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Stria medullaris innervation 
follows the transcriptomic division 
of the habenula
Iris Juárez‑Leal, Estefanía Carretero‑Rodríguez, Francisca Almagro‑García, 
Salvador Martínez, Diego Echevarría & Eduardo Puelles  *

The habenula is a complex neuronal population integrated in a pivotal functional position into the 
vertebrate limbic system. Its main afference is the stria medullaris and its main efference the fasciculus 
retroflexus. This neuronal complex is composed by two main components, the medial and lateral 
habenula. Transcriptomic and single cell RNAseq studies have unveiled the morphological complexity 
of both components. The aim of our work was to analyze the relation between the origin of the axonal 
fibers and their final distribution in the habenula. We analyzed 754 tracing experiments from Mouse 
Brain Connectivity Atlas, Allen Brain Map databases, and selected 12 neuronal populations projecting 
into the habenular territory. Our analysis demonstrated that the projections into the medial habenula 
discriminate between the different subnuclei and are generally originated in the septal territory. The 
innervation of the lateral habenula displayed instead a less restricted distribution from preoptic, 
terminal hypothalamic and peduncular nuclei. Only the lateral oval subnucleus of the lateral habenula 
presented a specific innervation from the dorsal entopeduncular nucleus. Our results unveiled the 
necessity of novel sorts of behavioral experiments to dissect the different functions associated with 
the habenular complex and their correlation with the distinct neuronal populations that generate 
them.

The habenula (Hb), an important brain region linking the limbic forebrain to the midbrain and rostral hindbrain1, 
is divided into lateral habenula (LHb) and medial habenula (MHb) (Andres et al.5). It is located in the most dorsal 
part of the alar plate of prosomere 2 (Puelles and Rubenstein12) and receives projections from the forebrain, via 
the stria medullaris (sm), and projects to the basal mesencephalon and rostral rhombencephalon through the 
fasciculus retroflexus (fr; Sutherland2).

It was classically divided into medial and lateral portions of the LHb and rostral and caudal portions of the 
MHb (Herkenham and Nauta3,4; Fig. 1A). By cytoarchitectural analysis of the habenular complex in the rat brain, 
the LHb was later divided into 9 subnuclei and the MHb into 5 subnuclei (Andres et al.5; Fig. 1B). This subdivision 
was confirmed by neurotransmitter distribution6. According to topographic, cytochemical, morphological and 
immunocytochemical criteria, the habenular subdivision described in rat was also shown in the mouse brain7. 
A detailed transcriptomic characterization corroborated the subnuclei previously described in the mouse Hb 
(Wagner et al.8; Fig. 1C). Accordingly, the LHb was described as displaying a medial division that included central 
(LHbMC), marginal (LHbMMg), parvocellular (LHbMPc) and superior (LHbMS) subnuclei and a lateral division 
that included: lateral (LHbL), basal (LHbLB), magnocellular (LHbLMc), marginal (LHbLMg), oval (LHbLO) 
and parvocellular (LHbLPc) subnuclei. The MHb was subdivided into dorsal (MHbD), superior (MHbS), ventral 
medial (MHbVm), ventral central (MHbVc) and ventral lateral (MHbVl) parts.

In recent years, the development of single cell RNAseq techniques has allowed the study of the expression 
profile of dissociated habenular neurons9,10. These analyses resulted in the identification by a transcriptomical 
profile of 12 neuronal clusters that largely coincided with the habenular morphological and transcriptomic 
subdivisions. Some of them belonged to specific subnuclei and others to subdivisions inside a particular subnu-
cleus. This result unveiled the high complexity displayed by the neuronal subpopulations of the Hb complex9,10.

The sm is the main afferent tract to the Hb complex. This highly fasciculated tract contains fibers originated 
from different neuronal populations located in the secondary prosencephalon (hypothalamus and telencephalic 
vesicle; Herkenham and Nauta3; Puelles and Rubenstein11–13). The fasciculated sm courses through the most dor-
sal aspect of the prethalamic prosomere, known as the prethalamic eminence, carrying axons from its multiple 
origins, caudally into the thalamic prosomere to reach the Hb complex.
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It has been described that sm fibers originate in the hypothalamic, pallidal and septal territories. The MHb 
reportedly receives inputs from the triangular septal nucleus (TRS), the septofimbrial nucleus (SF), the septal 
area, the bed nucleus of the anterior commissure (BAC), and from hypothalamic entopeduncular neurons3,14–17. 
The LHb, as first described, is innervated by, the entopeduncular nucleus (erroneously identified as basal ganglia 
and nucleus accumbens), preoptic regions and septum3. This description was later confirmed and completed, 
concluding that the LHb receives inputs from the substantia innominata (SI; Golden et al.18; Knowland et al.19), 
dorsal entopeduncular nucleus (EPD)17,20–22 and lateral hypothalamic area (LHA)23–25. It must be highlighted 
that it was recently described that almost all the neuronal populations projecting to the Hb in the chick are colo-
nized by tangentially migrated glutamatergic neurons originated from the prethalamic eminence26,27. There are 
three heterochronic migratory streams, by which the prethalamic eminence populates hypothalamic, preoptic, 
pallidal and septal regions16,27. The specific pattern of innervation produced by the different afferent neuronal 
populations in the LHb or MHb subnuclei has been poorly studied. Only the specific innervation of the LHbLO 
by the EPD has been described previously17,28.

A selective source of innervation thus possibly underlies different functions associated to the Hb components. 
In general, the MHb has been associated with the mediation of analgesic, autonomic, reward, anxiety and fear 
responses29,30. More specifically, the dorsal aspect of the MHb has been related to exercise motivation, regula-
tion of the hedonic state, intrinsic reinforcement circuit and aversive behaviors31–33. The ventral aspect of the 
MHb has been involved in drug addiction, anxiety, and depression15,31. Therefore, the vertebrate MHb is related 
to emotional behavior30,32,33. In contrast, the LHb has been considered as an anti-reward system and appears 
associated to behavioral and motivational control. In fact, the LHb is involved in regulation of aversion, stress, 
sleep, mood and maternal behavior23,34,35. Results obtained in behavioral experiments point out to a LHb relation 
with learned helplessness response as well as reward, aversion or punishment behavior36–40 and depression41–45.

Our present aim is to analyze the possible differential innervation of the multiple habenular subnuclei consid-
ering the differential origin of their afferent fibers. The observed distribution was confronted with the subnuclear 
organization and location of limbic system functions associated to the habenula.

Results
First, we selected several gene expression patterns, inspired by published single cell RNAseq experiments9,10 
as examples of Hb subnuclear organization markers (Quina et al.46). The images, form rostral to caudal, were 
color-coded and overlapped by Adobe Software. In the MHb, Asic4 nicely labelled the MHbS and the MHbD 
subnuclei, while Spon1 was expressed in the MHbVl subnucleus and Myo16 in the remaining MHb ventral 
components (central and medial; Fig. 2A, A’, A’’). The Cubn and Wif1 expression allowed us to discern between 
the two dorsal MHb components. Being Cubn expressed in the MHbS and Wif1 in the MHbD (Fig. 2B, B’, B’’). 
Kcnmb4 was mainly expressed in the MHbVl and MHbVc allowing us to discern between the positive MHbVc 
and negative MHbVm (Fig. 2B, B’, B’’), both populations where positive for Myo16. Kcnmb4 was also expressed in 

Figure 1.   Habenular subdivision scheme. (A) Herkenham and Nauta in 1977 and 1979 described the 
subdivision of the habenular complex in two main components, mHb and lHb. (B) Andres and collaborators 
in 1999 divided the mHb by cytoarchitecture in 5 domains, corresponding the MHbS and the MHbCo to the 
dorsal mHb and the MHbI, MHbC and the MHbL to the ventral mHb. The lHb was subdivided as well in 9 
components that included LHbMS, LHbLPc, LHbLMg in the dorsal aspect, LHbMPc, LHbMC, LHbLMc ald 
LHbLO in the medial stratum and LHbMMg and MHbLB in the ventral part. (C) Wagner and collaborators 
in 2014 completed this organization by renaming the three ventral components of the mHB as MHbVm, 
MHbVv and MHbVl and by adding a final subdivision in the ventral aspect of the LHb that was the LHbLB 
domain. Abbreviations: LHb, lateral habenula; LHbLB: LHbL basal subnucleus; LHbLMc: LHbL magnocellular 
subnucleus; LHbLO: LHbL oval subnucleus; LHbLPc: LHbL parvocellular subnucleus; LHbMC: LHbM central 
subnucleus; LHbMPc: LHbM parvocellular subnucleus; LHbMS: LHbM superior subnucleus; MHb: medial 
habenula; MHbC: MHb central subnucleus; MHbD: MHb dorsal subnucleus; MHbI: Mhb inferior subnucleus; 
MHbL: MHb lateral subnucleus; MHbS: MHb superior subnucleus; MHbVc: MHb ventral central subnucleus; 
MHbVl: MHb ventral lateral subnucleus; MHbVm; MHb ventral medial subnucleus.
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the LHbMS (Fig. 2B, B’, B’’). The three ventral components of the MHb shared the expression of Tacr1 (Fig. 2C, C’, 
C’’). Finally, in the LHb, Chrm2 was expressed in the medial region, including the LHbLPc, LHbLMc an LHbLB 
(Fig. 2C, C’, C’’). While Pvalb was expressed in the LHbLO and in the LHbMPc and LHbMC (Fig. 2C, C’, C’’). 
Once we identified all the different subnuclei of the Hb at the three selected section levels, we proceeded with 
the analysis of the connectivity experiments.

Figure 2.   Transcriptomic subdivision of the habenula. (A, A’, A’’) Coronal sections, from rostral to caudal, of 
adult mouse brain displaying fluorescence overlap of Asic4, Spon1 and Myo16 gene expression in MHb. Asic4 is 
specific of MHbS and MHbD subnuclei and Spon1 is expressed in MHbVl. While Myo16 is expressed in MHBVc 
and MHbVm (B, B’, B’’) Coronal sections, from rostral to caudal, of adult mouse brain displaying fluorescence 
overlap of Cubn, Kcnmp4 and Wif1 genes expression. Cubn is expressed in the MHbS while Wif1 is expressed 
in the MHbD. Kcnmb4 is mainly expressed in the MHbVl and MHbVc as well as in the LHbMs. (C, C’ and 
C’’) Coronal sections, from rostral to caudal, of adult mouse brain displaying fluorescence overlap of Chrm2, 
Pvalb and Tacr1 genes. Chrm2 displayed a scattered pattern in the central LHb, including the LHbLPc, LHbLMc 
and LHbLB subnuclei. Pvalb was expressed in the LHbLO and LHbMPc and LHbMC. Tacr1 was expressed 
in the three ventral components of the ventral MHb. Abbreviations: LHb, lateral habenula; LHbLB: LHbL 
basal subnucleus; LHbLMc: LHbL magnocellular subnucleus; LHbLO: LHbL oval subnucleus; LHbLPc: LHbL 
parvocellular subnucleus; LHbMC: LHbM central subnucleus; LHbMPc: LHbM parvocellular subnucleus; 
LHbMS: LHbM superior subnucleus; MHb: medial habenula; MHbD: MHb dorsal subnucleus; MHbS: MHb 
superior subnucleus; MHbVc: MHb ventral central subnucleus; MHbVl: MHb ventral lateral subnucleus; 
MHbVm; MHb ventral medial subnucleus. Scale bar: 200 μm. Image credit: Allen Institute for Brain Science. 
[https://​mouse.​brain-​map.​org/].

https://mouse.brain-map.org/
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Neuronal populations targeting the medial habenula.  We confirmed four neuronal populations 
that target the MHb. They mainly belong to the septal region and are the triangular septal nucleus (TS), the 
medial septal nucleus (MS), the septofimbrial nucleus (SF) and the bed nucleus of the stria terminalis, medio-
central division (BST). The TS (Fig. 3A) projects to the MHbVm, LHbMS and the MHbD. The GFP + axonal 
terminals extend along the anteroposterior axis of the habenular complex (Fig. 3B–B´´). The proximity of the 
MS and the median preoptic nucleus (MnPO) did not allow us to find experiments restricted to MS (Fig. 3C). In 
a first analysis MS/MnPO terminals reached the MHbVc and partially the MHbVm and MHbD (Fig. 3D–D´´). 
The injections in the SF also affected the MnPO (Fig. 3E). The terminal labelling overlap between the MS and SF 
experiments allowed us to ascribe the MnPO projection area to the LHbMMg (Fig. 3D´ and F´). The SF nucleus 
would thus project to the MHbVl and the MHbD (Fig. 3F–F´´). The contralateral MHbS was partially labelled 
due to positive fibers crossing through the habenular commissure (Fig. 3F´´) SF also projected to the LHb, with 
terminals found in the LHBMPc and LHbMC (Fig. 3F). Finally, we identified an injection in the BST (Fig. 3G), 
medio central division, that specifically labelled the MHbS (Fig. 3H–H´´).

In summary, the MHb dorsal area is principally innervated by TS, SF and medio central BST while the three 
ventral MHb subnuclei have differential innervations. The medial part is innervated by the TS, the central part 
by the MS and the lateral part by the SF. Note that in the case of the MHbD we cannot exclude that some of the 
positive fibers are not terminals but passaging fibers to others nuclei due to the location of the sm.

Neuronal populations targeting the lateral habenula.  The LHb receives projections originated from 
different brain regions. We detected terminals originated from the preoptic area and others parts of the subpal-
lium, terminal and peduncular hypothalamus. The GFP + fibers displayed a diffuse distribution in the LHb when 
compared to the MHb pattern.

We found four populations from the preoptic area, terminal hypothalamus and subpallial area: the lateral 
preoptic area (LPO), the medial preoptic area (MPO) and the anterior hypothalamic nucleus (AHN) and the 
substantia innominate (SI). The LPO injection in the preoptic area (Fig. 4A) illustrated the main projection into 
the LHbLMc and LHbLB (Fig. 4B, B´´). We also found scattered axons in the LHbMMg, LHbMPc and LHbMC 
(Fig. 4B–B´´). Some fibers were also detected in the dorsal LHb including LHbMS, LHbLPc and LHbLMg. 
Therefore, LPO fibers innervate the medial-central and dorsal LHb areas. The MPO injections always included 
surrounding territories. We selected an injection that affected partially the MPO and also labelled the medial pre-
optic nucleus (MPN; Fig. 4C). The database contains specific MPN injections that did not display any habenular 
projections. Therefore, the projections observed only in the medial aspect of the LHb, concerning the LHbMMg 
and LHbMPc must be due largely to the MPO (Fig. 4D–D´´). In the terminal hypothalamus, the AHN injection 
(Fig. 4E), that also affected a perifornical nucleus (PeF; peduncular hypothalamic population) displayed projec-
tions into the medial area of the LHb, including the LHbMMg, LHbMPc and LHbMC subnuclei (Fig. 4F–F´´). 
Thus, the LHb medial territory is mainly innervated by LPO, MPO and AHN populations. The LPO also targets 
the LHb central territory (Fig. 4B–B´´). The subpallial area contains a neuronal population that targets the LHb, 
namely SI, intermediate stratum of the diagonal domain. The injection in the SI labelled the magnocellular preop-
tic nucleus (MA; Fig. 4G), and the fibers were distributed in a diffuse pattern throughout the LHb (Fig. 4H–H´´). 
In the latter´s medial part, the axons concentrated in the LHbLB and LHbLMc subnuclei (Fig. 4H´) and in its 
caudal part, the fibers also occupied the LHbMS and LHbLPc (Fig. 4H´´).

Four neuronal populations were identified in the peduncular hypothalamus: the paraventricular hypothalamic 
nucleus (PVH), the dorsomedial hypothalamic nucleus (DMH), the lateral hypothalamic area (LHA) and the 
dorsal entopeduncular nucleus (EPD). The PVH injection (Fig. 5A) demonstrated a strongly diffuse projection 
into all the LHb (Fig. 5B–B´´). Only in the LHb medial region, the GFP + fibers displayed a more specific pattern 
within the LHbMMg, LHbMC and LHbMPc (Fig. 5B´). The DMH injection (Fig. 5C) showed a specific terminal 
pattern that affected mainly the medial LHb territory, including likewise the LHbMMg, LHbMPc and LHbMC 
(Fig. 5D–D´´). The LHA was labelled at the level of the AHN and the resulting projection (Fig. 5E) displayed 
again a diffuse distribution in the LHb territory (Fig. 5F, F´). Caudally, the terminals concentrated in the LHb 
central territory particularly in LHbMMg, LHbLB and LHbLPc (Fig. 5F–F´´). Accordingly, the DMH targets the 
LHb medial area while the PVH and LHA distribute in the LHb central territory. The EPD injection (Fig. 5G) 
labelled fibers that specifically innervated the medial portion of the LHbLO (Fig. 5H´) with a minor projection 
into neighboring rostral and caudal LHb parts (Fig. 5H–H´´).

Habenular neuronal cell type distribution.  The Hb single cell RNAseq experiments9,10 demonstrated 
the presence of various neurotransmitters-related cell types in this neuronal complex. We checked these neuro-
transmitter-related patterns testing whether their distribution coincides with habenular subnuclear subdivisions.

Excitatory glutamatergic neurons were predominant in both MHb and LHb. vGluT1 signal was prevalent 
in all the MHb (Fig. 6A) while vGluT2 expression appeared in both habenular nuclei (Fig. 6B). Choline acetyl-
transferase expression labelled cholinergic neurons distributed in the ventral MHb subnuclei (MHbVm, MHbVc 
and MHbVl; Fig. 6C). Cholecystokinin signal was restricted to the dorsal MHb (MHbS and MHbD; Fig. 6D). 
The inhibitory marker Gad65 appeared in LHbMPc and partially also in LHbMC as dispersed positive cells 
(Fig. 6E), while Gad67 transcripts were localized specifically in the MHbS (Fig. 6F). Parvalbumin, specific marker 
of a subtype of inhibitory gabaergic neurons, was expressed in LHbMPc, LHbMc, LHbLMc and in LHbLO 
(Fig. 6G). Finally, Somatostatin was located in MHbVm, MHbVc and MHbVl as well as in the LHbMS and 
LHbLPc (Fig. 6H).

Therefore, specialized neurons with specific neurotransmitters are grouped in the different subnuclei 
described by transcriptomic methodology, and they also are innervated by different neuronal populations.
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Figure 3.   Septal projections to the MHb. (A) Injection site in the triangular nucleus of septum (TS; Experiment 
nº: 125,830,911, identified as Lateral septum rostral part, LSr). (B–B”) Adult mouse habenula coronal sections, 
from rostral to caudal, showing the fiber distribution originated from the TS nucleus. (C) Injection site in the 
medial septal nucleus (MS; Experiment nº: 147,162,736). (D–D”) Adult mouse brain coronal sections of the 
habenula rostral to caudal, displaying the fibers distribution coming from the MS nucleus. (E) Injection site in 
the septofimbrial nucleus (SF; Experiment nº: 554,021,622). (F–F”) Adult mouse brain coronal sections of the 
habenula rostral to caudal, showing the fibers distribution originated from the SF nucleus. (G) Injection site 
in the bed nuclei of the stria terminalis (BST; Experiment: nº 159,433,187. (H–H”) Adult mouse brain coronal 
sections of the habenula rostral to caudal, displaying the fibers distribution coming from the BST nucleus, being 
the only nucleus that is not from septal territory. Abbreviations: BST: bed nuclei of the stria terminalis; LSc: 
lateral septal nucleus, caudal part; LSr: lateral septal nucleus, rostral part; MS: medial septal nucleus; LHbLMc: 
LHbL magnocellular subnucleus; LHbMMg: LHbM marginal subnucleus; LHbMPc: LHbM parvocellular 
subnucleus; MHbD: MHb dorsal subnucleus; MHbS: MHb superior subnucleus; MHbVc: MHb ventral central 
subnucleus; MHbVl: MHb ventral lateral subnucleus; MHbVm; MHb ventral medial subnucleus; MnPO: 
median preoptic nucleus; SF: septofimbrial nucleus; TS: triangular nucleus of septum. Scale bar: 200 μm. Image 
credit: Allen Institute for Brain Science. [https://​conne​ctivi​ty.​brain-​map.​org/].

https://connectivity.brain-map.org/
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Figure 4.   Preoptic area, terminal hypothalamic and pallidal projections to the LHb. (A) Injection site in the 
lateral preoptic area (LPO; Experiment nº: 293,942,188). (B–B”) Adult mouse habenula coronal sections, from 
rostral to caudal, showing the fibers distribution originated from the LPO nucleus. (C) Injection site in the 
medial preoptic area (MPO; Experiment nº: 299,247,009). (D–D”) Adult mouse habenula coronal sections, 
from rostral to caudal, displaying the fibers distribution coming from the MPO nucleus. (E) Injection site in 
the anterior hypothalamic nucleus (AHN; Experiment nº: 292,035,484). (F–F”) Adult mouse habenula coronal 
sections, from rostral to caudal, showing the fibers distribution originated from the AHN nucleus. (G) Injection 
site in the substantia innominata (SI; Experiment nº: 302,739,608). (H–H”) Adult mouse habenula coronal 
sections, from rostral to caudal, showing the fiber distribution originated from the SI nucleus. Abbreviations: 
AHN: anterior hypothalamic nucleus; AVPV: anteroventral periventricular nucleus; AVP: Anteroventral 
preoptic nucleus; LHb, lateral habenula; LHbLB: LHbL basal subnucleus; LHbLMc: LHbL magnocellular 
subnucleus; LHbLMg: LHbL marginal subnucleus; LHbLO: LHbL oval subnucleus; LHbLPc: LHbL 
parvocellular subnucleus; LHbM: LHb medial territory; LHbMC: LHbM central subnucleus; LHbMMg: LHbM 
marginal subnucleus; LHbMPc: LHbM parvocellular subnucleus; LHbMS: LHbM superior subnucleus; LPO: 
lateral preoptic area; MA: magnocellular nucleus; MHb: medial habenula; MHbD: MHb dorsal subnucleus; 
MPO medial preoptic area; MPN: medial preoptic nucleus; NDB: diagonal band nucleus; PeF: perifornical 
nucleus; SBPV: subparaventricular zone; SI: substantia innominate; VLPO: ventrolateral preoptic nucleus. Scale 
bar: 200 μm. Image credit: Allen Institute for Brain Science. [https://​conne​ctivi​ty.​brain-​map.​org/].

https://connectivity.brain-map.org/
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Figure 5.   Peduncular hypothalamic projections to the LHb. (A) Injection site in the paraventricular 
hypothalamic nucleus (PVH; Experiment nº: 581,641,279). (B–B”) Adult mouse habenula coronal sections, 
from rostral to caudal, showing the fiber distribution originated from the PVH nucleus. (C) Injection site in 
the dorsomedial nucleus of the hypothalamus (DMH; Experiment nº: 178,283,239). (D–D”) Adult mouse 
habenula coronal sections, rostral to caudal, displaying the fibers distribution coming from the DMH nucleus. 
(E) Injection site in the lateral hypothalamic area (LHA; Experiment nº: 485,239,207). (F–F”) Adult mouse 
habenula coronal sections, rostral to caudal, showing the fibers distribution originated from the LHA nucleus. 
(G) Injection site in the dorsal entopeduncular nucleus (EDP; Experiment nº: 539,498,984, identified as 
internal segment of globus palidus; GPi). (H–H”) Adult mouse habenula coronal sections, rostral to caudal, 
displaying the fibers distribution coming from the EPD nucleus. Abbreviations: AHN: anterior hypothalamic 
nucleus; DMH: dorsomedial nucleus of the hypothalamus; EPD, dorsal entopeduncular nucleus; Fx: fornix; 
LHA: lateral hypothalamic area; LHb, lateral habenula; LHbLB: LHbL basal subnucleus; LHbLMc: LHbL 
magnocellular subnucleus; LHbLMg: LHbL marginal subnucleus; LHbLO: LHbL oval subnucleus; LHbLPc: 
LHbL parvocellular subnucleus; LHbM: LHb medial territory; LHbMC: LHbM central subnucleus; LHbMMg: 
LHbM marginal subnucleus; LHbMPc: LHbM parvocellular subnucleus; LHbMS: LHbM superior subnucleus; 
PH: posterior hypothalamic nucleus; PVH: paraventricular hypothalamic nucleus; RCH: retrochiasmatic area; 
RE: nucleus of reuniens. Scale bar: 200 μm. Image credit: Allen Institute for Brain Science. [https://​conne​ctivi​ty.​
brain-​map.​org/].

https://connectivity.brain-map.org/
https://connectivity.brain-map.org/
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Discussion
The single cell transcriptomic RNAseq studies of Hashikawa et al.10 and Wallace et al.9 have corroborated differ-
ent subnuclear components of the habenular complex. The MHb is divided into a dorsal part that includes the 
MHbD and MHbS subnuclei and a ventral part composed by the MHbVm, MHbVc and MHbVl units. On the 
other hand, the LHb is divided into a dorsal region that involves the LHbMS, LHbLPc and LHbLMg, a central 
part that includes medial LHbMPc and LHbMC components, a central LHbLMc component and a lateral LHbLO 
portion, and finally a ventral portion with LHbMMg and LHbLB units. These studies identified the MHb sub-
nuclei by the expression of a specific gene but the LHb components were recognized by a combination of several 
gene expression patterns. Each distinct MHb component displays internal homogeneity, while the LHb subnuclei 
show substantial internal heterogeneity. The diverse nature of their neurons indicates an intricated mode of 
development. It may be hypothesized that the LHb subnuclei are composed of different subsets of neurons that 
occupy diverse destinations by differential migration processes.

In relation to habenular afferences, the MHb is innervated by four neuronal populations (BST, SF, TS and MS). 
It is remarkable that almost all the neuronal populations projecting to the MHb belong to the septal territory. This 
innervation is strongly compartmentalized and the four different sets of axons target specific MHb subnuclei. 
The BST (medio central division) specifically innervates the MHbS, the SF targets the MHbVl and the MHbD, 
the TS reaches the MHbD and MHbVm and finally, the MS innervates the MHbVc. It has been described that 
the TS innervation of the MHb is accompanied by fibers from the bed nucleus of the anterior commissure (BAC; 
Yamaguchi et al.47; Watanabe et al.16), but no specific BAC injection was found in the Allen database. Therefore, 
the dorsal MHb is under the influence of BST, TS and SF, while the ventral MHb is controlled by SF, TS and 
MS. Functionally, the dorsal MHb region (MHbD and MHbS) is related to exercise motivation, hedonic state 
regulation and primary reinforcement learning30,32,33. Therefore, these functions may be regulated by BST, TS/
BAC and SF innervation. The fact that both subnuclei are innervated by different neuronal populations suggests 
that the functions related to them may be separated between both subnuclei. New and more selective behavioral 
experiments are needed to dissect the specific function of each dorsal MHb subnucleus. The ventral MHb region 
is related to anxiety, depression and drug addiction learning47. This MHb territory is subdivided in three sub-
nuclei from medial to lateral (MHbVm, Vc and Vl). These subnuclei are each innervated by selective neuronal 

Figure 6.   Habenular neuronal cell type distribution. Adult mouse habenula coronal sections displaying the 
location of specific cell type markers by in situ hybridization. Excitatory neurotransmitters (A–D). (A) vGlut1 
gene, displayed in ventral and dorsal MHb; (B) vGlut2 gene, displayed principally in the MHb and in a the 
LHb as a scattered pattern. (C) ChAT gene, displayed in the ventral MHb. (D) Cck gene, expressed in the dorsal 
MHb. Inhibitory neurotransmitters (E–H). (E) Gad65 gene, displayed in LHb with a specific expression in 
LHbMPc and LHbMc subnuclei. (D) Gad67 gene, displayed in a specific pattern in the MHbS subnulcei. (E) 
Pvalb gene, expressed in specific pattern in the LHbMPc, LHbMc and LHbLO subnulcei, also some scattered 
positive cells were detected in LHbLMc. (D) Sst gene, displayed in the ventral MHb part. Abbreviations: LHb, 
lateral habenula; LHbLMc: LHbL magnocellular subnucleus; LHbLO: LHbL oval subnucleus; LHbM: LHb 
medial territory; LHbMC: LHbM central subnucleus; LHbMPc: LHbM parvocellular subnucleus; LHbMS: 
LHbM superior subnucleus; MHb: medial habenula; MHbD: MHb dorsal subnucleus; MHbS: MHb superior 
subnucleus; MHbVc: MHb ventral central subnucleus; MHbVl: MHb ventral lateral subnucleus; MHbVm; MHb 
ventral medial subnucleus. Scale bar: 200 μm. Image credit: Allen Institute for Brain Science. [https://​mouse.​
brain-​map.​org/].
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populations. The ventromedial, central and lateral subnuclei are projected upon by the TS/BAC, MS and SF, 
respectively. This selective innervation also indicates, as in the dorsal MHb, that each ventral subnucleus may be 
involved in a different function or that collaboration among them is needed for the cited behavioral phenomena 
(Fig. 7A, B). As stated before, more specific behavioral experiments must be done to properly understand the 
role of each ventral MHb subnuclei.

The LHb afferences displayed a wide range of origins. The axonal distributions were less specific for the 
different LHb subnuclei and usually displayed a diffuse pattern. Nevertheless, we noted that preoptic and AH 
projections cover the medial aspect of the LHb, whereas diverse afferents from peduncular hypothalamic nuclei 
reach preferentially the central territory, and SI, EPD and reticular nucleus projections target the lateral compo-
nents of the LHb. This relatively diffuse pattern of innervation coincides with the complex internal subnuclear 
organization described by the transcriptomic RNAseq experiments8–10. In contrast with the MHb neuronal 
clusters, the LHb subnuclei required a combination of markers for characterization. We mentioned above the 
possibility of intermixed neuronal tangential migrations within the LHb components as a plausible explanation 
of their peculiar partly shared characteristics.

We identified the LPO and MPO in the preoptic area, the AH nucleus in the alar terminal hypothalamus and 
SI in the subpallial area as territories that project into the LHb. Their axons converged within the medial LHb 
territory. The LPO projection into the LHb reportedly includes gabaergic and glutamatergic neurons. The balance 
between these two neurotransmitters modulates the reward/aversion equilibrium in the learning process48. The 
MPO and AH projections into the LHb were previously described49,50 but without reference to specific subnuclei 
or habenular function (Fig. 6A, B). We located PVH, DMH and LHA fibers from the peduncular hypothalamus 
in the central area of the LHb. The LHA projection into the LHb was previously described25,51,52 and was related 
with feeding regulation and reward/aversion equilibrium in the learning process25. No specific information about 
the PVH and DMH projections into the LHb was found (Fig. 7A,B). Finally, we identified EPD and SI input 
to the LHb. These nuclei distribute their projections preferentially from medial to lateral areas of the LHb. It is 
remarkable that the LHbLO is distinguished among all the LHb nuclei due to a strongly specific innervation by 
the EPD. The LHbLO neurons, together with the LHbMS, display unique electrophysiological properties when 
compared to the rest of LHb neurons. They respond to Dopamine with an increment of their firing rate in contrast 
with the rest of LHb neurons53. Therefore, this unit constitutes not only a differentiated morphological structure 
of the LHb but a distinctive functional entity by itself17,53. The EPD excitatory projections into LHbLO are related 
with reward prediction errors modulated by neurotransmitters (Shabel et al.22; Wallace et al.17; Fig. 7A,B). The 
high quality of Allen Brain Atlas images allowed a high level of magnification. In most of the experiments ana-
lyzed we were able to detect varicosities in the positive fibers that could point to axonal boutons. Nevertheless, 
in order to confirm this fact, double labeling with synaptic proteins should be perform to confirm the presence 
of axonal boutons in the different territories.

It must be highlighted that it was recently described in chick that the prethalamic eminence, the dorsal 
subregion of prethalamus found just rostral to the habenular thalamic region, contributes excitatory neurons by 
tangential migration during embryonic development to almost all the populations described as projecting into the 
Hb complex26,27. A migratory origin in the prethalamic evidence was demonstrated for the mouse habenulopetal 
BAC nucleus16. The described migration into the peduncular hypothalamic EPD formation nicely explains that 
this mixed excitatory/inhibitory neuronal population has usually been wrongly assigned to the pallidal territory 

Figure 7.   Habenular functions scheme. (A) Representation of the habenular functions in relation with the 
different habenular territories. The limbic functions associated to the habenula are strongly linked with specific 
subnuclei. (B) Representation of the projecting neuronal populations in the different habenular subnuclei. 
Both schemes allowed us to link projecting populations with the different functions associated to the habenular 
subnuclei. Abbreviations: AHN: anterior hypothalamic nucleus; BST: bed nuclei of the stria terminalis; DMH: 
dorsomedial nucleus of the hypothalamus; EPD, dorsal entopeduncular nucleus; LHA: lateral hypothalamic 
area; LPO: lateral preoptic area; MPO medial preoptic area; MPO medial preoptic area; MS: medial septal 
nucleus; PVH: paraventricular hypothalamic nucleus; SF: septofimbrial nucleus; SI: substantia innominata; TS: 
triangular nucleus of septum.
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as part of the rodent GPi9,17,26,27. Therefore, the functions assigned to the pallidal GPi20,22 seem to correspond to 
the hypothalamic EPD.

It must be noted that our analysis presents certain limitations due to the fact that we have only used the data 
obtained from Allen Brain database. In some of the cases it would have been needed more specific and accurate 
injections or the use of specific viral tracers to label specific neuronal types. Nevertheless, we do not foresee that 
these specific experiments would strongly modify the conclusions of our work.

The molecular neuronal heterogeneity among the MHb and LHb subnuclei correlates with the distribution 
of different neurotransmitters. In general, the LHb is divided in two areas (medial and lateral) attending to its 
different psychobiological functions. The lateral area is related to avoidance behavior to aversive stimuli while 
the medial part has been involved in despair, helplessness, anhedonia responses and in sleep and circadian 
rhythms54. Our hodological results open the possibility to develop research lines that uncover the specific roles 
of the different subnuclei of both LHb and MHb.

Methods
Allen brain atlas.  The Allen Mouse Brain Atlas (© 2021 Allen Institute for Brain Science. Mouse Brain Con-
nectivity. Available at: https://​conne​ctivi​ty.​brain-​map.​org) offers Adult Mouse Connectivity Atlas as an image 
database of axonal projections labeled by viral (rAAV) tracers and visualized using serial two-photon tomogra-
phy from 2994 experiments.

This resource contains several tools to search through its experiments. The Source Search tool, allows the 
search of experiments by injection site (Filter source Structures) filtered by mouse line, tracer type and the 
presence of Intrinsic Signal Images. The Target Search tool allows a "virtual retrograde" search that localizes 
experiments based on projections located in the structures of interest. Finally, the Spatial Search allows the user 
to choose either a target signal or injection site based on a voxel selection that retrieves all the experiments with 
positive signal. The injection summary includes primary and secondary injection structures, the stereotaxic 
injection Bregma coordinates, the mouse strain, tracer type and the calculated injection summary (%) for the 
rAAV. The Image Viewer allows to browse the experiment in 2-D and panning through the 140 coronal slices 
of each experiment. The histogram shows the quantified signal in each structure either by projection volume 
(mm3) or by projection density, which means the fraction of the area occupied by signal compared to the whole 
structure. The mouse strains used included wild type and transgenic cre lines. Nevertheless, the rAAV used did 
not include specific sequences to interact with the cre endonuclease.

Adult mouse connectivity atlas.  At the identification stage, 754 experiments (Supplementary Table S1) 
were revised, using the injection site search, from Septal (30), Hypothalamic (258), Pallidal (67), Striatal (131), 
and Thalamic (268) areas, according with the habenula-afferent nuclei identified previously. These nuclei were 
screened by checking both the section images and the projection density window (3D viewer) of each experi-
ment, in order to corroborate the labelled terminations in the habenula. The coronal slices from each confirmed 
case were reexamined to check the labelled fiber pathway and the terminations in both MHb and LHb.

For the selection of experiments, the following criteria were used: virus volume injected < 0.2 mm3 and injec-
tion coordinates within anatomical boundaries of the core of interest. Experiments with a massive virus volume 
injected, or labelling of 4 or more structures to the area of interest, were excluded. In order to systematize the 
image selection through the Hb between the experiments, we selected three coronal section levels taken 3, 6 and 
9 sections rostrally to the habenular commissure. The entire process was carried out through peer analysis, both 
the selection and screening of the experiments was carried out by two researchers, according to the inclusion 
and exclusion criteria. For this reason, once all the experiments were collected, each researcher selected one or 
two experiments from each set that met the criteria. After the first screening, both researchers pooled the results 
to reach a consensus list of experiments that were suitable in relation to the selection criteria. The experiment 
number, the amount of virus injected and the Bregma coordinates of the injection were noted (Supplementary 
Table S1).

All the gene expression images were downloaded from Allen Institute for Brain Science. [https://​mouse.​
brain-​map.​org/], Mouse Brain (ISH Data). Adobe Photoshop (version 22.1.1) was used for the photo editing 
program and Adobe Illustrator (version 25.1) was used to generate the figures.

Data availability
The datasets generated and/or analyzed during the current study are available in The Allen Mouse Brain Atlas (© 
2021 Allen Institute for Brain Science. Mouse Brain Connectivity and Mouse Brain Map (Available at: https://​
conne​ctivi​ty.​brain-​map.​org and https://​mouse.​brain-​map.​org) repository. The accession number to each experi-
ment are contained in Supplementary Table S1.
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