A Russian carol: impact and dependence on global equity markets during the Ukraine invasion

Victoria Ferrández-Serrano and Pedro L. Angosto-Fernández Department of Financial and Economic Studies, Universidad Miguel Hernández de Elche, Elche, Spain Global stock returns during the Ukraine invasion

Received 28 June 2022 Revised 17 October 2022 22 November 2022 Accepted 24 November 2022

Abstract

Purpose – The authors present a study of the short-term impact of the Russian–Ukrainian war on global equity returns. The study aims to show that the conflict was priced into markets and whether the intensity of the impact depends on economic factors, such as dependence on gas, or/and political factors, such as belonging to the former Soviet power circle.

Design/methodology/approach – Using the event study and a sample of 77 capital markets, accounting for over 99% of global capitalisation, the authors apply a system of seemingly unrelated regressions to the daily returns of the indices, isolating the short-term effect on the markets and finally apply cross-sectional methods to help determine the size and variability of the impact.

Findings – The authors show that the impact is concentrated around day zero but is relevant in the days before and after. In addition, the authors show that being in the Soviet orbit and NATO simultaneously, as well as having high gas consumption and importing gas from Russia were key factors for investors.

Originality/value – This study is the first to try to discern whether the impact on stock markets caused by the war in Ukraine is due to purely economic factors, especially energy, or whether there is also a geopolitical component. Specifically, whether the countries closest to Russia are being more threatened by the fact that they are closer to Russia.

Keywords Event study, Stock markets, War, Abnormal returns, NATO, Gas Paper type Research paper

1. Introduction

February 24, 2022, Russia invades Ukraine. In 2014, two regions of Ukraine selfproclaimed their independence; Russia supported them and annexed Crimea. Tension over a possible major conflict has existed ever since, culminating in the USA hinting that an invasion of Ukraine was imminent in December 2021. Putin finally responded with weapons.

Of late, the news about the war has been relentless, not just on unfortunate human loss, but also on the economic consequences: sanctions, blockade and all kinds of restrictions, which, amongst other things, caused the Russian stock markets to close on February 26.

The first part of this paper looks at the impact of political and economic uncertainty on capital markets. In this regard, many papers have shown that there is a negative relationship between uncertainty and short-term returns (Angosto-Fernández and Ferrández-Serrano, 2020; He *et al.*, 2017 or Liu *et al.*, 2017), with similar results after the COVID-19 pandemic (Ashraf, 2020; Fernandez-Perez *et al.*, 2021 or Liu *et al.*, 2020), as investors decide to minimise financial exposure until the contingency is resolved (Brown *et al.*, 1988).

We further try to show that global reaction depends on quantifiable and objective factors, contributing to the literature that attempts to explain the cross-sectional dispersion that usually follows political risk events (Heyden and Heyden, 2021; Hill *et al.*, 2019; Oehler *et al.*, 2017 or Wagner *et al.*, 2018).

Journal of Economic Studies © Emerald Publishing Limited 0144-3585 DOI 10.1108/JES-06-2022-0364 Our article is eminently empirical, and our objective is twofold: to demonstrate that there is a significant negative reaction in global capital markets to the threat of war and to show how this is due to political and/or economic factors.

To this end, we rely on a sample of indices from 77 countries, in which we analyse the magnitude and persistence of abnormal returns preceding and following the invasion, using a seemingly unrelated regressions (SUR) model (Zellner, 1962; Binder, 1985). Subsequently, we use cross-sectional regressions, showing that a significant part of the short-term impact is due to economic and political dependence on Russia.

2. Data and methodology

2.1 Conceptual framework

The first objective is to show that the event significantly affected capital markets. Specifically, that the outbreak of war in Ukraine generated political and economic instability that was immediately transferred to global stock markets.

It is important to consider that several weeks before the invasion of Ukraine numerous media claimed that such an invasion was imminent. Thus, the significance of previous days and the zero day itself on returns will be an estimator of market efficiency.

Having analysed the magnitude of the event, we are particularly interested in demonstrating that the variability of the impact on markets depends on rational factors: either economic factors, such as Russia's energy dependence (especially in Europe), or geopolitical factors, such as the fear of possible Russian retaliation with other countries.

Figure 1 presents a diagram of the hypotheses and tests we carried out.

2.2 Data

We based this study on the analysis of stock market indices. Therefore, we took daily data from as many indices as possible on a global scale, and from the point data we calculated their logarithmic daily returns. Most of the data were collected thanks to *Investing.com*, but also thanks to some of the respective stock exchanges. In addition, we also collected data from a global index: the MSCI World, representing our market performance.

Figure 1. Development of

hypotheses and

possible tests

Our initial sample consisted of 81 indices (one per country), which after applying the requirement that the number of missing or zero returns should not exceed 25% (Corrado and Truong, 2008), remained at 77 countries, from all regions of the world and exceeding 99% of global market capitalisation. The sample drops to 76 after the close of the Russian market on 26 February. Table 1 shows the main statistics for each of them.

The second part of the paper is a cross-sectional study, for which we collected different independent variables.

The first block is composed of GAS, GasRus, GasDep, IMRus, NATO and NATOEE, and could be called event variables. GasRus shows the percentage of gas imports per country that come from Russia, GasDep shows the percentage of a country's total energy consumption that comes from natural gas, and the variable GAS is the interaction between the two. IMRus is the percentage of total imports per country coming from Russia. NATO and NATOEE are two *dummies*, the former indicating whether the country belongs to NATO and the latter if it belongs to and is a country in the circle of the former Soviet Union.

GasRus and IMRus have been obtained from the UN trade data portal, GasDep has been obtained from the International Energy Agency (IEA), and NATO from its own website.

The second block would be the control variables and is composed of the regional *dummies*, wealth level, measured as the natural logarithm of GDP per capita in PPP and size, measured as the natural logarithm of total population. These last two variables have been obtained from the World Bank website. The main statistics for all these variables can be found in Table 2.

2.3 Methodology

Based on the event study methodology, we estimate abnormal returns for each of the markets. Our event window spans from eight days before the invasion to eight days after, enough to observe the evolution of the impact and to see the upstream effects. Our estimation window comprises 250 pre-event sessions.

We use an extended market model to perform the estimation, which includes an autocorrelation term and a lagged market term, given the evidence on the influence of past returns on current ones (Campbell *et al.*, 1997; Gebka and Wohar, 2013 or Xue and Zhang, 2017), and all equations are jointly regressed using SUR (Zellner, 1962; Binder, 1985). In addition, we incorporate *dummies* with the selected days to estimate abnormal returns in one step (Karafiath, 1988). For each market:

$$r_{it} = \alpha_{i0} + \alpha_{i1} * r_{it-1} + \beta_{i1} * r_{WORLD\,t} + \beta_{i2} * r_{WORLD\,t-1} + \sum_{j=-8}^{N=8} \delta_{ij} * D_j + \varepsilon_{it}$$

 r_{it} is the logarithmic return of the index i on day t; α_{i0} is the constant of the model; r_{it-1} , r_{WORLDt} and $r_{WORLDt-1}$ are the autocorrelation of r_{it} , the logarithmic return of the world market index on day t and its lag, respectively. α_{i1} , β_{i1} and β_{i2} are their associated coefficients. δ_{ij} is the daily abnormal return for index i over event j, D_j is a binary variable that takes the value of one in any of the days j of the event, and ε_{it} is the disturbance term.

Joint *F*-tests of global significance are performed by restricting these coefficients (δ_{ij}), taking advantage of the main strength of this method, which is that it considers contemporaneous dependence on disturbances by taking into consideration one of the main problems of clustered events: cross-sectional correlation. Hereinafter, we refer to the average δ_{iT} coefficient as AAR (T), and the average of the cumulative abnormal returns from t_1 to t_2 as *CAAR* (t_1 ; t_2).

Following the analysis of abnormal returns and using them as dependent variables, we conducted cross-sectional regressions to test hypotheses related to the political and economic causes of the conflict. Thus:

Global stock returns during the Ukraine invasion

JES	Region	SA&C 0 F	MENA	E E	SACC	NA	SA&C	CE	SA&C A	EE	ы	EE	E	MENA	되	피	피여	고 고	A a	H H H H	ы. -	AS	AS	MENA	ttinued)
	Kurtosis	$0.732 \\ 1.766 \\ 7.67$	11.746	2.504	11.786	1.048	9.046 0.727	0.121	$1.448 \\ 4.466$	28.473	2.237	11.091	1.193	0.981	3.448	100.4	3.350	0.9/8	0.723	20.499	5.679	2.839	0.214	75.956	(00)
	Asymmetry	$\begin{array}{c} 0.089 \\ -0.747 \\ 1.795 \end{array}$	0.827 -0.405	-0.306	-0.003	-0.312	-0.429	-0.400	$0.269 \\ -0.119$	-3.147	-0.235	-1.576	-0.217	-0.349	-0.936	C1Z.1-	-0.833	-1.440 0.661	167.0-	-2.613	-0.700	-0.864	-0.040	0.311	
	Max	7.115 2.167 3.066	3.423 2.882	4.091	5.397 2.282	1.865	9.251 2 000	7.333	4.057 2.638	2.938	3.666	3.258	4.189	2.606	3.640	3.487	3.600	4.290	3.300	6.003	3.874	3.032	2.051	19.181	
	P0.95	3.248 1.174 1.742	0.797	1.255	1.804 1.344	1.102	2.384 1 760	T./ 05	$2.010 \\ 1.155$	0.889	1.958	1.313	1.950	1.473	1.380	Z0C.1	1.419	1.070	1.853	1.860	1.414	1.535	1.286	1.536	
	Q3	1.421 0.495	0.327 0.597	0.579	0.483	0.482	0.838	0.00	0.533 0.488	0.338	0.700	0.483	0.924	0.621	0.586	1990.0	0.008	0.040	0.009	0.760	0.581	0.664	0.527	0.320	
	Median	0.013 0.050	0.135	0.048	0.025	0.050	0.000	0,000	$0.000 \\ 0.149$	0.075	0.000	0.084	0.066	0.000	0.098	0.143	0.079	/0T/0	0.000	0.000	0.070	0.000	0.000	0.000	
	Q1	-1.066 -0.412	-0.057 -0.516	-0.515	-0.405	-0.360	-0.699	-0.111	-0.551 -0.114	-0.207	-0.665	-0.304	-0.728	0000-	/10.0-	-0.382	-0.422	-0.419	-0.935	$0^{c/.0-}$	-0.419	-0.518	-0.459	-0.349	
	P0.05	-2.913 -1.466 2.120	-0.544 -1.554	-1.591	-2.333 -1.200	-0.981	-2.379	040.7-	-1.630 -0.734	-0.976	-1.786	-1.203	-2.226	-1.522	-1.659	C18.1-	-1.931	2007	177.7-	-1.797	-1.472	-1.796	-1.255	-1.370	
	Min	-6.413 -3.031 7.400	-1.963 -4.232	-3.811	-4.969 -6.372	-2.339	-9.795	-0.000	$-2.950 \\ -3.110$	-6.705	-5.055	-6.003	-5.093	-3.697	-4.728	-0.043	-4.508	-0.032	-4.314	-11.672	-5.345	-4.836	-2.078	-18.884	
	SD	$1.913 \\ 0.787 \\ 1.21$	0.472 0.918	0.903	0.850	0.658	1.605	1.13J	$1.032 \\ 0.596$	0.728	1.185	0.938	1.294	0.970	C01.1	1.08U	1.084	701.1	1.29/	clc.1	0.915	1.027	0.755	1.896	
	Mean	0.170 0.003 0.008	0.128 0.033	-0.013	-0.032	0.050	-0.002	611.0-	$0.013 \\ 0.180$	0.016	0.016	0.068	0.048	-0.040	-0.037	/10.0	-0.028	100.0-	-0.141	-0.035	0.037	0.005	0.031	0.045	
	Special week	No No	Yes Yes	No	No	No	No		No No	No	No	No	No	Yes	No	No	No	No	No	No	No	No	No	Yes	
	Index	S&P Merval S&P ASX 200 ATY	BAX DFSFX	BEL20	IDOVESPA SOFIX	S&P TSX	S&P IPSA sysf	26.25	Component COLCAP BRVM	Composite CROBEX	CYMAIN	PX	OMX-C20	EGX 30	OMX-HZ5	CAC 40	DAX	AIG	CIH EB	K	ICEX Main	BSE Sensex	DX	Composite ISX 60	
Table 1. Daily index returns statistics by market		Argentina Australia	Bahrain Bangladesh	Belgium	Bulgaria	Canada	Chile China	CIIIId	Colombia Côte d'Ivore	Croatia	Cyprus	Czechia	Denmark	Egypt	Finland	France	Germany	Ureece	Hong Kong	Hungary	Iceland	India	Indonesia	Iraq	

Region	E MENA E	E SA&C	AS	MENA	CH A	MENA	AS	म <	A NA	AS	MENA	ы	0	A	E	MENA	AS	MENA	SA&C	AS	EE	ы Ц	MENA	EE FF	1	tinued)	Global stock returns during
Kurtosis	3.321 2.928	4.810 40.221	0.375	3.378	2.217	6.335	0.583	2.494	0.023	3.512	16.289	2.137	-0.015	4.165	0.922	7.951	3.187	3.167	4.577	2.105	16.409	0.281	4:050 - 000	7.206	LOCITI	(соп	the Ukraine invasion
Asymmetry	-0.899 -0.771	-1.188 0.843	-0.270	0.646	-0.105	-0.725	-0.186	0.559	-0.252	1.013	-1.827	-0.633	0.020	0.200	-0.290	-0.831	-0.543	0.025	-0.151	-0.068	-1.307	-0.309	0.215	-1.775 -7.305	000.1		
Max	3.565 2.316	3.437 7.888	3.070	2.713	2.395 3.812	2.167	2.128	3.393	2.819	6.525	2.042	3.453	1.892	2.891	2.802	1.867	2.533	1.840	5.406	4.982	8.099	2.710	2.732	2.223 23.204	107.07		
P0.95	1.952 1.347	0.974	2.032	1.083	1.466	1.017	1.073	1.359	0.89/ 1.583	3.081	0.807	1.623	1.104	1.040	1.622	0.784	1.270	0.955	2.652	1.794	2.179	1.589	1.18/	1.377 9 318	010.2		
Q3	0.645 0.544	0.639 0.317	0.598	0.365	0.481	0.406	0.394	0.301	0.627	0.780	0.302	0.591	0.383	0.208	0.674	0.301	0.410	0.312	0.746	0.703	0.755	0.691	0.385	0.534	5000		
Median	0.000 0.033	0.000	0.000	0.031	0.042	0.099	0.000	-0.012	0.048	0.000	0.029	0.121	-0.020	0.000	0.060	0.044	0.000	0.010	0.000	0.000	0.000	0.108	0.090	0.064	1110		
QI	-0.557 -0.381	-0.301	-0.747	-0.219	-0.512	-0.168	-0.420	-0.381	-0.073	-0.675	-0.173	-0.492	-0.460	-0.152	-0.442	-0.128	-0.477	-0.152	-0.817	-0.684	-0.675	-0.555	-0.194	-0.311	0700		
P0.05	-2.212 -1.237	-1.898 -0.865	-2.203	-0.936	-1.340 -1.451	-0.705	-1.056	-1.225	-1.699	-1.966	-0.684	-1.976	-1.073	-0.848	-1.519	-0.625	-1.363	-0.574	-2.157	-1.695	-2.032	-1.711	-0.837	-1.520 -3.246	0170		
Min	-5.692 -3.743	-6.431 -6.856	-4.067	-2.224	-3.689	-3.391	-2.098	-2.356	-2.138	-5.145	-4.195	-4.894	-1.918	-2.173	-3.405	-2.904	-4.375	-2.243	-8.061	-4.352	-11.502	-2.785	-2.813	-5.501	707-0F		
SD	$1.252 \\ 0.848 \\ 1.70 $	1.179 0.863	1.200	0.614	0.918	0.557	0.661	0.721	0.885	1.656	0.551	1.048	0.637	0.587	0.943	0.445	0.839	0.461	1.550	1.162	1.480	0.982	0.615	0.941 3 715	0110		
Mean	-0.036 0.068	-0.018 0.014	-0.084	0.083	0.003	0.116	-0.022	-0.021	0.046 0.046	0.178	0.048	0.001	-0.028	0.045	0.069	0.063	-0.027	0.082	0.027	0.016	0.002	0.051	0.097	0.021	£1110		
Special week	No Yes	No No	No	Yes Mo	No	Yes	No	No	No No	No	No	No	No	No	No	Yes	No	Yes	No	No	No	No	Yes	No	017		
Index	ISEQ Overall TA125	F I SE MIB JSE All Index	Nikkei 225	SE All Share	NASE	BK Main 50	KLCI	MSE	Semdex	MNE Top 20	MASI	AEX	NZSX 50	NSE All Share	OBX	MSM 30	Karachi All Share	Al-Quds	S&P Lima	PSEi	WIG20	PSI-20	QE General	BET			
	Ireland Israel	Italy Jamaica	Japan	Jordan	Kenva Kenva	Kuwait	Malaysia	Malta	Mexico	Mongolia	Morocco	Netherlands	New Zealand	Nigeria	Norway	Oman	Pakistan	Palestine	Peru	Philippines	Poland	Portugal	Qatar	Romania Russia	picchy		Table 1.

JES	Region	MENA EE AS	EE A E AS	E AS	A AS MENA MENA A	E MENA	NA AS	ial week iis, P0.05 ca, NA is
	Kurtosis	6.891 10.585 0.835	15.325 1.331 0.916 2.332 2.244	1.378 3.169 3.821	42.678 1.975 2.966 10.132 23.555	4.032 8.348	0.543 2.978 0.721	rtosis. Spec ss of kurtos rthern Afri
	Asymmetry	-1.039 1.105 -0.420	-2.442 -0.454 -0.225 -0.783 -0.204	-0.558 -0.648 -0.287	-0.334 -0.423 0.516 -1.987 -0.235	-0.860 -0.503	-0.303 -0.868 -0.236	metry and ku turtosis is exce le East and No
	Max	2.789 4.087 2.153	3.579 2.785 3.436 3.454 5.066	3.008 2.968 5.030	6.498 2.629 1.606 5.313 7.504	3.885 3.872	2.406 3.598 2.523	: for asyn ectively, l A is Midd
	P0.95	$\begin{array}{c} 1.193 \\ 0.996 \\ 1.278 \end{array}$	$\begin{array}{c} 1.437\\ 1.570\\ 1.537\\ 1.658\\ 2.391\end{array}$	1.683 1.146 1.548	$\begin{array}{c} 0.906\\ 1.173\\ 0.619\\ 2.440\\ 1.112\end{array}$	$1.319 \\ 1.288$	1.496 1.694 1.157	0, except tile, resp pe, MEN
	Q3	$\begin{array}{c} 0.596 \\ 0.247 \\ 0.463 \end{array}$	$\begin{array}{c} 0.473\\ 0.617\\ 0.551\\ 0.551\\ 0.663\\ 0.776\end{array}$	0.659 0.492 0.484	$\begin{array}{c} 0.246\\ 0.381\\ 0.174\\ 0.905\\ 0.397\end{array}$	$0.508 \\ 0.517$	$0.594 \\ 0.726 \\ 0.493$	led by 10 nird quar ern Euroj
	Median	$\begin{array}{c} 0.161 \\ 0.000 \\ 0.000 \end{array}$	$\begin{array}{c} 0.114\\ 0.000\\ 0.000\\ 0.031\\ 0.077\end{array}$	$\begin{array}{c} 0.062 \\ 0.080 \\ 0.000 \end{array}$	$\begin{array}{c} 0.000\\ 0.000\\ 0.000\\ 0.111\\ 0.013\end{array}$	0.063 0.039	0.088 0.105 0.040	s multipli irst and th E is Easte
	Q1	-0.219 -0.185 -0.531	-0.270 -0.442 -0.655 -0.612 -0.612	-0.600 -0.448 -0.433	-0.215 -0.291 -0.162 -0.539 -0.539	-0.411 -0.316	0.499 0.348 0.447	ll statistic d Q3 are f Europe, E
	P0.05	$-1.086 \\ -0.786 \\ -1.422$	-1.058 -1.701 -1.565 -1.813 -2.597	$\begin{array}{c} -2.106 \\ -1.337 \\ -1.841 \end{array}$	-0.836 -1.368 -0.429 -2.285 -1.264	-1.687 -1.031	-1.841 -1.981 -1.584	market. A ion, Q1 an Asia, E is 1
	Min	-4.634 -2.591 -3.241	-6.660 -3.561 -3.560 -5.084 -5.614	-4.082 -3.914 -4.192	-6.639 -2.730 -1.087 -10.307 -6.948	-3.818 -5.305	-2.996 -4.390 -2.694	eturns by lard deviat rica, AS is Caribbear
	SD	$\begin{array}{c} 0.755 \\ 0.581 \\ 0.859 \end{array}$	$\begin{array}{c} 0.989\\ 0.991\\ 0.960\\ 1.118\\ 1.441 \end{array}$	$\begin{array}{c} 1.087 \\ 0.807 \\ 1.040 \end{array}$	$\begin{array}{c} 0.752\\ 0.711\\ 0.711\\ 0.333\\ 1.772\\ 0.981 \end{array}$	$0.910 \\ 0.874$	0.918 1.076 0.798 0.061	rithmic r J is stand 7. A is Af a and the
	Mean	$\begin{array}{c} 0.136 \\ 0.056 \\ -0.047 \end{array}$	$\begin{array}{c} 0.053\\ 0.017\\ -0.071\\ -0.018\\ 0.076\end{array}$	-0.005 0.004 0.012	0.014 0.026 0.026 0.062 0.062	000.0 060.0	$\begin{array}{c} 0.020\\ 0.093\\ -0.006\\ 0.024\end{array}$	of the loga nursday. SI espectively th Americ
	Special week	Yes No No	NO N	No No	NN NO NN NN NN NN	No Yes	No No	ain statistics Sunday to Then the values, r SA&C is Sou
	Index	TASI Belex 15 FTSE	SBITOP SBITOP SWIX KOSPI IBEX 35 S&P Sri Larls Sri	Lanka 20 OMXS30 SMI Taiwan Weichted	WEBILED DSE ASI SETI TUNINDEX BIST 100 Uganda All	FTSE 100 ADX General	S&P 500 VN MSCI World	able shows the m ing days run from e 5 and 95% perce O is Oceania and
Table 1.		Saudi Arabia Serbia Singapore	Slovenia South Africa South Korea Spain Sri Lanka	Sweden Switzerland Taiwan	Tanzania Thailand Tunisia Uganda	UK United Arab	US US Vietnam World Cross-sectional	Note(s): This t means that tradi and P0.95 are th North America,

Max	25.322% 84.165% 100.000% 34.926% 11.498 21.055 entile values, i share of gas arithm of the e same sense. product of EE	Global stock returns during the Ukraine invasion
P0.95	22.461% 69.003% 99.900% 9.192% 11.203 19.425 and 95% perc dasDep is the hey have not th NATOEE (The J	
Q3	2.086% 7.942% 66.500% 2.258% 10.761 17.975 P0.95 are the 5 orts per country orts per country orts per country of NATO) and l	
Median	0.005% 0.075% 36.700% 1.098% 10.346 16.946 vely. P0.05 and r total gas imports per <i>my</i> variables ar <i>i</i> try is a member	
Q1	0.000% 0.000% 13.800% 0.526% 9.432 15.699 uartile, respecti as imports over to imports over to imports over to introtic of <i>dum</i> 0(One if the cour	
P0.05	0.000% 0.000% 0.840% 0.141% 8.474 14.129 rst and third q rst and third q re of Russian g are of Russian g n per country. S ISA&C), NATC	
Min	0.000% 0.000% 0.000% 7.738 12.768 12.768 12.768 12.768 12.768 12.768 12.768 12.768 12.768 12.768 12.768 12.768 12.768 12.7787 12.7787 12.7787 12.7787 12.77777777777777777777777777777777777	
SD	6.139% 23.203% 5.170% 0.883 1.634 leviation, and Q and GasDep, G ion per country llogarithm of th (A, AS, F, EE, M	
Mean	2.878% 12.272% 43.131% 2.563% 10.104 16.872 D is standard c uct of GasRus tergy consumply b is the natura al fixed factors	
u	72 75 73 77 77 77 77 8 the prod he total er PP and PC the region	
Variable/Statistic	GAS GasRus GasRus GasDep MRus GDP POP POP Note(s): <i>n</i> is samp cespectively. GAS is consumption over d GDP per capita in Pl These variables are and NATO)	Table 2. Statistics of the variables used in cross-sectional regressions

 $CAR_i(t_1; t_2) = \alpha_0 + \gamma_1 * GAS_i + \gamma_2 * OTANEE_i + u_i$

 $CAR_i(t_1; t_2)$ is the cumulative return of any index from t_1 to t_2 , we also use AR (0) as dependent variable. This represents the base equation, with γ_1 and γ_1 as coefficients to demonstrate the significance of the economic and political hypothesis, respectively. The remaining independent variables are added to this equation in the same way throughout the results section.

3. Results and discussion

Table 3 presents the results of our first hypothesis for all periods examined. As we might expect, the most striking feature is the magnitude and importance of AR (0). It reaches an average of -2.98%, which is 48 times the standard deviation of the mean of the period. The magnitude is noticeable in that that 68 out of 77 markets obtained negative values.

Also, the cumulative value slightly exceeds that of day zero in the widest window (although it is true that Russia is out of the sample in windows including values after day one). This could be interpreted as meaning that, despite previous and subsequent rallies and market corrections, on the day of the invasion virtually all relevant information was on the table.

Two other facts are striking: the small difference in the estimators that incorporate figures before day zero compared to those that do not (which is especially true for estimators that do not include Russia), and the positive significance of the days preceding and following the invasion, especially the latter, which could be interpreted as a rebound effect resulting from overreaction.

Despite the significance detected by the *F*-test, it is interesting to directly compare the number of negative cases with the number of significant cases, considering that the latter refers to their individual relevance within their time series, and not in the cross-section.

Here we observe a highly unusual level of negative cases in almost all windows, but especially in the shorter ones. However, this sign relevance is not matched by its individual

	п	Mean	SD	Max	Min	F-test	Negative	Significant
CAAR (-8, 0)	77	-2.419	6.945	4.601	-52.850	3.011***	59.740%	48.052%
CAAR(-5, 0)	77	-2.459	6.631	4.400	-51.216	6.915***	66.234%	44.156%
CAAR(-2, 0)	77	-2.680	5.758	2.080	-45.960	17.030***	81.818%	40.260%
CAAR(-1, 0)	77	-2.651	5.962	1.529	-48.511	26.722***	81.818%	40.260%
CAAR (-8, 8)	76	-3.039	7.421	11.563	-22.767	8.204***	64.474%	43.421%
CAAR (-5, 5)	76	-1.881	5.211	7.015	-18.452	6.825***	56.579%	35.526%
CAAR (-2, 2)	76	-1.692	3.154	6.363	-14.448	6.101***	71.053%	27.632%
CAAR (-1, 1)	77	-1.558	3.451	3.302	-26.826	4.739***	77.922%	24.675%
AAR (-1)	77	0.328	1.069	2.573	-4.026	2.512***	32.468%	23.377%
AAR (0)	77	-2.979	5.718	1.364	-47.987	34.782***	88.312%	67.532%
AAR (1)	77	1.093	2.858	21.685	-3.040	5.201***	29.870%	38.961%
CAAR (0, 1)	77	-1.886	3.269	2.513	-26.302	4.331***	84.416%	45.455%
CAAR (0, 2)	76	-1.969	2.788	4.578	-10.288	6.589***	80.263%	48.684%
CAAR (0, 5)	76	-2.450	4.377	4.895	-15.544	7.944***	71.053%	44.737%
CAAR (0, 8)	76	-3.670	6.305	9.712	-17.819	4.949***	73.684%	47.368%

Table 3.

Abnormal returns statistics and joint hypotheses of global significance **Note(s):** All statistics multiplied by 100, except *n* and *F*-test. *n* is the sample size, SD is the cross-sectional standard deviation, *F*-test is the critical value of the joint hypotheses of global significance (abnormal returns different from zero), negative is the percentage of abnormal returns lower than zero over the sample and significant is the percentage of abnormal returns individually significant at the standard levels over the sample. *** means significance at 1%

importance; the zero-day data are impressive, but they fall and stabilise at around 30–40% in all windows. The event seems globally relevant and negative on average but affects about one third of the markets in a persistent and profound way.

As a robustness test, we changed the estimation period since, after all that happened post-COVID-19, we could assume that the returns behaviour in recent years is not the usual one. Therefore, we chose the same number of trading days but prior to December 31, 2019. These results are not reported since the conclusions remain intact.

The panel A of Table 4 presents the initial cross-sectional specification. It consists of one variable to test the economic hypothesis and one to test the political hypothesis. However, the choice is not accidental; before choosing this model, we tested whether it worked better by splitting the variables GAS and NATOEE; none of the combinations improved the specification presented.

The relevance and consistency of both variables does not allow any hypothesis to be discarded, although it is true that NATOEE is not significant in CAR (0, 5).

In AR (0) a market with a level of Russian gas imports of 7.95% and a gas dependence of 66.5% (Q3) would get an additional -0.60% over a market in Q1. While a market belonging to NATO and the former Soviet orbit would get an additional -3.57%.

The panel B within Table 4 shows the results when we replace dependence on Russian gas with dependence on Russian products in general. Therefore, we check whether there really was a penalty for countries that depend on Russian gas.

The loss of significance of the variable is substantial, ceasing to be relevant in four out of eight periods (additional time windows can be found in Appendix). We can also observe that the size of the coefficients is smaller in absolute terms, in (-5, 5) it reaches its largest size where a market with an average level of imports would obtain -0.66%, while in the same period a market with average Russian gas dependence would obtain -1.13%. The adjusted R2s also support these findings.

n = 72	CAR (-5, 5)	CAR (-5, 0)	AR (0)	CAR (0, 5)
Panel A: Mai	n equation			
Const	-0.584 (0.617)	-1.082^{***} (0.400)	-1.792^{***} (0.258)	-1.294** (0.512)
GAS	-39.261*** (5.046)	-11.783^{**} (4.530)	-11.410*** (3.424)	-38.888*** (4.594)
NATO EE	-3.213^{**} (1.305)	-5.436^{***} (1.524)	-3.568^{***} (1.209)	-1.345(1.156)
R^2 Adj	0.295	0.316	0.334	0.318
Panel B: Cros	s-sectional results substitu	uting GAS for IMRus (n	= 73)	
Const	-0.743(0.651)	-1.036** (0.393)	-1.951*** (0.252)	-1.673^{***} (0.562)
IMRus	-25.659*** (5.243)	-11.433** (4.615)	-2.201 (5.459)	-16.342^{**} (8.082)
NATO EE	$-6.345^{***}(1.561)$	-6.347*** (1.519)	-4.538 * * * (1.193)	-4.524^{***} (1.489)
R^2 Adj	0.181	0.290	0.270	0.108
Panel C: Cros	s-sectional results substitu	uting NATOEE for EE (i	n = 72)	
Const	-0.596(0.621)	-1.089*** (0.402)	-1.819 * * * (0.261)	-1.327^{**} (0.513)
GAS	-39.497*** (5.427)	-11.381** (5.001)	-12.341*** (3.537)	-40.457^{***} (4.756)
EE	-2.635* (1.339)	-4.804*** (1.515)	-2.638* (1.333)	-0.468 (1.275)
R^2 Adj	0.287	0.268	0.271	0.312

Note(s): All coefficients multiplied by 100. Const is the constant of the model, GAS is a variable product of the share of Russian gas in total gas imports per country and its dependence on gas in energy consumption, IMRus is the share of imports from Russia in the total imports, EE is a *dummy* being one if the country is in Eastern Europe

NATOEE is a *dummy* product of being a country in Eastern Europe and belonging to NATO and R^2 Adj is the adjusted coefficient of determination. ***, ** and * indicate significantly different from zero at 1, 5 and 10%, respectively

Table 4. Cross-sectional results

Global stock returns during the Ukraine invasion Finally, the panel C represents another robustness test, but in this case for the NATOEE variable. Here we evaluate whether returns depend on a political factor, such as having belonged to the Soviet orbit and then joining NATO, rather than on a geographical factor.

The results for EE are consistent and similar to those of NATOEE, although they lose significance (except for the (-5, 0) period) and size, as do the coefficients of determination. Note that the key difference is that EE includes Serbia, one of Russia's few "friendly" countries.

In the panel A of Table 5, we add control variables to check whether the relationships found are the product of a spurious relationship. This specification is the first to outperform the original one in terms of explanatory power, having higher R2s in five of the eight lengths (see additional results in Appendix). However, it is not responsible for significance of GDP nor POP, which are significant only twice.

The role played by our two main variables is hardly altered. Using the same example as in the first specification, during AR (0) a Q3 GAS market would obtain -0.56% over a Q1 one, while being Eastern European and a NATO member would cost -3.62% compared to those countries that do not meet at least one of the restrictions.

Panel B shows the results for the best possible specification introducing regional fixed effects. Here we check whether there are any relevant effects at the geographical level that the previously chosen variables could not capture correctly. It is important to know that to arrive at this part of Table 5, we first tested all possible combinations with regional dummies (we also added control variables again), and this specification, with NA and E was the one that yielded the most consistent results and higher R2s; in fact, we reached a maximum of all tested specifications and regressions of 43.7% for the longest period. This is a truly staggering figure for a cross-sectional regression.

It is worth noting the significance of the NA variable, significant at 1% (except for (-5, 5), which is significant at 5%, and (-5, 0), which is non-significant) and positive in all windows (see Appendix) and reaching a maximum in the lengths that do not include the pre-war days,

n = 72	CAR (-5, 5)	CAR (-5, 0)	AR (0)	CAR (0, 5)
Panel A: Cros	ss-sectional results adding	control variables		
Const	-9.544 (7.981)	-6.792(6.098)	5.557 (5.172)	2.805 (7.787)
GAS	-38.542*** (5.489)	-11.801*** (4.348)	-10.636*** (3.784)	-37.377**** (5.117)
NATO EE	-2.830** (1.179)	-5.283*** (1.564)	-3.621*** (1.229)	-1.168 (1.153)
GDP	0.024 (0.678)	0.178 (0.406)	-0.484* (0.285)	-0.638(0.623)
POP	0.514** (0.239)	0.231 (0.199)	-0.146(0.181)	0.137 (0.225)
R^2 Adj	0.301	0.285	0.338	0.321
Panel B: Cros	s-sectional results adding	regional fixed effects		
Const	0.032 (0.606)	-0.985** (0.466)	-1.632^{***} (0.280)	-0.617(0.454)
GAS	-30.517 * * * (8.009)	-9.920* (5.656)	-7.625* (4.088)	-28.222^{***} (6.725)
NATOEE	-4.747^{***} (1.471)	-5.730*** (1.598)	-4.126^{***} (1.228)	-3.145** (1.251)
NA	1.665** (0.802)	0.813 (0.546)	2.154*** (0.459)	3.007*** (0.681)
Е	-2.978* (1.678)	-0.591(0.943)	-1.153* (0.597)	-3.540** (1.350)
R^2 Adj	0.338	0.283	0.390	0.437

Note(s): All coefficients multiplied by 100. Const is the constant of the model, GAS is a variable product of the share of Russian gas in total gas imports per country and its dependence on gas in energy consumption, NATOEE is a *dummy* product of being a country in Eastern Europe and belonging to NATO, GDP is the natural logarithm of the GDP per capita in PPP, POP is the natural logarithm of the total population of a country, NA is a *dummy* being one if the country is in North America, E is a dummy being one if the country is in Europe and R^2 Adj is the adjusted coefficient of determination. ***, ** and * indicate significantly different from zero at 1, 5 and 10%, respectively

JES

Table 5. Robustness checks an additional 3% in the CAR (0, 5). Belonging to North America is the only variable that could have a positive impact on returns at the outbreak of war of all the variables analysed, although we must be cautious with this finding, since NA only includes three markets (Canada, Mexico and the USA).

With respect to NATOEE we obtain similar results, even with somewhat larger coefficients in absolute terms, and it is now significant in all windows. The opposite is true for GAS, where we obtain somewhat smaller coefficients, and it is no longer significant in one of the periods. However, the effect of these variables on returns resists any modification.

The results of the cross-section resampling robustness check are not shown as they did not provide any relevant changes.

Figure 2 shows visually the results of our last specification. In it, we can see how each variable affects returns on average. For example, we could say that belonging to Europe caused 12% of the global average fall on day zero.

In general, we observe that our model explains much better the longer periods, obtaining the worst data (a higher weight of the constant) in CAR (0, 1) and CAR (-1, 1). This improvement is due to the exponential increase in the importance of GAS and E, while NATOEE and NA remain more stable. Dependence on Russian gas accounts for 43% of the global average fall in CAR (-5, 5), and together with E variable they reach an impressive 82% in that window.

The implications of our research are manifold. We show that investors view the outbreak of war in Ukraine negatively. Logically, the beginning of the conflict alters investors' expectations, generating uncertainty that negatively affects prices until it is resolved, especially if we take into account that one of the actors is Russia (a regional and global superpower) and another is Ukraine, which despite its minor geopolitical relevance is supported by NATO and the European Union.

What is most interesting, however, is that the uncertainty, which so affects assets in such an event, loses its immaterial character and is broken down into economic, political and geographic factors. Here we show that part of the falls suffered in markets around the world is due to dependence on Russian gas. They are also due to the fact of having belonged to the

Note(s): Each percentage represents the load of the factor in the estimation of the global average equation in each length

Global stock returns during the Ukraine invasion

Figure 2. Price contribution by factor and length Soviet orbit and then signing the Atlantic Treaty, which Russia might perceive as a betrayal, and which would make their markets more vulnerable to possible economic or military retaliation.

Moreover, it is also noticeable that belonging to Europe is not positive, probably because of its proximity to the conflict and cross-interests. Unlike belonging to North America, considering that its markets could benefit greatly (at least in the short term) by making up for the shortages of gas, as well as other goods needed during the conflict. Finally, the research also contributes to the field of finance in general, as we show that a very important part of the impact on capital markets following an extreme event can be explained by rational and quantifiable values and is not the result of emotions and illusory factors. In many cases explaining more than 50% of the average falls. Investors' reaction possibly anticipated the current cutbacks in GDP growth and inflation that are hitting the world, but especially Europe.

4. Conclusions

In this article we analyse the short-term effect of the Ukrainian invasion on stock markets.

First, we find a significant negative impact, which is long-lasting over time, even in our largest window of 17 days. However, it is also true that most of this impact is concentrated on day zero, so we understand that a large part of investors did not believe that the war was warranted.

Second, we found that the reaction was related to fundamental factors: political and economic. In particular, the markets of countries belonging to both NATO and the former Soviet orbit, as well as those most dependent on Russian gas, specially suffered.

References

- Angosto-Fernández, P.L. and Ferrández-Serrano, V. (2020), "Independence Day: political risk and cross-sectional determinants of firm exposure after the Catalan crisis", *International Journal of Finance and Economics*, Vol. 27 No. 4, pp. 4318-4335, doi: 10.1002/ijfe.2373.
- Ashraf, B.N. (2020), "Economic impact of government interventions during the COVID-19 pandemic: international evidence from financial markets", *Journal of Behavioral and Experimental Finance*, Vol. 27, 100371, doi: 10.1016/j.jbef.2020.100371.
- Binder, JJ. (1985), "On the use of the multivariate regression model in event studies", *Journal of Accounting Research*, Vol. XXIII No. 1, pp. 370-383, doi: 10.2307/2490925.
- Brown, K.C., Harlow, W.V. and Tinic, S. (1988), "Risk aversion, uncertain information, and market efficiency", *Journal of Financial Economics*, Vol. 22 No. 2, pp. 355-385, doi: 10.1016/0304-405X(88)90075-X.
- Campbell, J.Y., Lo, A.W. and MacKinlay, A.C. (1997), The Econometrics of Financial Markets, Princeton University Press, Princeton, NJ.
- Corrado, C.J. and Truong, C. (2008), "Conducting event studies with Asia-Pacific security market data", *Pacific-Basin Finance Journal*, Vol. 16, pp. 493-521, doi: 10.1016/J.PACFIN.2007.10.005.
- Fernandez-Perez, A., Gilbert, A., Indriawan, I. and Nguyen, N.H. (2021), "COVID-19 pandemic and stock market response: a culture effect", *Journal of Behavioral and Experimental Finance*, Vol. 29, 100454, doi: 10.1016/j.jbef.2020.100454.
- Gebka, B. and Wohar, M.E. (2013), "The determinants of quantile autocorrelations: evidence from the UK", *International Review of Financial Analysis*, Vol. 29 No. C, pp. 51-61, doi: 10.1016/j.irfa.2013. 03.010.
- He, Y., Nielsson, U. and Wang, Y. (2017), "Hurting without hitting: the economic cost of political tension", *Journal of International Financial Markets, Institutions and Money*, Vol. 51, pp. 106-124, doi: 10.1016/j.intfin.2017.08.011.

- Heyden, K.J. and Heyden, T. (2021), "Market reactions to the arrival and containment of COVID-19: an event study", *Finance Research Letters*, Vol. 38, 101745, doi: 10.1016/j.frl.2020.101745.
- Hill, P., Korczak, A. and Korczak, P. (2019), "Political uncertainty exposure of individual companies: the case of the Brexit referendum", *Journal of Banking and Finance*, Vol. 100, pp. 58-76, doi: 10.1016/j. jbankfin.2018.12.012.
- Karafiath, I. (1988), "Using dummy variables in the event methodology", The Financial Review, Vol. 23 No. 3, pp. 351-357, doi: 10.1111/j.1540-6288.1988.tb01273.x.
- Liu, L.X., Shu, H. and Wei, K.C.J. (2017), "The impacts of political uncertainty on asset prices: evidence from the Bo scandal in China", *Journal of Financial Economics*, Vol. 125, pp. 286-310, doi: 10.1016/j.jfineco.2017.05.011.
- Liu, M., Choo, W.C. and Lee, C.C. (2020), "The response of the stock market to the announcement of global pandemic", *Emerging Markets Finance and Trade*, Vol. 56 No. 15, pp. 3562-3577, doi: 10.1080/ 1540496X.2020.1850441.
- Oehler, A., Horn, M. and Wendt, S. (2017), "Brexit: short-term stock price effects and the impact of firm-level internationalization", *Finance Research Letters*, Vol. 22, pp. 175-181, doi: 10.1016/j.frl. 2016.12.024.
- Wagner, A.F., Zeckhauser, R.J. and Ziegler, A. (2018), "Company stock price reactions to the 2016 election shock: trump, taxes, and trade", *Journal of Financial Economics*, Vol. 130, pp. 428-451, doi: 10.1016/j.jfineco.2018.06.013.
- Xue, W., J. and Zhang, L., W. (2017), "Stock return autocorrelations and predictability in the Chinese stock market—evidence from threshold quantile autoregressive models", *Economic Modelling*, Vol. 60, pp. 391-401, doi: 10.1016/j.econmod.2016.09.024.
- Zellner, A. (1962), "An efficient method of estimating seemingly unrelated regressions and tests for aggregation bias", *Journal of the American Statistical Association*, Vol. 57 No. 298, pp. 348-368, doi: 10.2307/2281644.

Corresponding author

Pedro L. Angosto-Fernández can be contacted at: pangosto@umh.es

Global stock returns during the Ukraine invasion

Appendix Additional lengths for Tables 4 and 5

	n = 72	CAR (-2, 2)	CAR (-1, 1)	CAR (0, 1)	CAR (0, 2)
	Panel A: Main	n equation			
	Const	-0.890** (0.340)	-0.856^{***} (0.225)	-1.229^{***} (0.219)	-1.229^{***} (0.318)
	- GAS	-14.375** (5.480)	-5.417* (3.020)	-5.495*** (1.812)	-15.491*** (4.213)
	NATO EE	-4.236^{**} (1.860)	-2.269 ** (0.922)	-1.707 *** (0.589)	$-3.273^{**}(1.257)$
	R^2 Adj	0.299	0.183	0.151	0.305
	Panel B: Cros	s-sectional results substitu	ting GAS for IMRus (n	= 73)	
	Const	-0.914^{***} (0.342)	-1.011*** (0.231)	-1.354*** (0.222)	-1.431^{***} (0.332)
	IMRus	-10.776^{***} (2.871)	1.689 (2.101)	0.784 (2.134)	-4.342(5.205)
	NATO EE	-5.372*** (1.591)	-2.742*** (0.854)	-2.186^{***} (0.553)	-4.561 *** (1.062)
	R^2 Adj	0.266	0.159	0.120	0.216
	Panel C: Cros	s-sectional results substitu	ting NATOEE for EE (1	n = 72)	
	Const	$-0.884^{**}(0.341)$	-0.857*** (0.226)	-1.239^{***} (0.221)	-1.243^{***} (0.321)
	GAS	-13.484^{**} (5.937)	-5.148 (3.235)	-5.788*** (1.874)	-15.794*** (4.556)
	EE	$-3.993^{**}(1.741)$	-2,049 ** (0.877)	-1.328** (0.633)	$-2.658^{**}(1.305)$
	R^2 Adj	0.293	0.169	0.125	0.275
	Note(s): All share of Russ is the share of Furope	coefficients multiplied by ian gas in total gas import f imports from Russia in t	100. Const is the constant s per country and its dep he total imports, EE is a	t of the model, GAS is a pendence on gas in energy a <i>dummy</i> being one if the	variable product of the y consumption, IMRus e country is in Eastern
	NATOEE is a	<i>dummy</i> product of being	a country in Eastern Eu	rope and belonging to N	ATO and R^2 Adi is the
3-	adjusted coef	ficient of determination. *	**. ** and * indicate sig	mificantly different from	1 zero at 1.5 and 10%.

Table A1. Additional cross-

respectively

sectional results

JES

n = 72	CAR (-2, 2)	CAR (-1, 1)	CAR (0, 1)	CAR (0, 2)
Panel A: Cross	s-sectional results adding	control variables		
Const	-10.017** (4.43)	-0.377 (3.708)	5.753* (3.322)	0.509 (4.896)
GAS	-14.279*** (5.104)	-5.155* (3.068)	-4.686** (2.070)	-14.661*** (4.403)
NATO EE	-3.967** (1.719)	-2.232** (0.953)	-1.743*** (0.585)	-3.162** (1.208)
GDP	0.241 (0.351)	-0.104 (0.262)	-0.485** (0.224)	-0.335 (0.344)
POP	0.395** (0.151)	0.033 (0.114)	-0.124 (0.106)	0.097 (0.154)
R^2 Adj	0.314	0.162	0.177	0.303
Panel B: Cross	-sectional results adding	regional fixed effects		
Const	-0.965*** (0.316)	-0.890*** (0.248)	-1.256^{***} (0.239)	-1.127 * * * (0.320)
GAS	-13.457* (6.848)	-5.029 (3.671)	-4.194* (2.467)	-12.241** (5.131)
NATOEE	-4.258** (1.989)	-2.276** (0.983)	-1.817*** (0.643)	-3.717*** (1.317)
NA	2.060*** (0.702)	0.902*** (0.329)	1.857*** (0.398)	2.334*** (0.695)
Е	-0.135 (0.981)	-0.054 (0.582)	-0.291 (0.525)	-0.945 (0.822)
R^2 Adj	0.297	0.168	0.185	0.338

Note(s): All coefficients multiplied by 100. Const is the constant of the model, GAS is a variable product of the share of Russian gas in total gas imports per country and its dependence on gas in energy consumption, NATOEE is a *dummy* product of being a country in Eastern Europe and belonging to NATO, GDP is the natural logarithm of the GDP per capita in PPP, POP is the natural logarithm of the total population of a country, NA is a *dummy* being one if the country is in North America, E is a dummy being one if the country is in Europe and R^2 Adj is the adjusted coefficient of determination. ***, ** and * indicate significantly different from zero at 1, 5 and 10%, respectively

Table A2. Additional resultsrobustness checks