment. The neutron-refractive index profile of
G2 – corresponding to the spatial density distribution of formed polymer and nanoparticles – as
calculated from the RCWA parameter estimation is shown in Fig. 6 together with its counterpart,
assuming ε2 = 0, for comparison. Note that the refractive index modulation amplitude for
neutrons is proportional to ↑(bnςn↑bpςp), where bn (bp) and ςn (ςp) are the mean bound coherent
scattering length [39] and the atomic density of nanoparticles (the formed polymer), respectively.
Since bnςn is larger than bpςp for SiO2 nanoparticles [40], the SiO2 rich regions correspond
to lower refractive index regions in Fig. 6, as similar to Fig. 4. No third order component was
measurable for G2 and therefore the profile in Fig. 6 is symmetric, in contrast to the profile of G1.
We attribute this di!erence to the mutual di!usion process, which is much more significant in
G2 due to the smaller grating spacing.

For the data analysis procedure, the RCWA formulation as published in Ref. [18] was
implemented in home-made python code. With RCWA, Maxwell’s equations are solved in
entrance-, grating-, and exit-regions, with the proper boundary conditions applied. In this
particular formulation [18], a solution of the corresponding di!raction problem formulated as an
eigenstate problem is found. The eigenvalues and eigenvectors are then inserted in the space
harmonics of the fields’ exponentials. The numerical stability criteria – energy conservation
and convergence – are discussed in detail in Ref. [18]. Failure of convergence is avoided by
appropriate normalization for yielding only negative exponents. Numerical e"ciency is supported
by eliminating the amplitudes of the forward and backward di!racted fields, and solving a set of
linear equations to obtain the coe"cients according to the boundary conditions. The coe"cients
are, then, used to retrieve the amplitudes of the di!racted fields. For fitting the light-optical and
neutron-optical di!raction data in the RCWA expansion, 7 modes (±3,±2,±1, 0) and 5 modes
(±2,±1, 0) were considered, respectively. To find the eigenvalues and eigenvectors the linalg.eig
python library (for complex matrices) was used. The target function of the fitting procedure is
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Fig. 5. Measured angular dependence (data points) of DE for G2 at the ±2,±1, 0 orders
and at the neutron wavelength of 1.7 nm. Five-wave coupling was observed near the normal
incidence. An RCWA fit (solid curves) again allows to retrieve amplitudes and phases of the
grating’s Fourier components. The resulting fit parameter estimation is given in Table 1.
To illustrate the importance of the correct phase value, simulations for ε2 = 0 (dashed, red
curves) instead of the experimentally obtained value ε2 = 0.995 ω are added.

Fig. 6. The neutron-refractive index profile of G2 calculated from the RCWA fit-parameter
estimation as given in Table 1 (solid, black curve). The neutron-refractive index profile of
G2 is also plotted for ε2 = 0 (dashed, red curve) instead of the experimentally obtained
value ε2 = 0.995 ω.

written as weighted least-squares function
[︄

j[(ϖj ↑ fj(pars)/εϖj]2, which was minimized using
the python scipy.optimize.leastsq solver. Here, ϖj is the experimentally measured value of the
di!raction e"ciency at position j, fj is the value of the model function (solution of the RCWA) at
position j, "pars" refers to the free fitting parameters and εϖj is the experimental error of the
data point at position j. The free fitting parameters were the refractive index modulations n1,
n2, and n3 and the relative phases ε2 and ε3 as well as the grating thickness d. Approximate
initial values for the parameters were estimated by manually and iteratively adjusting RCWA
simulations with reasonable values from our previous works. The initial phases were chosen near
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zero or ω, which is what is expected for holographic gratings. Our a priori knowledge is that our
holographic gratings are periodic, are pure phase gratings, i.e., ns ↓ R (no absorption grating),
and that a relatively small number of modes (7 and 5 for light- and neutron-data, respectively)
is su"cient to predict the refractive index profiles. These conditions are well justified for our
holographically recorded NPC gratings. They might not hold for gratings deliberately designed
to, e. g., suppress particular higher di!raction orders. No loss terms were introduced. As we
employed a TE polarized probe beam and in-plane (not conical, see Fig. 2) geometry, the RCWA
calculation was stable and converged fast [18,37,42]. Using a standard laptop with a CPU at
1.7GHz clock speed, the time for minimizing the target function for a data set of 625 data points
was about 26 hours (light di!raction data set, 7-wave-coupling). Fitting curves using the resulting
fit parameter estimations were obtained within a few seconds.

5. Discussion

In a nutshell, which conditions need to be fulfilled for our approach to work for a given sample?
(i) The sample structure must be periodic, the period known approximately. (ii) A suitable probe
radiation that interacts su"ciently with the structure and provides for inequality Eq. (2) to be
fulfilled must be available for carrying out experiments in the multi-wave coupling di!raction
regime. (iii) Detection of potentially weaker higher di!raction orders must be guaranteed for
the considered probe radiation, depending on the desired resolution of refractive index profile
features.

The RCWA formulation in Ref. [18] applied to our case implied only low-dimensional matrices
(7 ⇐ 7 for light, 5 ⇐ 5 for neutrons). It yielded excellent results needing only direct solvers (i.e.
non-iterative solvers). For our holographically prepared phase gratings, smooth refractive-index
profiles are expected, the material is not conducting and, thus, the used RCWA formulation [18]
is converging fast for TE polarization. We tested the stability of the results of our optimization
procedure by variation of the initial values for the phases ε2 and ε3. For instance, initial values
for ε2 and ε3 both near zero or both near ω were introduced. In any case, the resulting fitting
parameter estimations converged to values as given in Table 1. We would like to emphasize
that the method itself contains the full complex refractive index and thus the imaginary part of
the Fourier-coe"cients can be readily implemented. Therefore, our approach can be used for
absorption gratings as well and also for mixed gratings. It is not limited to the analysis of pure
phase gratings.

Of course, it is – in many cases – more convenient to apply optical microscopy for the estimation
of the refractive index profile, but resolution limits of microscopy are laborious to overcome in
the range of typical structure constants of several hundred nanometers. Furthermore, electron
microscopy and physico-chemical analyses often depend on sample preparation techniques –
producing thin slices or breaking samples to look at surfaces – that are cumbersome or even
unreliable in the sense that they could, in the worst case, mechanically alter the structure to
be investigated. Our damage-free technique, however, can provide su"cient resolution in bulk
so long as a suitable state-of-the-art instrument, meeting the wavelength requirements to work
in multi-wave coupling regime for a structure of interest, can be accessed at one of the many
facilities worldwide. Resolution is limited by the – usually excellent – detector sensitivity and
background suppression necessary for reliable observation of weak higher-order di!raction
signals. The RCWA analysis carried out here on an o!-the-shelf PC can be applied to more
complicated structures by using more powerful computation infrastructure, nowadays available
at many institutions.

Finally, we note that the technique presented here is closely related to previous proposals to
employ multi-wave coupling (see, for instance, [2–5]). The fundamental di!erence between those
and our approach is, however, that apart from a careful choice of wavelengths, only standard
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di!raction procedures are applied here. No extra data needs to be taken. Our approach can be
seen as generalization of what is discussed in the recent Ref. [16].

6. Conclusion

In summary, we have demonstrated the determination of refractive index profiles by di!raction
from one-dimensional holographic phase gratings recorded in SiO2 nanoparticle-dispersed NPC
films. We have shown that full phase retrieval can be made without the need for extra data
collection schemes. In particular, by choosing the probe wavelength some orders of magnitude
shorter than the structural dimensions being investigated, Bragg regime di!raction can be turned
into di!raction in the regime of multi-wave coupling for any given sample combined with a
suitable type of probe radiation (X-rays, electrons, visible light, and neutrons, for instance).
Fitting of a multi-wave coupling model such as the well-known RCWA (valid in the multi-wave
coupling regime) to the resulting angular dependence data allows for the accurate determination
not only of amplitudes but also of phases of the Fourier components of generic profiles of
refractive index modulation. Such information is useful for investigation of grating-formation
mechanisms and optimization of nanocomposite gratings. When dealing with photonic structures
(like gratings) it is a common practice to avoid multi-wave coupling for ease of the analysis, in
particular when it comes to the evaluation of the underlying parameters. Here, we have shown
that getting rid of this habit and embracing the usually shunned multi-wave coupling regime can
pay o! at the prize of a relatively low increase in experimental and analytical complication.
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