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a b s t r a c t 

In this paper, different upgrading strategies are investigated in the context of the p-center problem. The 

possibility of upgrading a set of connections to different centers is considered as well as the possibility of 

upgrading entire centers, i.e., all connections made to them. Two variants for these perspectives are ana- 

lyzed: in the first, there is a limit on the number of connections or centers that can be upgraded; in the 

second, an existing budget is assumed for the same purpose. Different mixed-integer linear programming 

models are introduced for those problems as well as data-driven lower and upper bounds. In most cases, 

an optimal solution can be obtained within an acceptable computing time using an off-the-shelf solver. 

Nevertheless, this is not the case for one particular family of problems. This motivated the development 

of a math-heuristic seeking high-quality feasible solutions in that specific case. Extensive computational 

experiments are reported highlighting the relevance of upgrading connections or centers in the context 

of the p-center problem. 

© 2023 The Author(s). Published by Elsevier Ltd. 
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. Introduction 

Given a set of nodes in a metric space, the p-center problem 

onsists of determining at most p points in such a way that the 

aximum distance between the given nodes and the closest cen- 

ers is minimized. This is a minmax problem that has been widely 

tudied [5] . 

The p-center problem on a network gained much notoriety and 

omentum with the work by Hakimi [15] . This is a problem that 

onsists of selecting p points (centers) in a network so as to mini- 

ize the maximum weighted distance of the nodes of the network 

o the selected points. 

The classical p-center problem and its variants have many ap- 

lications among which we can point out those in telecommunica- 

ions, emergency facility location, and logistics. p-Center problems 

re particularly appropriate for situations when equity is impor- 

ant, as in a disaster management environment (see, e.g. Akgün 

t al. [1] , Dönmez et al. [11] , Stienen et al. [25] ) or in the con-

ext of strategic defense sites (see, e.g., Bell et al. [3] ). The inter-
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sted reader can refer to the overviews provided by Calik et al. 

5] , Fadda et al. [13] and Wang et al. [26] as well as to the ref-

rences therein. What is more, the same problem can be used in 

pplications where measures other than distances are of relevance 

hen connecting demand nodes and centers, such as travel times 

r transportation costs. For this reason, to make our manuscript 

ore general, hereafter we use the term “cost” or “allocation cost”

o refer to the measure of interest when connecting a demand 

ode and a center. 

Different variants of the p-center problem have been dealt with 

n the literature triggered by practical needs. In this work, we fo- 

us on the case in which all nodes have identical weights and a 

nite set of possibilities have been identified for locating the cen- 

ers. This allows casting the problem as a discrete minmax facility 

ocation problem, which in turn can be formulated as an integer 

rogramming problem. 

To the best of the authors’ knowledge, the literature on p-center 

roblems assumes that the costs for connecting the demand nodes 

nd the open centers are known beforehand and do not change. 

evertheless, in practice, one may ask whether a better solution 

an be ultimately achieved if we can somehow compress or re- 

uce beforehand the allocation costs, thus obtaining what could be 

oined as upgraded connections . Such compression can materialize 

n different ways. 
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One possibility regards individual connections. For instance, if 

 connection corresponds to a road, compression may be achieved 

y redesigning the road (e.g. straightening some curves if possi- 

le) or simply by selecting a different trajectory such as a highway 

nstead of a secondary road. In the context of logistics and trans- 

ortation, a more interesting possibility is to focus on travel time. 

n this case, changing the transportation mode (e.g. to a faster ve- 

icle) may be a way to decrease the travel time thus upgrading the 

onnection. The reader can refer to the recent paper by Baldomero- 

aranjo et al. [2] for other examples of upgrading connections be- 

ween demand nodes and centers in covering-type facility location 

roblems. 

Another possibility for compressing the allocation costs con- 

ists of working directly at a center level—center upgrade . When 

 center is upgraded, all the connections to it are considered so 

s to decrease the allocation cost for all of them. For instance, in 

he case of mobile centers, a technological upgrade or the use of 

ore skilled human resources may lead to a service being pro- 

ided faster to all demand nodes allocated to the center. 

The possibility of improving some parameter values “before op- 

imizing” to further improve the optimal solutions is not new in 

perations Research and Management Science. The best-known 

ase is possibly the compression of execution times in project 

anagement and machine scheduling problems (see, e.g. Lamber- 

on and Hocking [21] , Shioura et al. [24] , Yang [27] ). In that case,

y assigning more resources to some (critical) activities or jobs 

t may be possible to reduce their execution time thus reducing 

he makespan of a project or batch production. Similarly in flight 

cheduling problems the flight upgrade depends on some timing 

exibility indicators (see, e.g. Katsigiannis and Zografos [20] ). 

In the context of facility location problems, Blanco and Marín 

4] investigated cost compression in the so-called tree of hubs lo- 

ation problem [7,8] . The goal is to upgrade hubs (by upgrading all 

he connections to a hub) to improve the optimal distribution cost. 

wo enhanced mixed-integer linear programming (MILP) models 

re derived and empirically compared for the problem. The au- 

hors review the literature on connection upgrading in the context 

f network optimization problems, which include shortest path 

roblems, minimum cost spanning tree problems, and the 1-center 

roblem. The latter is investigated in a network by Sepasian [23] . 

n all cases, as in the case of the discrete p-center problem that 

e are investigating in the current paper, the goal is to choose the 

est-after-changes solution. 

In the context of network design and optimization, we also cite 

he work by Ibaraki et al. [16] who seek to reduce the eccentricity 

f a network by upgrading some nodes, i.e., reducing the lengths of 

he edges incident to such nodes. The authors consider separately 

ontinuous- and discrete-upgrading strategies. 

More recently, Baldomero-Naranjo et al. [2] investigated edge 

pgrading in the context of maximal covering facility location. Un- 

ike the p-center problem, in which the coverage radius is endoge- 

ous, a maximum coverage radius is initially imposed and the goal 

s to install a certain number of facilities so that the maximum 

ossible demand is covered. For the upgraded version of the prob- 

em, the authors propose and compare different mixed-integer pro- 

ramming models. 

Throughout this paper, we analyze two perspectives when it 

omes to upgrading: (i) there is a given number of components 

connections or centers) that can be upgraded; (ii) there is a bud- 

et that limits the upgrades that can be made. 

Upgrading in the context of the p-center problem when possi- 

le is actually a means to ensure a priori that better service quality 

ill be achieved. By seeking an upgraded solution we aim at finding 

onnections or centers whose cost reduction implies an improve- 

ent of the system. We should note that other possibilities have 

een considered in the literature such as positioning the commodi- 
2 
ies closer to where they are required (see, e.g., Corberán et al. 

9] for such a possibility in the context of a minsum facility lo- 

ation problem). 

Our work lies in a stream of research aiming at developing 

odels and techniques for extensions of the classical discrete p- 

enter problem triggered by practical needs (see Calik et al. [5] , Ca- 

ik and Tansel [6] ). We also refer to Kahr [17] , Karatas and Eriskin

18] , Pelegrín and Xu [22] , and Wang et al. [26] on the role of

chieving an optimal demand covering in the context of Logistics 

roblems. 

The main contributions of this work can be summarized as fol- 

ows: 

i. Four different extensions of the classical p-center problem are 

introduced, namely, 

upgrading individual connections and upgrading centers, both 

combined with a maximum number of upgrades or a limited 

budget for upgrading. 

ii. Different optimization models are derived for the above vari- 

ants. 

ii. Lower and upper bounds as well as optimal solution properties 

are discussed. 

iv. A math-heuristic approach is designed and implemented for 

budget-constrained center upgrading. 

v. Extensive computational experiments are conducted. Instances 

with a number of nodes ranging from 100 to 900 are solved 

and the results are thoroughly reported, which gives strong ev- 

idence that a significant decrease in the optimal covering cost 

can be achieved through upgrading. 

The remainder of this paper is organized as follows. In 

ection 2 we revisit several modeling aspects related to the dis- 

rete p-center problem to ensure a self-contained manuscript. In 

ection 3 we look into the possibility of upgrading a set of indi- 

idual connections. In Section 4 we focus on upgrading centers. In 

ection 5 we propose a math-heuristic approach for the hardest 

roblems to solve. In Section 6 we report on extensive computa- 

ional experiments performed to empirically assess the relevance 

f upgrading. Finally, we provide some discussion and conclusions 

n Section 7 . 

. The discrete p-center problem 

To make this manuscript self-contained, we review several well- 

nown aspects related to the discrete p-center problem. Let I be 

he set of potential center locations and J the set of demand nodes. 

onsider a cost, say c i j , for allocating node j ∈ J to center i ∈ I. As

iscussed in the previous section, this cost may correspond to dis- 

ance (e.g. road, euclidean), travel time, fuel consumption, vehicle 

tilization, et cetera . We assume that costs are non-negative and 

atisfy the triangle inequality. Consider the following two sets of 

inary decision variables: y i ( i ∈ I) equal to 1 if and only if node i is

elected for opening a center; x i j equal to 1 if and only if demand

ode j ∈ J is allocated to center i ∈ I. The objective of the problem

s to select p centers to minimize the maximum allocation cost of 

he demand nodes to the selected centers. 

Daskin [10] , proposed the following integer programming 

odel for the discrete p-center problem: 

minimize z (1) 

ubject to 

∑ 

i ∈ I 
c i j x i j ≤ z ∀ j ∈ J, (2) 

∑ 

i ∈ I 
x i j = 1 ∀ j ∈ J, (3) 

x i j ≤ y i ∀ i ∈ I, j ∈ J, (4) ∑ 

i ∈ I 
y i ≤ p, (5) 
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Fig. 1. A 1-center problem with a single connection upgrading. 
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y i ∈ { 0 , 1 } ∀ i ∈ I, (6) 

x i j ∈ { 0 , 1 } ∀ i ∈ I, j ∈ J. (7) 

n the above model, the objective function (1) together 

ith inequalities (2) define the minmax cost objective; con- 

traints (3) guarantee that every demand node is allocated to 

ne and only one center; inequalities (4) ensure that demand 

odes can only be allocated to open centers; the maximum 

umber of p centers to open is imposed by constraint (5) . Finally, 

onstraints (6) and (7) state the binary domain of the decision 

ariables. 

Other models have been proposed for the problem namely, that 

y Elloumi et al. [12] and the models (P3) and (P4) introduced by 

alik and Tansel [6] . In these three cases, all costs c i j , i ∈ I, j ∈ J,

re sorted non-decreasingly ignoring duplicates. Let γ1 , . . . , γκ be 

he resulting sorting with κ denoting the number of distinct values 

nd define K = { 1 , . . . , κ} . For i ∈ I, j ∈ J, and k ∈ K, let a i jk be a

inary parameter indicating whether the cost c i j is smaller than or 

qual to the k th cost, γk , i.e., 

 i jk = 

{
1 , if c i j ≤ γk ;
0 , otherwise . 

Consider now a binary variable z k equal to 1 if and only if 

he maximum allocation cost induced by the selected p centers is 

qual to γk . The discrete p-center problem can be formulated as 

ollows: 

minimize 
∑ 

k ∈ K 
γk z k (8) 

ubject to (5) , (6) , ∑ 

i ∈ I 
a i jk y i ≥ z k ∀ j ∈ J, k ∈ K, (9) 

∑ 

k ∈ K 
z k = 1 , (10) 

z k ∈ { 0 , 1 } ∀ k ∈ K. (11) 

n the above model, which corresponds to model (P3) introduced 

y Calik and Tansel [6] , the objective function (8) and constraints 

9) ensure that the variable z k corresponding to the maximum al- 

ocation cost is selected and the corresponding solution value is 

ccounted for. Constraint (10) ensures that exactly one maximum 

llocation cost is defined; the domain of the new z-variables is 

tated in constraints (11) . 

Given that exactly one of the variables z k is selected as 1—

onstraint (10) —and that all distinct cost values are considered in 

ncreasing order, it is possible to strengthen model (P3) by replac- 

ng (9) with 

 

i ∈ I 
a i jk y i ≥

k ∑ 

q =1 

z q ∀ j ∈ J, k ∈ K. (12) 

his enhancement leads to model (P4) proposed by Calik and 

ansel [6] . Those authors also show that the above z-variables re- 

ate straightforwardly with the u -variables introduced by Elloumi 

t al. [12] . In the latter work, the authors consider u k as a bi-

ary variable equal to 1 if and only if the radius covering all de- 

and nodes is greater than or equal to γk ( k ∈ K \ { 1 } ), i.e., the

 -variables are all equal to 1 until γk is reached, then they are 

ll equal to 0, unlike the z-variables where only one is equal to 

. Therefore, the relation between these variables is 

 k = 

κ∑ 

q = k 
z q k ∈ K \ { 1 } . (13) 

he above relation can be embedded in a set of constraints pre- 

ented by Elloumi et al. [12] . 
3 
The models just revisited namely, the model by Daskin [10] and 

odels (P3), (P4) introduced by Calik and Tansel [6] , are at the 

ore of the developments we propose for upgrading the p-center 

olution. 

. Upgrading connections 

In this section, we focus on the case in which up to a certain 

iven number of connections can be upgraded. Afterwards, we as- 

ume a cost for upgrading the connections together with the exis- 

ence of a budget for upgrading. 

.1. Upgrading a maximum number of connections 

Let us assume that up to t connections can be upgraded. We 

ssume that upgrading a connection between demand node j ∈ J

nd potential center i ∈ I means that the cost for allocating i to j

s reduced according to a certain factor. We define the new cost 

s (1 − f ) c i j where f ∈ [0 , F max ] , and F max < 1 . The parameter f is

alled the discount or compression factor. 

xample 1. Consider the example depicted in Fig. 1 where A, B, C, 

nd D are the demand nodes and F1 ad F2 are the potential cen- 

ers. Assume that the values next to the edges indicate the travel 

ime between the corresponding demand node and the potential 

enter. Suppose the objective is to select one single center. In this 

ase, the optimal solution calls for opening the center in F2 with a 

aximum travel time of 3. 

Assume now that it is possible to upgrade one connection by 

 factor of at most 0.5. In this case, connection (D,F1) can be up- 

raded and the resulting travel time becomes 2. This calls for a 

ew optimal solution: opening center F1 with a maximum travel 

ime of 2.5. 

This simple illustration shows the impact that an integrated 

pgrading-and-location-decision can have in the final solution. 

�

Given the possibility of upgrading some connections before se- 

ecting the p centers, we consider now a mathematical model that 

equires the introduction of one additional set of binary decision 

ariables. For i ∈ I and j ∈ J we define 

 i j = 

⎧ ⎨ 

⎩ 

1 , if connection between demand node j 
and location i is upgraded; 

0 , otherwise. 
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Table 1 

Size of the models in terms of (maximum number of) 

binary variables and constraints. 

Model # 0/1 variables # constraints 

(M1) | I| + 2 | I| | J| 2(1 + | J| + | I| | J| ) 
(M2), (M3) | I| + | J| + 2 | I| | J| 3 + 4 | I| | J| 2 
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The p-center problem with upgraded connections can be for- 

ulated mathematically as follows: 

M1) minimize z(1) 

subject to 

∑ 

i ∈ I 
(c i j x i j − f c i j m i j ) ≤ z ∀ j ∈ J, (14) 

m i j ≤ x i j ∀ i ∈ I, j ∈ J, (15) ∑ 

i ∈ I 

∑ 

j∈ J 
m i j ≤ t, (16) 

(3) − (7) , 

m i j ∈ { 0 , 1 } ∀ i ∈ I, j ∈ J. (17) 

n the above model, constraints (14) adapt the actual maximum 

adius to the upgrading; constraints (15) ensure that a connection 

an only be upgraded if it is used; conversely, it is not useful to 

pgrade it. Finally, constraints (17) define the domain of the new 

ecision variables. 

Likewise, we can adapt the model (P3) introduced by Calik and 

ansel [6] to the above upgrading strategy. Given that we do not 

now beforehand which cost will be used in a connection (the 

riginal one or its upgrade) we must consider both possibilities. 

ccordingly, we now sort all costs c i j and (1 − f ) c i j ( i ∈ I, j ∈ J)

on-decreasingly (ignoring duplicates). Let ˆ γ1 , . . . , ˆ γ ˆ κ be the result- 

ng sorting and 

ˆ K = { 1 , . . . , ̂  κ} , with ˆ κ denoting the total number of

different) values found. 

To model the problem we need to keep track of the upgraded 

onnections used since we are imposing a limit ( t) on their num- 

er. For this reason, we keep considering a binary parameter now 

enoted by ˆ a i jk associated with the original costs defined as fol- 

ows: 

ˆ 
 i jk = 

{
1 , if c i j ≤ ˆ γk ;
0 , otherwise . 

i ∈ I, j ∈ J, k ∈ 

ˆ K . 

dditionally, we introduce a similar parameter for the upgraded 

osts: 

ˆ 
 i jk = 

{
1 , if (1 − f ) c i j ≤ ˆ γk ;
0 , otherwise . 

i ∈ I, j ∈ J, k ∈ 

ˆ K . 

e use again variables z k but now considering k ∈ 

ˆ K . Finally, we 

ntroduce one additional set of decision variables for keeping track 

f the upgraded connections used. In particular, for j ∈ J, we de- 

ne 

 j = 

⎧ ⎨ 

⎩ 

1 , if demand node j makes use of an upgraded 

connection; 

0 , otherwise . 

e can now extend to our problem the model (P3) by Calik and 

ansel [6] , which leads to: 

M2) minimize 
∑ 

k ∈ ̂ K 

ˆ γk z k (18) 

subject to 

∑ 

i ∈ I 
ˆ a i jk y i + 

∑ 

i ∈ I 
ˆ b i jk y i ≥ z k ∀ j ∈ J, k ∈ 

ˆ K , (19) 

∑ 

i ∈ I 
ˆ a i jk y i + s j ≥ z k ∀ j ∈ J, k ∈ 

ˆ K , (20) 

∑ 

j∈ J 
s j ≤ t, (21) 

∑ 

k ∈ ̂ K 

z k = 1 , (22) 

(5) , (6) , 

z k ∈ { 0 , 1 } ∀ k ∈ 

ˆ K , (23) 

s j ∈ { 0 , 1 } ∀ j ∈ J. (24) 
4 
n the above model, the objective function (18) together with con- 

traints (19) and (22) account for the maximum cost used (to min- 

mize). Constraints (20) check the exact upgrades used: in case all 

emand points are allocated within a cost ˆ γk then z k is equal to 1 

nd we know that for every demand point, there is an open center 

ithin that cost. Hence, either ˆ a i jk = 1 or ˆ b i jk = 1 or both for some 

pen center i ( y i = 1 ). In this case, if we observe that for some

emand point j there is no ˆ a i jk = 1 but there is a ˆ b i jk = 1 then

e know that an upgraded connection with a cost smaller than or 

qual to ˆ γk is being used and thus by constraints (20) we must 

ave s j = 1 . Constraint (21) ensures that at most t connections 

re upgraded; constraint (22) reads as before. Finally, we have the 

aximum number of centers to open and the domain constraints. 

The model (P4) proposed by Calik and Tansel [6] can also be 

xtended to our case. The new model, that we call (M3), results 

rom (M2) by replacing (19) and (20) with 

 

i ∈ I 
ˆ a i jk y i + 

∑ 

i ∈ I 
ˆ b i jk y i ≥

k ∑ 

q =1 

z q ∀ j ∈ J, k ∈ 

ˆ K , (25) 

nd 

 

i ∈ I 
ˆ a i jk y i + s j ≥

k ∑ 

q =1 

z q ∀ j ∈ J, k ∈ 

ˆ K . (26) 

Models (M2) and (M3) have potentially many more constraints 

han (M1) because in case no ties exist, the number ˆ κ of differ- 

nt costs can be 2 | I| | J| . This can be assessed in Table 1 . The p-

enter problem with upgrading has a discrete p-center problem as 

 particular case and thus, not surprisingly, it is NP -hard (see Kariv 

nd Hakimi [19] , for the complexity of the p-center problem in the 

eneral case). 

When [6] introduced their models (P3) and (P4), they reduced 

he model size by restricting the index set ( ̂  K , in our case). This 

an be accomplished by using valid lower and upper bounds, say 

b and ub, on the optimal objective function value. The restricted 

et of indices is set as ˆ K 

′ ≡ { k ∈ 

ˆ K | lb ≤ ˆ γk ≤ ub} . 
A lower and upper bound that we can directly consider are 

b 1 = (1 − f ) LB2 and ub 1 = UB2 , 

espectively, where LB2 and UB2 are the best lower and upper 

ounds proposed in Calik and Tansel [6] for the original p-center 

roblem, i.e., without upgrading. We denote the resulting restricted 

et of indices by ˆ K 1 . Nevertheless, other alternatives can be pro- 

osed, which hopefully lead to improved bounds. 

Focusing on feasibility, let V ⊆ I be the set of p centers yielding 

b 1 (UB2 in Calik and Tansel [6] ). Each center induces a cluster 

f demand nodes—those allocated to that center—(ties arbitrarily 

roken). Let T i be the maximum distance to center i ∈ V from a 

emand node of its cluster. Naturally, ub 1 = max i ∈ V T i . 
Let i ∗ be a cluster (center) such that i ∗ ∈ arg max i ∈ V T i and let 

 be an edge in that cluster whose length is equal to T i ∗ . By up-

rading edge e , its cost becomes equal to (1 − f ) T i ∗ . After doing so,

e recompute T i ∗ and max i ∈ V T i . If max i ∈ V T i corresponds to the dis- 

ance of some upgraded edge, then ub 2 = max i ∈ V T i defines an im- 

roved upper bound. Otherwise, we can repeat this procedure (at 

ost until t connections are upgraded). In this case the improved 

pper bound, ub is given by the final value found for max T . 
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The above procedure is in fact a mechanism for obtaining a 

opefully improved feasible solution to the problem. 

In terms of the lower bound, we can also attempt to improve it 

s follows. We start by considering the upper bound UB1 proposed 

y Calik and Tansel [6] . As those authors point out, that value is

maller than or equal to two times the optimal value (see Gonzalez 

14] ). Hence, UB1 / 2 provides a lower bound on the optimal value 

without upgrading). Thus, (1 − f ) UB1 / 2 provides a lower bound 

n the optimal value with upgrading. The smallest cost ˆ γk ( k ∈ 

ˆ K ) 

hich is greater than or equal to (1 − f ) UB1 / 2 yields an improved

ower bound that we denote by lb 2 . 

Eventually, the restricted index set induced by lb 1 and ub 1 can 

e fine-tuned leading to ˆ K 2 ≡ { k ∈ 

ˆ K | lb 2 ≤ ˆ γk ≤ ub 2 } . 
.1.1. Pre-processing data and fixing variables 

Models (M2) and (M3) have more variables and potentially 

any more constraints than model (M1) ( Table 1 ). The practical 

uccess of models (M2) and (M3) stems from the use of upper 

nd lower bounds on the optimal value to eliminate many vari- 

bles and constraints. The purpose of this section is to extend the 

se of such bounds to fix variables in the model (M1) and also 

o strengthen the LP relaxation. It could happen that by eliminat- 

ng variables all the models turn out to be equally competitive in 

omputing time. 

The following remark makes it explicit how to set variables to 

ero in the model (M1) using bounds on the optimal value. 

emark 1. Let ub and lb be upper and lower bounds on the op- 

imal value of model (M1), respectively. Let (z ∗, x ∗, y ∗, m 

∗) be an

ptimal solution of model (M1). 

i. If (1 − f ) c i j > ub, then x ∗
i j 

= m 

∗
i j 

= 0 . 

ii. If c i j ≤ lb, then m 

∗
i j 

= 0 . 

In other words, the remark states that (i) if the upgrade of a 

onnection exceeds a known upper bound, then neither is this con- 

ection used nor upgraded in the optimal solution and (ii) if the 

ost of an edge is smaller than or equal to a known lower bound, 

hen, surely this connection is not upgraded in the optimal solu- 

ion. 

The properties of the optimal solutions in Remark 1 are trans- 

ated into equalities that can be added to the model (M1) without 

hanging its optimal value. 

 i j = m i j = 0 ∀ i ∈ I, j ∈ J : (1 − f ) c i j > ub (27) 

m i j = 0 ∀ i ∈ I, j ∈ J : c i j ≤ lb (28) 

Apart from fixing variables to zero, upper and lower bounds can 

e used for modifying the cost matrix. 

emark 2. Let ub and lb be upper and lower bounds on the op- 

imal value of model (M1), respectively. If c i j is replaced by a big 

onstant M for all i ∈ I, j ∈ J such that (1 − f ) c i j > ub and c i j is re-

laced by lb for all i ∈ I, j ∈ J such that c i j ≤ lb, then the optimal

alue of model (M1) remains the same. 

It is worth noting that setting variables to zero, as indicated 

n Remark 1 , does not modify the value of the linear relaxation 

f the model (M1), while modifying the values in the cost matrix 

 Remark 2 ) may change the value of the linear relaxation thus re-

ucing the integrality gap. 

A similar result to Remark 1 can be obtained by setting the 

ariables to zero in models (M2) and (M3) as follows: 

 j = 0 ∀ j ∈ J : (1 − f ) min 

i ∈ I 
c i j > ub, (29) 

 j = 0 ∀ j ∈ J : max 
i ∈ I 

c i j ≤ lb. (30) 

ote, however, that this requirement is much more demanding and 

ess likely to be met in a cost matrix. So, we do not consider its

nclusion of relevance. 
5 
.2. Budget-constrained connection upgrading 

We assume now that there is a limited budget for upgrading 

onnections. If the discount factor is the same for all connections 

s in the previous section, then a budget constraint is equivalent to 

 limit in the number of connections that can be upgraded. Since 

his case has already been analyzed, we assume that the discount 

actor is connection-dependent and the extent of cost compression 

f a connection is a decision to make. 

Let us assume the existence of a maximum amount, say B , that 

an be spent on upgrading. Let r i j be a decision variable represent- 

ng the discount factor to adopt in the connection between loca- 

ion i ∈ I and demand node j ∈ J. If the connection is not upgraded,

hen r i j = 0 . Otherwise, the new cost for allocating node j to cen- 

er i becomes (1 − r i j ) c i j where r i j ∈ [ R min , R max ] , with 0 < R min <

 max < 1 . 

We assume a unit compression/reduction cost similar for all 

onnections. This allows expressing the available budget, B , in 

erms of the maximum total cost units that can be reduced. The 

ew problem can be formulated mathematically as follows: 

M4) minimize z (1) 

subject to 

∑ 

i ∈ I 
(c i j x i j − c i j r i j ) ≤ z ∀ j ∈ J, (31) 

(3) –(7) 

r i j ≤ x i j ∀ i ∈ I, j ∈ J, (32) ∑ 

i ∈ I 

∑ 

j∈ J 
c i j r i j ≤ B, (33) 

r i j ∈ { 0 } ∪ [ R min , R max ] ∀ i ∈ I, j ∈ J. (34) 

Constraints (31) adapt the actual maximum radius to the up- 

rading; constraints (32) ensure that a connection can only be up- 

raded if it is used; constraint (33) is the budget constraint. Finally, 

onstraints (34) define the domain of the new decision variables. 

Model (M4) has | I| + | I| | J| binary variables and 2(1 + | J| + | I| | J| )
onstraints. 

roposition 1. Consider a connection between location i ∈ I and de- 

and node j ∈ J, and suppose that R min = 0 . Let z ∗ be the optimal

alue of the objective function. If an optimal solution calls for upgrad- 

ng connection between i and j, then z ∗ = (1 − ˜ r i j ) c i j , where ˜ r i j de-

otes the value of variable r i j in that optimal solution. 

roof. Let us consider an optimal solution to the problem de- 

oted by (z ∗, x ∗, y ∗, r ∗) such that ˜ r i j > 0 , i.e., the connection be-

ween location i and demand node j is upgraded. In this case, 

ue to (32) the connection must be used and so we must have 

1 − ˜ r i j ) c i j ≤ z ∗. If equality holds, then the proof is completed. Oth- 

rwise, we have (1 − ˜ r i j ) c i j < z ∗. In this case, we can reduce the

alue of variable r i j from the current one ˜ r i j to the value 0 < ̃

 ˜ r i j <

˜  i j such that (1 − ˜ ˜ r i j ) c i j = z ∗ without changing the solution value, 

hich completes the proof. �

When R min = 0 we can distinguish among three different cases 

ccording to the magnitude of R max . Let z ∗ be the optimal value 

f the problem and denote by c t the t-th maximum cost in the 

ptimal solution ( c 1 is the largest cost, c 2 is the second largest, 

tc.). If c 1 − c 1 R max > c 2 then we say that R max is small ; else, if

 1 − c 1 R max < c t for some t ≥ 2 we say that the parameter has a

edium value; else, we say that R max is large. 

We provide some insights using Fig. 2 . In this figure, we focus 

n the 6 connections and costs defining an optimal solution for 

ome instance. The horizontal bar depicted for each cost indicates 

he range for that cost, starting from a maximum compression and 

nding with the original cost value. The figure is divided into three 

ub-figures corresponding to R max = 0 . 1 , 0 . 5 , 0 . 9 , respectively. 
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Fig. 2. Optimal solution description when R min = 0 . 
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When R max is small, independently from the budget, only up- 

rades on the most-costly connection lead to an improvement in 

he optimal value. This is illustrated in the upper part of Fig. 2 .

n this case, we can observe that even if the budget allowed the 

aximal decrease in the cost c 1 (2.2 units) such decrease would 

till render c 1 , a value larger than the largest value of c 2 . 

If R max lies in the so-called range of medium values, then the 

ptimal solution involves upgrading connections starting from the 

ost expensive one (corresponding to c 1 ) and proceeding to up- 

rade other connections. However, the upgrade stops either when 

he budget is attained or when the optimal value reaches c 1 (1 −
 max ) . Fig. 2 , middle, illustrates this. In this case, for a budget

 = 11 , the optimal solution would be 15 (marked by the dark grey

ar) while for a budget B = 23 , it would be 11 (marked by the

ashed grey bar). In particular, for any budget larger than B = 23 

he optimal objective function value would remain equal to 11 

ince it cannot be less than the minimum value possible for the 

ighest cost ( c 1 (1 − R max ) = 11 ). 

Finally, if R max is large all connections can be upgraded. This is 

hat we illustrate in Fig. 2 bottom. 

Despite the fact that the above results and comments refer to 

he case R min = 0 , we note that our models are general in the

ense that we may have R min > 0 . In fact, we explore this possibil-

ty in the computational experiments whose results are reported 

n Section 6 . 
j

6 
emark 3. Adapting the models (P3) and (P4) by Calik and Tansel 

6] to budget-constrained upgrading poses a major challenge: the 

orting for the costs depends on the compression decisions made 

nd thus those models (P3) and (P4) can be adapted only if 

hat sorting is also modeled mathematically and embedded in the 

odel. For this reason, we do not consider adapting those mod- 

ls to our case since we do not foresee any particular advantage of 

oing so. 

An interesting aspect related to the budget-constrained model 

ust presented is related to the values of B that make sense to con- 

ider. In fact, the budget constraints become of relevance only if 

he existing budget is binding and allows changing the solution. 

Given that all r i j ∈ { 0 } ∪ [ R min , R max ] it is easy to conclude that

he minimum cost we need to pay for implementing an upgrade is 

qual to 

 

C 
min = R min × min 

i ∈ I, j∈ J 
{ c i j } . 

hus, a budget below this threshold prevents any upgrade from be- 

ng feasible. 

Suppose now that we ignore the budget constraint (33) in the 

odel (M4) and solve it. In this case, we obtain the minimum ob- 

ective function value, say ˜ z , independently from the budget. Con- 
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Table 2 

Illustration of the calculation of T in Algorithm 1 . 

k 1 2 3 4 5 6 

γk 1 5 7 9 10 14 

μk 0.8 4 5.6 7.2 8 11.2 ∑ 6 
t= k μt 36.8 36 32 26.4 19.2 11.2 
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ider now the following model: 

 ̃

 M4 ) minimize 
∑ 

i ∈ I 

∑ 

j∈ J 
c i j r i j (35) 

subject to 

∑ 

i ∈ I 
(c i j x i j − c i j r i j ) ≤ ˜ z ∀ j ∈ J, (36) 

(3) –(7) , (32) , (34) . 

The optimal value of ( ̃  M4 ) gives the minimum budget that 

eeds to be considered to make the budget constraint non-binding. 

hus, the optimal value of this model sets an upper threshold B C max 

hat is interesting to consider. 

In our experiments, we set B C 
min 

and B C max as just introduced. 

emark 4. It is not necessary to solve model (M4) ignoring con- 

traints (33) to obtain ˜ z , since ˜ z = (1 − R max ) z ∗, where z ∗ is the

ptimal value of the original problem without upgrading. Further- 

ore, if we were interested in obtaining the minimum budget that 

nsures an improvement of R % , we could solve the model ( ̃  M4 ) by

xing ˜ z = (1 − R %) z ∗. 

.2.1. Pre-processing data and fixing variables 

Variables z, x i j and y i have the same meaning in model (M4) as 

n model (M1). Thus, conditions in Remarks 1 and 2 can be easily 

dapted for model (M4). In particular, the statement in the follow- 

ng remark holds. 

emark 5. Let ub and lb be upper and lower bounds on the opti- 

al value of model (M4), respectively. Let (z ∗, x ∗, y ∗, r ∗) be an op-

imal solution of model (M4). 

i. If (1 − R max ) c i j > ub, then x ∗
i j 

= r ∗
i j 

= 0 . 

ii. If c i j ≤ lb, then r ∗
i j 

= 0 . 

The number of variables that can be set to zero using 

emark 5 depends very much on the value of R max . When R max is

ery large, the condition (1 − R max ) c i j > ub will be fulfilled much 

ewer times than when this value is smaller. 

Remark 2 remains the same by replacing (M1) by (M4) and f

y R max . 

In order to apply Remark 5 to model (M4), we propose in 

emark 6 two bounds for this model. 

emark 6. Any of the lower bounds proposed in Section 3.1 for 

odel (M1) with f = R max is a lower bound for the optimal value

f model (M4). An upper bound can be obtained by following 

lgorithm 1 . 

lgorithm 1 (M4) upper bound algorithm. 

1: Let γ1 , . . . , γκ be the sorted costs ; 

2: For all k ∈ { 1 , . . . , κ} , let μk = R max γk be the maximum amount

that can be spent on upgrading the connection with cost γk ; 

3: Let T + 1 be the minimum number of μ-values that can exceed 

the budget: 
∑ κ

k = κ−T +1 μk ≤ B and 

∑ κ
k = κ−T μk > B ; 

4: Let v ∗ be the optimal value of the problem of upgrading a max- 

imum number of T connections (optimal value of models (M1), 

(M2) or (M3) with t = T ) ; 

5: v ∗ is an upper bound of the budget-constrained upgrading 

model (M4). 

Algorithm 1 gives an upper bound on the optimal value of the 

odel (M4) because it obtains the objective value of a feasible so- 

ution. Value T is the minimum number of connections that a fea- 

ible solution to model (M4) would upgrade because it is obtained 

y assuming that all the budget is invested to upgrade the most 

xpensive connections and that the maximum amount of budget 

s spent for each of these expensive connections. In other words, 
7 
hatever the selected T connections are, budget B is enough to 

pgrade them. Any feasible solution of models (M1), (M2), or (M3) 

ith t = T is a feasible solution of model (M4), in particular the 

ptimal one. 

xample 2. Let suppose that R max = 0 . 8 , the budget is B = 28 and

lgorithm 1 is applied to the data in Table 2 . Then, T is 3 because

6 . 4 < 28 < 32 . It means that investing as much as possible in up-

rading the most expensive connections, 3 connections can be up- 

raded. 

. Upgrading centers 

We now turn our attention to the possibility of upgrading cen- 

ers, i.e., by considering upgrading all the costs corresponding to 

llocations decided for a center. We analyze separately the case 

n which there is a maximum number of centers that can be up- 

raded and the case in which we have an exogenous budget for 

he upgrading. 

.1. Upgrading a maximum number of centers 

Let t < p be the maximum number of centers that can be up- 

raded. As done in the previous section when upgrading connec- 

ions, we consider a fixed compression factor f . As before, when 

he connection between demand node j ∈ J and location/center i ∈ 

is upgraded, the corresponding allocation cost becomes (1 − f ) c i j 

here f ∈ [0 , F max ] , with F max < 1 . 

We consider again the m -variables already introduced in 

ection 3.1 . For each i ∈ I and j ∈ J, m i j is equal to one if and

nly if the connection between demand node j and center i is up- 

raded. Now, we also need to consider decision variables indicating 

hether a center is upgraded. For every i ∈ I we define 

 i = 

{
1 , if center i ∈ I is upgraded; 
0 , otherwise . 

The new problem can be formulated as follows: 

Q1) minimize z (1) 

subject to (3) − (7) , (14) , (15) , (17) , 

v i ≤ y i ∀ i ∈ I, (37) 

m i j ≤ v i ∀ i ∈ I, j ∈ J, (38) 

v i + x i j ≤ m i j + 1 ∀ i ∈ I, j ∈ J, (39) ∑ 

i ∈ I 
v i ≤ t, (40) 

v i ∈ { 0 , 1 } ∀ i ∈ I. (41) 

n addition to the constraints already introduced, we have now 

onstraints (37) ensuring that a center is upgraded only if it 

s open. Inequalities (38) impose that a connection can only 

e upgraded if it is allocated to an upgraded center. Con- 

traints (39) guarantee that if a center is upgraded and a de- 

and node is assigned to it then the connection between the de- 

and node and the center is upgraded. Without these constraints, 

he feasible region would contain solutions where a center is up- 

raded but not all of its used links are. Constraint (40) states the 

imit for the number of centers that can be upgraded. Finally, con- 

traints (41) define the domain of the new v -variables. 
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Table 3 

Size of the models in terms of (maximum number 

of) binary variables and constraints. 

Model # 0/1 variables # constraints 

(Q1) 2(| I| + | I| | J| ) 2 + 2 | J| + 3 | I| | J| 
(Q2), (Q3) 2(| I| + | I| | J| ) 3 + | I| + | I| | J| 2 
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emark 7. We note that constraints (37) are actually not neces- 

ary and thus they can be seen as an enhancement. In fact, if we 

gnore such constraints we allow obtaining a solution such that 

 i = 1 with y i = 0 which means that we would be upgrading a cen-

er that ends up not having any demand node connected to it. In 

his case, we can just neglect upgrading without neither losing fea- 

ibility or deteriorating the objective function value. 

emark 8. A close look into the above model reveals that con- 

traints (39) can be removed from the problem without deterio- 

ating the optimal value. In fact, in case some nodes are allocated 

o an ungraded center with the original cost and this does not de- 

eriorate the objective function value then it is irrelevant to im- 

ose that the upgrade is used: the optimal value for the upgraded 

roblem may be attained upgrading some center without explicitly 

pgrading all the costs for connecting demand nodes to it. 

emark 9. We note that in the model (Q1) it is possible to relax 

he integrality constraints for variables y i and v i , i.e., constraints 

6) and (41) , respectively. 

We can now extend the model (P3) from Calik and Tansel [6] to 

he new problem. This is straightforward giving the above contents 

s well as those presented in Section 3.1 . 

Q2) minimize 
∑ 

k ∈ ̂ K 

ˆ γk z k (18) 

subject to 

∑ 

i ∈ I 
ˆ a i jk y i + 

∑ 

i ∈ I 
ˆ b i jk v i ≥ z k ∀ j ∈ J, k ∈ 

ˆ K , (42) 

(5) , (6) , (22) , (23) , 

(37) , (40) , (41) . 

inally, we can adapt model (P4) in Calik and Tansel [6] to center 

pgrading. This can be easily achieved by replacing in the above 

odel (Q2), constraints (42) with 

 

i ∈ I 
ˆ a i jk y i + 

∑ 

i ∈ I 
ˆ b i jk v i ≥

k ∑ 

q =1 

z q ∀ j ∈ J, k ∈ 

ˆ K . (43) 

he enhanced model will be called (Q3). 

In Table 3 we can observe the dimension of the models in 

erms of binary variables and constraints (excluding unnecessary 

onstraints as already explained). Similar to what we propose in 

ection 3.1 , ˆ K can be restricted to ˆ K 1 ≡ { k ∈ 

ˆ K | lb 1 ≤ ˆ γk ≤ ub 1 } .
gain we can try to fine-tune that set further. In fact, the lower 

ound lb 2 introduced in the previous section is also valid for these 

odels. 

Regarding the upper bound, a similar reasoning can be followed 

s before leading to an improved upper bound ub 2 , which again, 

orresponds to the final value obtained for max i ∈ V T i . Eventually, 

he restricted index set induced by lb 1 and ub 1 can be further en- 

anced using lb 2 and ub 2 yielding a restricted set ˆ K 2 . 

.1.1. Pre-processing data and fixing variables 

Although variables x i j and m i j have the same meaning in the 

odel (M1) and model (Q1) and the intuition calls for using the 

esults from Section 3.1.1 , there is a fact deserving special at- 

ention. Let (z ∗, x ∗, y ∗, m 

∗, v ∗) be an optimal to model (Q1). Be-

ause of constraints (39) it can happen that c i j ≤ lb and m 

∗
i j 

= 1 ,
8 
.e., even if there is no optimal value upgrade, some connections 

ill be upgraded only for guaranteeing that the incident connec- 

ions to an upgraded center are all upgraded. On the other hand, 

emark 8 states that constraints (39) can be removed without de- 

eriorating the optimal value. Fixing to zero all the m i j with c i j ≤ lb

odifies the feasible region but keeps the optimal value. Then, 

emarks 1 and 2 apply to this section replacing (M1) by (Q1). The 

rst remark indicates how to fix variables to zero and the second 

ow to modify the cost matrix: the first enhancement potentially 

educes computing time and the second potentially reduces the LP 

ap. 

We do not consider the use of the presented bounds for tack- 

ing models (Q2) and (Q3) because, as reasoned for models (M2) 

nd (M3) and variables s j in Section 3.1.1 , the requirements to fix 

he variables v i to zero in models (Q2) and (Q3) are more demand- 

ng and unlikely to be met in a cost matrix. 

.2. Budget-constrained center upgrading 

We assume now an exogenous budget of B for upgrading cen- 

ers. Similarly, as for budget-constrained connection upgrading, 

e define a decision variable r i j representing the discount fac- 

or to adopt for connection between location i ∈ I and demand 

ode j ∈ J. If the connection between location i and demand node 

j is upgraded then the cost c i j becomes (1 − r i j ) c i j where r i j ∈
 R min , R max ] , with 0 < R min < R max < 1 . If center i is not upgraded,

hen r i j = 0 , ∀ j ∈ J. From the above notation, it is relevant to em-

hasize that only variable costs are assumed in this work for 

udget-constrained center upgrading. 

As done for connection upgrading, we assume a unit compres- 

ion/reduction cost similar for all connections, which allows cast- 

ng the available budget, B , as the maximum total cost units that 

an be reduced. Considering the notation already presented, the 

roblem can be formulated as follows: 

Q4) minimize z (1) 

subject to (3) − (7) , (31) − (34) , 

(37) , (41) , 

r i j ≤ v i ∀ i ∈ I, (44) 

v i + x i j ≤ 2 + r i j − R min ∀ i ∈ I, j ∈ J, (45) 

r i j − r it ≤ 2 − x i j − x it ∀ i ∈ I, j, t ∈ J. (46) 

The novelty in the above model stems from constraints (45) , 

hich impose that in case a center i is upgraded and demand node 

j is allocated to it, the corresponding discount factor r i j is strictly 

ositive (at least equal to R min ), which, in turn, ensures that the 

iscount factor is applied to all costs for satisfying demand nodes 

llocated to the center. Finally, if demand nodes j and t are both 

llocated to center i , constraints (46) guarantee that their discount 

actors are equal. 

Remark 3 is valid for this model. In terms of the model size, 

e observe a number of binary variables equal to 2 | I| + | I| | J| and

 number of constraints equal to 2(1 + | I| + | J| ) + 3 | I| | J| + | I| | J| 2 . 
As for the connection-upgrading problem, we may inquire 

bout the relevant values for B , i.e., the values that may be of in-

erest to consider since they interfere with the solution. 

As before, the budget should be enough to allow at least one 

pgrade. Define as before B min = min i ∈ I, j∈ J { c i j × R min } . Additionally, 

et 

i ∗, j ∗) ∈ arg 

{
R min × min 

i ∈ I, j∈ J 
{ c i j } 

}
. 

The minimum budget that we need for implementing an up- 

rade corresponds to having node j ∗ as the only demand node al- 

ocated to center i ∗. Thus, we have B F 
min 

= B C 
min 

. 
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Now, let us assume that we relax the budget constraint in the 

odel (Q4). In this case, we obtain an optimal objective function 

alue, say ˜ z , which is the best we can get no matter the budget 

e have. As in the case of budget-constrained connection upgrad- 

ng, ˜ z = (1 − R max ) z 
∗, where z ∗ is the optimal value of the problem

ithout upgrading. We can now do as for connection upgrading: 

e can solve an auxiliary model in which we look for the mini- 

um budget that ensures a coverage radius equal to ˜ z . This is the 

aximum value that makes sense to consider for the budget and 

hus we denote it by B F max . 

We have now the minimum and maximum thresholds, B F 
min 

and 

 

F 
max , that we consider for the budget in our analysis. 

.2.1. Pre-processing data and fixing variables 

Remark 10 indicates how to adapt Remark 5 to budget- 

onstrained center upgrading. 

emark 10. Let ub be an upper bound on the optimal value of 

odel (Q4) and let (z ∗, x ∗, y ∗, r ∗, v ∗) be an optimal solution. 

i. If (1 − R max ) c i j > ub, then x ∗
i j 

= r ∗
i j 

= 0 . 

As was the case with Remark 5 , the number of variables set to

ero strongly depends on the value of R max . 

Let lb be a lower bound on the optimal value of model (Q4), 

ote that it is not true that if c i j ≤ lb, then r ∗
i j 

= 0 . In model (Q4)

ome upgrades are forced because all the connections that are in- 

ident to an upgraded center are upgraded. Analogously, the cost 

atrix can only make use of an upper bound for its modification 

ecause some connections, despite having a cost smaller than or 

qual to lb, will be upgraded as they are incident to an upgraded 

enter and the budget required for that will depend on the cost of 

he connection. 

emark 11. Let ub be an upper bound on the optimal value of the 

odel (Q4). If c i j is replaced by a big constant M for all i ∈ I, j ∈ J

uch that (1 − R max ) c i j > ub, then the optimal value of model (Q4)

emains the same. 

Finally, feasible solutions of the classical p-center problem 

ithout upgrading help to obtain an upper bound of the budget- 

onstrained center-upgrading optimal value. Remark 12 proposes 

n auxiliary problem for obtaining an upper bound for the model 

Q4). 

emark 12. Let (x, y ) be a feasible solution to the p-center prob-

em. Let ˆ I = { i ∈ I : y i = 1 } be the subset of p selected centers. For

ll i ∈ ̂

 I , let θi = 

∑ 

j∈ J c i j x i j be the total cost of the allocated de-

and nodes and let βi = max j∈ J c i j x i j be the maximum cost of an 

llocated demand node. The optimal value of the following model 

hose variables are w and g i is an upper bound of the budget- 

onstrained center-upgrading optimal value. For all i ∈ ̂

 I , variable 

 i represents the discount factor applied to all demand nodes allo- 

ated to center i. 

U) minimize w 

subject to 

∑ 

i ∈ ̂ I 
θi g i = B 

w ≥ βi (1 − g i ) ∀ i ∈ 

ˆ I 

g i ∈ { 0 } ∪ [ R min , R max ] ∀ i ∈ 

ˆ I 

. Math-heuristic procedure for budget-constrained upgrading 

As shown by the Empirical analysis presented in the next sec- 

ion, model (Q4) can be solved to proven optimality only in a very 

imited number of instances. This motivates the development of a 
9 
euristic for tackling that model as we propose in this section. In 

articular, we propose a genetic algorithm for budget-constrained 

enter upgrading. 

The structure of the procedure we propose is formalized in 

lgorithm 2 : once an N-dimensional initial population, P 0 , has 

lgorithm 2 Genetic algorithm for budget-constrained center up- 

rading. 

1: i ← 0 ; 

2: P i ← create_initial_population ( N); 

3: repeat 

4: P i ← crossover ( P i ); 

5: P i ← mutation ( P i ); 

6: P i ← local_search ( P i ); 

7: if random < probability then 

8: P i ← intensive_local_search ( P i ); 

9: end if 

0: P i +1 ← P i ; 

11: i ← i + 1 ; 

2: until stopping criterion occurs 

een generated, crossover, mutation, and local search operators are 

teratively carried out until the stopping condition occurs. We have 

ncoded the solutions in such a way that we only save the value of 

he p open centers. Hence, each individual of the initial population 

s a combination of p centers from the | I| candidates. 

Initially, we randomly generate N − 1 combinations of p centers 

rom the | I| potential ones. Then, we also consider the optimal so- 

ution of the associated non-upgrading problem. This way, we ob- 

ain the initial N individuals. 

Note that given an individual, i.e., a set of p open centers, the 

ssignment of demand nodes to the open centers in the upgraded 

olution does depend on the budget. The condition in model (Q4) 

mposing that all the incident connections to an upgraded center 

ave the same discount factor means that for some nodes, the best 

ssignment may not correspond to the closest center among those 

hat are open. For this reason, we decided to approximate the fit- 

ess of an individual (objective function value) by using the linear 

ptimization model (U) presented in Remark 12 since it provides a 

ood upper bound on that value. Nevertheless, we try to improve 

his upper bound further by reallocating some demand nodes in 

ach individual as detailed in Algorithm 3 . 

lgorithm 3 Improving the fitness of an individual when tackling 

odel (Q4). 

1: Let (w, θ, g) be the solution to model (U) in Remark 12; 

2: For each i ∈ ̂

 I , let j(i ) be the demand node such that c i j(i ) = βi ;

3: for all i, s ∈ ̂

 I : βs > βi do 

4: if (1 − g i ) βi > (1 − g s ) c s j(i ) then 

5: Reallocate demand node j(i ) to center s ; 

6: Update βi , θi and θs and solve model (U); 

7: end if 

8: end for 

The “spirit” of Algorithm 3 is to reallocate the demand points 

o centers that, even though they are not the closest, they are 

he least costly when a discount factor is applied. If the condition 

1 − g i ) βi > (1 − g s ) c s j(i ) holds, then we have that although the de-

and node j(i ) is closer to center i than to center s in the cost

atrix (i.e., βi = c i j(i ) < c s j(i ) ), when both centers are upgraded, it 

s cheaper to allocate j(i ) to center s than to allocate it to cen-

er i. We repeat this check until there is no exchange that reduces 

he cost. Finally, the fitness value of each individual in the genetic 

lgorithm population is the value of its largest β value. 
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Fig. 3. Non-optimal allocation of demand nodes under center upgrading. 
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xample 3. Consider the example depicted in Fig. 3 where i and s 

re two open centers with compression factors g i = 0 . 25 and g s =
 . 5 respectively. The circles represent demand nodes allocated to 

he centers. Next to each edge, we present the original costs and 

heir upgrades (obtained by multiplying the former by (1 − g i ) or 

1 − g s ) , as appropriate). The black node represents the demand 

ode served by i that is the furthest (more costly) served by this 

enter, i.e., it represents j(i ) . To the right of this node we present

ts original assignment cost to s and the corresponding upgrading. 

he gray node is the furthest from center s , i.e., j(s ) . Hence, in

his example we have βi = 4 and βs = 6 . Since the distance (cost)

rom the black node to i is smaller than its distance from s (4 and

, respectively), that node is initially allocated to i . However, the 

pgraded distance is smaller from s than from i . Algorithm 3 gives 

he details for this improved allocation. 

As a consequence of the way the fitness of an individual is ob- 

ained, Algorithm 2 turns out to be a math-heuristic, in which the 

alculation of the fitness function is not trivial. The adequacy of the 

tness computation to a specific instance being considered confers 

uality to the algorithm. 

The crossover operator randomly selects two individuals of the 

opulation (parents), merges them, and assigns to each center in 

he union a probability proportional to the number of times it ap- 

ears in the parents (each center can appear once or twice). Fi- 

ally, the crossover operator generates two offspring, selecting for 

ach of them p centers of the union with the assigned probabili- 

ies. Each offspring replaces the worst individual of the population 

in terms of fitness value) if the fitness of the offspring is better 

smaller) than that of the worst, as long as the offspring is not 

lready in the population. We do not allow for duplicates of indi- 

iduals in the population to avoid premature convergence of the 

lgorithm since, after some preliminary experiments, we verified 

hat the genetic algorithm converged very quickly. 

The mutation operator starts by randomly selecting an indi- 

idual from the population and a center in the selected individual. 

hat center is replaced with a different one not in the individual. 

he mutated individual replaces the worst individual in the popu- 

ation except if the mutated individual is already in the population. 

utating individuals in the population further improves the level 

f diversification. 

The local search operator seeks to confer intensification to the 

enetic algorithm. It randomly selects an individual of the popula- 

ion as well as a center in this individual, and a set of centers not

n the individual (and different from the selected one). The fitness 

alues of the individuals obtained by exchanging the selected cen- 

er with any of the centers in the generated set are computed. The 

est of these new individuals in terms of fitness value replaces the 

orst individual in the population except if the individual is al- 

eady in the population. 

Each iteration of Algorithm 2 applies the three above operators 

crossover, mutation and local search) to the current population, 
10 
 i . Furthermore, an intensified local search is performed in some 

terations, which is ruled by some given probability . This additional 

ocal search operator is similar to the one above described but, as 

ts name indicates, more intense. It checks the fitness value when 

xchanging all the centers in the individual with others centers 

hat are not in it. A relevant difference is that the intensified lo- 

al search is applied not to a randomly chosen individual of the 

opulation but to all the individuals in the population with the 

mallest fitness values. Again, the best individual obtained by per- 

orming the intensive local search replaces the worst individual of 

he population except if it is already part of it. 

. Empirical analysis 

In this section, we report on the computational tests performed 

o assess the contributions proposed in the previous sections. We 

tart by describing the data used and also by detailing the exper- 

mental setting. Next, we present some preliminary computations 

hat indicate the direction we should follow in terms of more in- 

ensive testing. The latter is reported in the fourth subsection. 

.1. Data and experimental setting 

We use the uncapacitated p-median instances from the OR- 

ibrary which consists of 40 instances where the number of nodes, 

 , ranges from 100 to 900 and p ranges from 5 to n/ 3 . Like usually

one in literature, the all-pair shortest path Floyd’s algorithm was 

onsidered for obtaining the cost matrix from the original data re- 

rieved from the OR-Library. For all the mathematical models dis- 

ussed in this work we used IBM ILOG CPLEX 20.1.0.0 as the off- 

he-shelf solver. The computational tests were performed in an In- 

el(R) Xeon(R) CPU E5-2650 v3 @ 2.30 GHz. The default parameter 

alues of the solver were considered although a time limit of 6 h 

as imposed when tackling each instance. 

In the case of upgrading a maximum number of connections—

odels (M1), (M2), and (M3), we set t equal to 5%, 10%, and 25% 

f the total number of nodes in an instance. For the problem con- 

isting of upgrading a maximum number of centers—models (Q1), 

Q2) and (Q3), we set t equal to 5%, 10% and 25% of the value 

f p in each instance. In addition, for the last three models, we 

lso include in the analysis the case t = 1 to see how the solution

hanges if only one center can be upgraded. In all cases, for each 

alue of t we consider a discount factor f equal to 0.2, 0.4, 0.6, and 

.8. 

In the budget-constrained upgrading models we analyze differ- 

nt values of B between B C 
min 

and B C max in model (M4) and between 

 

F 
min 

and B F max in model (Q4). For these models we set R min = 0 . 2

nd R max = 0 . 8 . 

Instances pmed1 to pmed5 from the OR-library ( n = 100 ) were 

onsidered when using each of the models presented in this work 

or all the described combinations of parameters. Furthermore, 

odels (M2), (M3), (Q2) and (Q3) were handled considering two 

estricted sets ˆ K , according to the lower and upper bounds dis- 

ussed: ˆ K 1 ≡ { k ∈ 

ˆ K | lb 1 ≤ ˆ γk ≤ ub 1 } and 

ˆ K 2 ≡ { k ∈ 

ˆ K | lb 2 ≤ ˆ γk ≤
b 2 } . We look into how the pre-processing procedures described 

n Sections 3.1.1, 3.2.1, 4.1.1 , and 4.2.1 behave in the proposed mod- 

ls. In the results reported in this section, a more exhaustive study 

f models (M2) and (Q2) is also carried out for the 40 available 

p-median instances, analyzing in detail the use of the proposed 

ounds. 

To make this paper self-contained and also to allow the read- 

rs to fully reproduce our results, the results presented in this 

ection are complemented with an electronic appendix where we 

resent for all instances tested, their optimal value as well as the 

ew lower and upper bounds lb and ub . Finally, we note that all
2 2 
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Table 4 

Connection-upgrading problem: average computing time (seconds) required 

to solve the six tested models for instances pmed1–pmed5. 

M1 M1 ′ M2 + ˆ K 1 M2 + ˆ K 2 M3+ ̂ K 1 M3+ ̂ K 2 

pmed1 540.9 277.6 149.2 180.1 224.1 176.1 

pmed2 365.3 139.7 136.7 118.7 204.5 197.9 

pmed3 362.3 110.6 176.6 165.4 252.6 265.0 

pmed4 235.8 41.0 59.5 66.5 133.3 131.0 

pmed5 73.9 27.5 27.8 21.6 101.3 55.7 

Average 315.7 119.3 110.0 110.4 183.1 165.1 
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Table 5 

Connection-upgrading problem: average LP 

gap (%) achieved by the models for the in- 

stances based upon pmed1–pmed5. 

M1 M1 ′ M2 M3 

pmed1 30.5 26.9 48.2 17.9 

pmed2 35.4 25.8 44.5 15.3 

pmed3 34.4 27.2 50.5 17.4 

pmed4 44.2 31.8 52.5 18.6 

pmed5 57.3 32.7 44.2 19.7 

Average 40.3 28.9 48.0 17.8 
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he instances as well as the source codes will be made available to 

ny interested reader upon a request to the authors. 

.2. Preliminary results—connection upgrading 

We start with the connection-upgrading problem when up to 

 certain number t of connections can be upgraded. Models (M2) 

nd (M3) were solved considering two restricted sets ˆ K , using dif- 

erent bounds. Regarding model (M1), it was solved as presented 

n Section 3.1 and, in addition, it was also solved using the pre- 

rocessing procedure described in Section 3.1.1 . Specifically, we in- 

orporated equalities (27) and (28) using ub2 and lb2 as upper and 

ower bounds, respectively. Moreover, the cost matrix was modi- 

ed with these bounds following Remark 2 and setting M = 500, a 

alue greater than any of the costs involved in the instances con- 

idered. We call this model (M1 ′ ). Recall that we ended up with 

ix different models: model (M1), model (M1 ′ ), and models (M2) 

nd (M3) restricting ˆ K according to ˆ K 1 and 

ˆ K 2 . In what follows we 

enote these models as M1, M1 ′ , M2 + ˆ K 1 , M2 + ˆ K 2 , M3+ ̂  K 1 and

3+ ̂  K 2 . 

In this section, we present some preliminary results using the 

nstances based upon pmed1–pmed5 ( n = 100 ). The first aspect 

f interest to analyze concerns the performance of the models 

amely in comparison with each other. Table 4 presents the av- 

rage computing time (in seconds) required by each model. Each 

ow in the table averages 12 values (3 values of t and 4 values 

f f ). The detailed results for each instance can be found in the 

ppendix ( Tables A1 –A5 ), where the results are presented accord- 

ng to the cost compression factor ( f ) and the maximum number 

f connections that can be upgraded ( t). We conclude directly that 

odels (M1 ′ ) and (M2) outperform the other models although it is 

ot clear whether model (M2) is easier to tackle when 

ˆ K 1 is used 

r else when the choice goes to ˆ K 2 . We can also conclude that 

he pre-processing procedure carried out in model (M1 ′ ), drasti- 

ally reduces the computing time. In the Appendix ( Table A6 ), we 

resent the percentage of variables that are fixed to zero during 

he pre-processing procedure for each instance, where we can see 

hat, in some cases, it exceeds 80%. 

The results observed in Tables A1 –A5 also do not reveal any 

ominance in terms of a specific combination of f and t . Neverthe- 

ess, we see that the computing time is clearly dependent on the 

nstance even when the same dimension is considered. In fact, re- 

all that instances pmed1–pmed5 all consider 100 nodes whereas 

p takes values 5, 10, 10, 20, and 33, respectively. 

Another relevant information concerns the gap provided by the 

inear relaxation of the different models in use. Such gap is com- 

uted according to 100 × (z ∗ − LR ) /z ∗ where z ∗ denotes the opti- 

al value of the problem and LR the optimal value of the linear re-

axation. The information is summarized in Fig. 4 . The values used 

n this figure are detailed in the Appendix ( Tables A7 –A11 ). Con-

erning the LP gap, we conclude that model (M3) outperforms by 

ar the other models, followed by model (M1 ′ ). Interestingly, we 

ee that (M1) is often better than (M2) although this does not im- 

act the computing time required to solve the model to proven op- 
11 
imality. This is an indication that although (M1) seems to lead to 

 better polyhedral description of the problem feasibility set, this is 

till not good enough to boost the solver. In Table 5 we can see the

verage LP gap achieved with each model. In this table, the above 

onclusions become clearer. Regarding the pre-processing proce- 

ure carried out in model (M1 ′ ), not only is it effective in greatly 

mproving the computing time ( Table 4 ), but also it improves con- 

iderably the linear relaxation of the model, going from an average 

P gap of 40.3% in the model (M1) to 28.9% in the model (M1 ′ ). 
An important aspect of our problem concerns the decrease in 

he optimal covering cost by upgrading connections. Fig. 5 depicts 

his information for the 12 instances based upon pmed1–pmed5. 

he detailed values are presented in the Appendix ( Table A12 ). In 

his figure, we observe quite significant improvements in the so- 

ution. Furthermore, as expected, this improvement increases both 

ith the cost reduction factor and with the maximum number of 

onnections that can be upgraded. In all 60 instances built from 

med1–pmed5 apart from four, the number of connections up- 

raded in the optimal solution leading to the decreased optimal 

alues reported in the Appendix is the maximum possible. The 

our exceptions are observed for instances in which the maxi- 

um number of connections that can be upgraded is equal to 

5. In particular, we observe 92%, 96%, 96%, and 96% of the max- 

mum number being upgraded in instances pmed1 ( t = 25 , f = 

 . 2 ), pmed2 ( t = 25 , f = 0 . 2 ; t = 25 , f = 0 . 6 ), and pmed5 ( t = 25 ,

f = 0 . 4 ). These percentages depend on the optimal solution and 

hus we should be careful in analyzing them since these instances 

ight have alternative optimal solutions. 

.3. Preliminary results—center upgrading 

We perform now a similar analysis as above but for center up- 

rading. Models (Q2) and (Q3) were solved considering two re- 

tricted sets ˆ K , using different bounds for center upgrading. Re- 

arding model (Q1), it was solved as shown in Section 4.1 and, 

n addition, it was also solved using the pre-processing proce- 

ure described in Section 4.1.1 . Specifically, as in the case of con- 

ection upgrading, we incorporated equalities (27) and (28) using 

b2 and lb2 for center upgrading as upper and lower bounds, re- 

pectively. Again, the cost matrix was modified with these bounds 

ollowing Remark 2 and setting M = 500. Note that to apply 

his pre-processing procedure it is necessary to remove constraints 

39) from model (Q1). We call this model (Q1 ′ ). As pointed out in 

emark 9 , it is possible to relax the integrality constraints for vari- 

bles y i and v i in the model (Q1). We run some experiments to 

est the performance of this relaxed model and, in most cases, the 

omputing times were similar or even worse in the relaxed model. 

or this reason, we decided not to include it in the analysis. 

With all of the above, in the case of center upgrading we have 

he following six models: Q1, Q1 ′ , Q2+ ̂  K 1 , Q2+ ̂  K 2 , Q3+ ̂  K 1 and Q3+ ̂  K 2 .

gain, we start by assessing the performance of those models 

amely, in comparison with each other, using instances pmed1–

med5. 
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Fig. 4. Connection upgrading: bound provided by the linear relaxation (%) for the instances based upon pmed1–pmed5. 

Fig. 5. Percentage decrease in the optimal cost for upgrading connections. 

12 
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Table 6 

Center upgrading: average computing time (seconds) required by the six 

tested models for instances pmed1–pmed5. 

Q1 Q1 ′ Q2+ ̂ K 1 Q2+ ̂ K 2 Q3+ ̂ K 1 Q3+ ̂ K 2 

pmed1 1306.6 249.4 76.4 62.3 283.5 179.5 

pmed2 674.6 354.8 34.0 40.9 152.2 211.9 

pmed3 1453.4 508.0 47.0 51.1 153.5 222.1 

pmed4 390.7 184.0 30.5 16.8 100.1 116.1 

pmed5 205.9 93.8 16.3 9.4 53.6 68.7 

Average 806.2 278.0 40.8 36.1 148.6 159.6 

Table 7 

Center upgrading: average LP gap (%) 

achieved by the models for instances 

pmed1–pmed5. 

Q1 Q1 ′ Q2 Q3 

pmed1 28.3 18.9 30.0 13.5 

pmed2 35.9 20.4 30.8 14.1 

pmed3 36.7 24.8 41.0 17.9 

pmed4 45.1 28.1 43.7 19.1 

pmed5 57.1 27.2 35.5 19.7 

Average 40.6 23.9 36.2 16.8 
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Table 8 

Average computing time (seconds) required to 

solve models (M1 ′ ) and (M2) for instances 

pmed6–pmed10. 

M1 ′ M2 + ˆ K 1 M2 + ˆ K 2 

pmed6 7475.0 1703.3 1280.1 

pmed7 4576.2 623.1 584.4 

pmed8 4414.1 625.2 502.0 

pmed9 1360.3 298.8 187.2 

pmed10 581.2 96.7 78.4 

Average 3681.4 669.4 526.4 
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Table 6 presents the average computing time (in seconds) re- 

uired by each model for the first five pmed instances. Each row 

verages the values for the different values of t and f . The detailed 

esults can be found in the Appendix ( Tables B1 –B5 ), where the

esults are detailed according to the cost compression factor ( f ) 

nd the maximum number of centers that can be upgraded ( t). We 

onclude that model (Q2) outperforms the other models although, 

gain, it is not clear whether the model is easier to tackle when 

ˆ K 1 

s used or else when the choice goes to ˆ K 2 . We can also observe

hat, although the pre-processing procedure carried out in model 

Q1 ′ ) greatly improves the computing time, it is still far from the 

omputing time provided by other models such as (Q2). Table B6 in 

he Appendix shows the percentage of variables that are fixed to 

ero during the pre-processing procedure of the model (Q1 ′ ) for 

ach instance. 

The results observed in Tables B1 –B5 also do not reveal any 

ominance in terms of a specific combination of f and t . Never- 

heless, as for connection upgrading, the computing time seems to 

e dependent on the instance even when the same dimension is 

onsidered. In fact, recall that instances pmed1–pmed5 all consider 

00 nodes whereas p takes values 5, 10, 10, 20, and 33, respec- 

ively. 

Another relevant information concerns the gap provided by the 

inear relaxation of the different models used computed as above 

xplained. This information is summarized in Fig. 6 . The values 

sed in this figure are detailed in the Appendix ( Tables B7 –B11 ).

bserving the figure, we see that model (Q3) outperforms the 

ther models by far. Furthermore, model (Q1 ′ ) is always better 

han model (Q2) although this does not reflect in terms of the 

omputing time required to solve the model to proven optimal- 

ty. In Table 7 we can see the average LP gap achieved with each

odel. 

An important aspect of our problem concerns the decrease in 

he maximum cost due to upgrading centers, i.e., upgrading all 

onnections made to them. Fig. 7 depicts this information for the 

nstances built from pmed1–pmed5. Recall that we have set t equal 

o 1 and equal to 5%, 10%, and 25% of the value of p. Particu-

arly, for pmed1 ( p = 5 ) t ∈ { 1 , 2 } , for pmed2 and pmed3 ( p = 10 )

 ∈ { 1 , 3 } , for pmed4 ( p = 20 ) t ∈ { 1 , 2 , 5 } , and for pmed5 ( p =
3 ) t ∈ { 1 , 2 , 3 , 8 } . The detailed values are presented in the Ap-

endix ( Table B12 ). In Fig. 7 we observe quite significant improve- 

ents in the solution. Furthermore, as expected, this improvement 
13 
ncreases both with the cost reduction factor and with the maxi- 

um number of centers that can be upgraded. For t = 3 the de- 

icted lines for pmed2 and pmed 3 slightly differ while those de- 

icted for pmed3 and pmed5 overlap. In all cases, the number of 

pgraded centers in the optimal solution is the maximum possible. 

.4. Additional results 

As seen in the previous section, model (Q2) clearly outperforms 

n terms of computing time the other models for center upgrad- 

ng. In the case of connection upgrading, models (M1 ′ ) and (M2) 

utperform the other models, providing, in many cases, similar 

omputing times. However, after some previous experiments, we 

ecided not to include model (M1 ′ ) in the analysis of larger in- 

tances, since its computing time skyrockets as the size of the in- 

tances grows. As an example, Table 8 shows the average comput- 

ng time of models (M1 ′ ) and (M2) to solve the instances based 

pon pmed6–pmed10 ( n = 200 ). 

For all the above reasons, we select models (M2) and (Q2) for 

onnection upgrading and center upgrading, respectively, to per- 

orm a more exhaustive analysis with larger instances. Further- 

ore, in neither case, it is clear whether these models are easier 

o tackle when 

ˆ K 1 or ˆ K 2 are used. Hence, we analyze now the com- 

uting time required to solve the 40 p-median instances from the 

R-Library using models (M2) and (Q2) with both bounds. 

Fig. 8 depicts the relative deviation in terms of the computing 

ime when using ˆ K 2 instead of ˆ K 1 with models (M2) (connection- 

pgrading problem) and (Q2) (center-upgrading problem). The pre- 

ented results correspond to average results for all instances as- 

ociated with each pmed instance (the corresponding value of p

nd n is specified). As we can observe in this figure, most of 

he dots are negative. This indicates that in general, it is faster 

o solve the models when bounds lb 2 and ub 2 are used. Never- 

heless, we see some cases in which this was not the case. In 

onnection-upgrading problems, an overall average improvement 

n computing time of 9.4% is achieved when using ˆ K 2 instead of 
ˆ 
 1 . In some instances with a high number of nodes ( n ≥ 500), we 

ee that bounds lb 2 and ub 2 do not seem to work well. In the case

f center-upgrading problems, an overall average improvement of 

4.7% is achieved when bounds lb 2 and ub 2 are used. For these 

roblems, we see that very few instances fail to improve their 

omputing time when using the new proposed bounds. Interest- 

ngly, looking into detail when this happens, it is mainly for small 

alues of p. 

Fig. 9 depicts the computing time (in seconds) required to solve 

ll the instances that are considered in this work. Average results 

re presented for the tested combinations of t and f . The fig- 

re shows that the computing time increases considerably with the 

ize of the problem. We also observe that for the same number 

f nodes the models tend to become more tractable by the solver 

hen p increases. In the Appendix, Table C1 details the values used 

o draw the figures. 
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Fig. 6. Center upgrading: bound provided by the linear relaxation (%) for the instances based upon pmed1–pmed5. 

Fig. 7. Percentage decrease in the optimal cost for upgrading centers. 

14 
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Fig. 8. Relative deviation in the average computing time when using ˆ K 2 instead of ˆ K 1 ( 100 × ( CPU2 − CPU1 ) / CPU1 ). 

Fig. 9. Average computing time (seconds) for solving the instances based upon pmed1–pmed40. 

6

t

s

l

v

s

f

o

f

m

(

c

g

�

f

.5. Results for budget-constrained upgrading 

The preliminary experiments that we executed revealed that 

he budget-constrained upgrading models are quite difficult to 

olve to proven optimality. In particular, we cannot expect to solve 

arge-scale models using an off-the-shelf solver as done in the pre- 

ious section. Additionally, given the existence of a budget con- 

traint, it is worth performing a sensitivity analysis considering dif- 

erent values of the budget. For the above reasons, we now focus 

ur analysis again on the 100-node instances namely, those built 

rom pmed1–pmed5. 

�

15 
For these instances, we started by computing the minimum and 

aximum thresholds that are meaningful in terms of the budget 

see the discussion presented at the end of Sections 3 and 4 ). Re- 

all that values are denoted by B C 
min 

and B C max (for connection up- 

rading) and B F 
min 

and B F max (for center upgrading). Let us define 

C 
B = B 

C 
max − B 

C 
min , 

or the first case and 

F 
B = B 

F 
max − B 

F , 
min 
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Table 9 

Reference values for the budget-constrained problems. 

B C 
min 

Instance B C 
min 

B C max + 

3 
4 
�C 

B + 

1 
2 
�C 

B + 

1 
4 
�C 

B 

pmed1 0.2 3762.6 2822.0 1881.4 940.8 

pmed2 0.2 3065.6 2299.3 1532.9 766.6 

pmed3 0.2 3337.2 2503.0 1668.7 834.5 

pmed4 0.6 2311.4 1733.7 1156.0 578.3 

pmed5 0.2 897.0 672.8 448.6 224.4 

B F 
min 

Instance B F 
min 

B F max + 

3 
4 
�F 

B + 

1 
2 
�F 

B + 

1 
4 
�F 

B 

pmed1 0.2 4699.4 3524.6 2349.8 1175.0 

pmed2 0.2 3740.1 2805.2 1870.2 935.2 

pmed3 0.2 3903.1 2927.4 1951.6 975.9 

pmed4 0.6 2668.9 2001.8 1334.7 667.7 

pmed5 0.2 1103.3 827.5 551.7 276.0 
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or the second one. For each instance, four values are investigated 

or the budget: 

 

C 
min + 

1 

4 

�C 
B , B 

C 
min + 

1 

2 

�C 
B , B 

C 
min + 

3 

4 

�C 
B , and B 

C 
min + �C 

B = B 

C 
max , 

or connection upgrading, and 

 

F 
min + 

1 

4 

�F 
B , B 

F 
min + 

1 

2 

�F 
B , B 

F 
min + 

3 

4 

�F 
B , and B 

F 
min + �F 

B = B 

F 
max , 

or center upgrading. In Table 9 we present the values consid- 

red. Note that, for each instance, the highest value considered for 

he budget corresponds to B C max and B F max for connection and cen- 

er upgrading, respectively. Note also that B C 
min 

= B F 
min 

for each in- 

tance. 

For connection upgrading, model (M4) was solved as presented 

n Section 3.2 and, in addition, it was also solved using the pre- 

rocessing procedure described in Section 3.2.1 . Specifically, we 

onsidered lb2 with f = R max as the lower bound and we obtained 

pper bounds for this problem using the procedure described in 

lgorithm 1 . In step 4 of Algorithm 1 we used model (M2) because

t is the fastest. As described in previous models, the cost matrix 

as modified using these bounds and setting M = 500 ( Remark 2 ).

e call this model (M4 ′ ). 
Table 10 details the results for budget-constrained connection 

roblems. In the first column, z ∗ denotes the optimal value of 

he instances without upgrading and the third column shows the 

ptimal value with upgrading. The improvement that it repre- 

ents over the initial optimal value is shown in the fourth col- 

mn. Table 10 also shows the computing time of model (M4) and 

ther elements necessary to apply the pre-processing procedure 

escribed in Section 3.2.1 , that is, values of T and lower and up-

er bounds. As has been commented, we considered model (M2) 

o obtain the upper bounds ub shown in the table and, later, we 

olved model (M4 ′ ) using those bounds. Therefore, the total com- 

uting time to obtain the optimal solution with upgrading is the 

um of the computing time needed to solve model (M2), plus the 

omputing time needed to solve model (M4 ′ ), which is shown in 

he last column of Table 10 . If we compare this last column with

he computing times of model (M4), we can observe that they 

re, in most cases, much smaller, being on average more than 3 

imes faster using the pre-processing procedure. This happens de- 

pite the fact that the percentage of variables set to zero is rather 

mall ( Table 11 ) and, therefore, so is the number of values in the

ost matrix that are modified. Note that the value of R max di- 

ectly influences the number of variables that are fixed to zero (see 

ection 3.2.1 ). We have considered a high value of this parameter 

 R max = 0.8) which means that there are few costs c i j such that

1 − R max ) c i j > ub. For smaller values of R max , the number of vari-

bles that would be fixed to zero could be much larger. 
16 
Similarly, for center upgrading, model (Q4) was solved as pre- 

ented in Section 4.2 and, in addition, it was also solved using 

he pre-processing procedure described in Section 4.2.1 . In this 

ase, we obtained upper bounds using the model (U) described in 

emark 12 , starting from an optimal solution to the problem with- 

ut upgrading. As before, the cost matrix was modified using the 

pper bounds and setting M = 500 . Note that, in this case, we can-

ot use lower bounds either to fix variables to zero or to modify 

he cost matrix, because some connections, despite having a small 

ost, will be upgraded as they are incident to an upgraded center. 

e call this model (Q4 ′ ). 
Table 12 details the results for budget-constrained center up- 

rading. Again, in the first column, z ∗ denotes the optimal value 

f the instances without upgrading. The third and fourth columns 

how the solution with upgrading and the improvement that it 

mplies over the initial optimal value, respectively. Table 12 also 

hows the computing time of the model (Q4). Note that most prob- 

ems exhaust the time limit of 6 h, so the final gap (%) is also

hown. 

To obtain the upper bound ub that is used for the pre- 

rocessing procedure of the model (Q4 ′ ), it is necessary to have a 

olution to the original problem without upgrading. For instances 

med1–pmed5 we can obtain an optimal solution to work within 

 seconds (see, e.g. Calik and Tansel [6] ). Regarding the comput- 

ng time required by the model (U) from Remark 12 , it was less

han 0.2 s in all cases. Given the negligible above values, we do 

ot include in Table 12 the computing time necessary to obtain 

he upper bound. That same table shows the solutions, comput- 

ng time, and final gap (%) of the model (Q4 ′ ). Although the pre-

rocessing procedure is not as effective in the model (Q4 ′ ) as in 

ther cases (there are still many instances that exhaust the time 

imit of 6 h), we can see really important improvements. For ex- 

mple, for pmed3 and B = 3903 . 1 , we can obtain the optimal so-

ution with both model (Q4) and model (Q4 ′ ) but their computing 

imes are 7054.6 s and 15.5 s, respectively. We also see four other 

nstances for which model (Q4 ′ ) was tackled reaching a final gap 

elow 0 . 01% . Table 13 shows the number of variables set to zero

n the pre-processing procedure of the model (Q4 ′ ). 
Given that the number of instances that can be solved to 

roven optimality, both with models (Q4) and (Q4 ′ ) is small, we 

lso address the budget-constrained center-upgrading model with 

he math-heuristic approach introduced in Section 5 . After some 

reliminary experiments, we run the genetic algorithm for each in- 

tance in Table 12 for one hour (stopping condition in Algorithm 2 ) 

nd we set N = 25 , probability = 0 . 1 , and the number of centers to

xchange each selected center in the local searches equal to 10. In 

able 12 we present the execution time in seconds required by our 

ath-heuristic to find the best solution for each instance. Those 

est solutions and the improvement over the initial optimal value 

ithout upgrading are also shown. 

As can be observed in the last three columns of Table 12 , for

he instances based upon pmed1 the math-heuristic manages to 

mprove the best solution found by models (Q4) and (Q4 ′ ) for 

he four considered budgets. Moreover, this is accomplished in 

ess than one minute. The same occurs with the instances based 

pon pmed2, pmed3, and pmed4, with average times of 5.6, 4.0, 

nd 14.6 minutes, respectively. In particular, the math-heuristic is 

ble to find the three optimal values that are known in instances 

med3 and pmed4. 

Regarding pmed5, this is more demanding for the math- 

euristic since each individual of the population is a combination 

f p = 33 centers, which makes the search much more difficult. 

owever, in one of the instances it manages to improve the best 

olution found by models (Q4) and (Q4 ′ ) ( B = 276 . 0 ). In another

ne, it equals the known optimal value ( B = 827 . 5 ). Finally, in the

ther two instances, it obtains values very close to those provided 
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Table 10 

Results for the budget-constrained connection upgrading. All computing times are displayed in seconds. 

Base Upgraded Improvement Time Time Time Time 

instance Budget z ∗ (%) M4 T lb ub M2 M4 ′ M2+M4 ′ 

pmed1 940.8 71.5 43.7 3831.5 3 20.2 113.0 201.7 4277.0 4478.8 

z ∗ = 127 1881.4 50.0 60.6 1195.2 8 20.2 105.0 100.5 623.4 723.8 

2822.0 35.1 72.3 541.1 12 20.2 95.0 111.3 239.6 350.9 

3762.6 25.4 80.0 588.9 16 20.2 90.0 103.5 344.1 447.6 

pmed2 766.6 52.1 46.8 1624.9 3 16.6 88.0 107.3 274.9 382.2 

z ∗ = 98 1532.9 35.5 63.8 981.8 6 16.6 82.0 93.0 390.6 483.6 

2299.3 23.6 75.9 970.5 9 16.6 79.0 119.2 410.9 530.1 

3065.6 19.6 80.0 1458.9 13 16.6 73.0 105.1 456.7 561.9 

pmed3 834.5 52.7 43.3 19795.5 3 14.6 89.0 161.2 2948.2 3109.4 

z ∗ = 93 1668.0 34.7 62.7 969.5 7 14.6 77.0 195.2 533.1 728.3 

2503.0 21.8 76.6 4732.3 10 14.6 72.0 112.6 31.0 143.6 

3337.2 18.6 80.0 804.6 14 14.6 68.0 149.5 505.7 655.2 

pmed4 578.3 42.7 42.3 4820.6 2 11.2 73.0 106.4 281.5 388.0 

z ∗ = 74 1156.0 28.0 62.2 1130.4 4 11.2 70.0 103.8 154.9 258.7 

1733.7 18.0 75.6 1016.9 7 11.2 66.0 88.9 31.9 120.8 

2311.4 14.8 80.0 373.5 10 11.2 61.0 94.6 108.2 202.8 

pmed5 224.4 28.4 40.8 6213.0 0 7.6 48.0 8.1 1466.8 1474.9 

z ∗ = 48 448.6 19.3 59.8 300.1 1 7.6 46.0 59.8 101.6 161.4 

672.8 13.0 72.8 130.1 2 7.6 44.0 69.6 28.6 98.1 

897.0 9.6 80.0 180.2 3 7.6 40.0 63.7 52.0 115.7 

Avg. 2583.0 Avg. 770.8 

Table 11 

Percentage of variables x i j , r i j that are set to zero in model (M4 ′ ) for instances pme1–pmed5. 

pmed1 pmed2 pmed3 pmed4 pmed5 

Budget x i j r i j Budget x i j r i j Budget x i j r i j Budget x i j r i j Budget x i j r i j 

940.8 0.0 1.8 766.6 0.0 1.8 834.5 0.0 1.6 578.3 0.0 1.3 224.4 0.7 2.2 

1881.4 0.0 1.8 1532.9 0.0 1.8 1668.7 0.0 1.7 1156.0 0.0 1.3 448.6 1.3 2.7 

2822.0 0.0 1.8 2299.3 0.0 1.8 2503.0 0.0 1.7 1733.7 0.0 1.3 672.8 2.0 3.5 

3762.6 0.0 1.8 3065.6 0.0 1.8 3337.2 0.1 1.7 2311.4 0.1 1.4 897.0 4.7 6.1 

Table 12 

Results for the budget-constrained center upgrading. The computing times that do not exhaust the time limit of 6 h are displayed in seconds. 

Model Q4 Model Q4 ′ Math-heuristic 

Base Upgraded Improvement Gap (%) at Upgraded Improvement Gap (%) at Upgraded Improvement 

instance Budget z ∗ (%) Time termination ub z ∗ (%) Time termination z ∗ (%) Time 

pmed1 1175.0 102.2 19.5 > 6 h 43.4 110.0 102.2 19.5 > 6 h 43.4 91.0 28.4 57.9 

z ∗ = 127 2349.8 71.0 44.1 > 6 h 44.4 75.1 71.0 44.1 > 6 h 44.4 64.7 49.0 46.5 

3524.6 46.2 63.6 > 6 h 44.5 52.1 46.1 63.7 > 6 h 46.5 43.8 65.5 48.6 

4699.4 26.6 79.1 > 6 h 27.3 29.1 29.0 77.1 > 6 h 33.7 25.4 80.0 32.1 

pmed2 935.2 73.2 25.3 > 6 h 44.6 78.0 72.4 26.2 > 6 h 44.0 66.7 32.0 264.1 

z ∗ = 98 1870.2 50.2 48.8 > 6 h 45.5 56.5 49.1 49.9 > 6 h 44.2 45.1 54.0 678.5 

2805.2 29.0 70.5 > 6 h 42.2 38.7 28.5 70.9 > 6 h 40.7 27.3 72.2 294.8 

3740.2 20.8 78.8 > 6 h 12.5 21.1 19.9 79.7 > 6 h 2.5 19.6 80.0 104.2 

pmed3 975.9 68.6 26.2 > 6 h 40.2 85.0 68.6 26.2 > 6 h 40.2 65.7 29.4 137.2 

z ∗ = 93 1951.6 48.0 48.4 > 6 h 44.9 54.8 48.0 48.4 > 6 h 43.1 44.7 51.9 639.9 

2927.4 26.9 71.1 > 6 h 38.4 36.8 26.9 71.1 > 6 h 38.4 26.7 71.3 184.1 

3903.1 18.6 80.0 7054.6 0.0 18.8 18.6 80.0 15.5 0.0 18.6 80.0 0.0 

pmed4 667.7 53.0 28.4 > 6 h 43.6 57.0 58.0 21.6 > 6 h 48.1 52.0 29.7 496.3 

z ∗ = 74 1334.7 36.0 51.4 > 6 h 41.7 41.7 37.0 50.0 > 6 h 43.2 35.0 52.7 1287.3 

2001.8 21.4 71.1 > 6 h 38.9 28.4 20.8 71.8 20772.1 0.0 20.8 71.8 1368.9 

2668.9 15.8 78.6 > 6 h 20.7 15.4 14.8 80.0 12.1 0.0 14.8 80.0 359.1 

pmed5 276.0 35.0 27.1 > 6 h 56.9 37.0 34.6 27.8 > 6 h 56.4 33.0 31.3 407.2 

z ∗ = 48 551.7 23.0 52.1 > 6 h 52.9 27.2 22.6 52.9 > 6 h 50.5 22.7 52.8 2663.7 

827.5 14.2 70.4 > 6 h 49.1 19.7 14.2 70.5 2346.5 0.0 14.2 70.5 1448.6 

1103.3 9.6 79.9 > 6 h 4.5 12.7 9.6 80.0 246.8 0.0 9.8 79.6 1381.9 

17 
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Table 13 

Percentage of variables x i j , r i j that are set to zero in model (Q4 ′ ) for instances pme1–pmed5. 

pmed1 pmed2 pmed3 pmed4 pmed5 

Budget x i j r i j Budget x i j r i j Budget x i j r i j Budget x i j r i j Budget x i j r i j 

1175.0 0.0 0.0 935.2 0.0 0.0 975.9 0.0 0.0 667.7 0.4 0.4 276.0 8.7 8.7 

2349.8 0.0 0.0 1870.2 0.2 0.2 1951.6 1.4 1.4 1334.7 15.9 15.9 551.7 38.4 38.4 

3524.6 0.9 0.9 2805.2 14.7 14.7 2927.4 20.1 20.1 2001.8 60.8 60.8 827.5 69.1 69.1 

4699.4 47.6 47.6 3740.1 72.8 72.8 3903.1 82.2 82.2 2668.9 91.1 91.1 1103.3 89.2 89.2 

Table 14 

Average computing time (minutes) of the math-heuristic, according to the value of n , for p = 5 , 10. 

p n = 100 n = 200 n = 300 n = 400 n = 500 n = 600 n = 700 n = 800 n = 900 

5 0.8 9.8 11.0 92.1 51.8 62.5 58.3 189.8 136.7 

10 5.6 16.0 71.1 75.0 143.3 149.5 212.0 301.3 225.3 
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y models (Q4) and (Q4 ′ ), on an average computing time of 24.6 

inutes. 

The promising results achieved by the math-heuristic for the in- 

tances based upon pmed1–pmed5 ( n = 100 ), encouraged testing it 

sing the larger instances. For the latter we keep using four differ- 

nt values for the available budget in each instance. Note, however, 

hat for instances with n > 100 the values of B F max cannot be ob-

ained in a reasonable computing time using the auxiliary model 

ased on model (Q4) and explained at the end of Section 4.2 . For

his reason, we decided for the use of an auxiliary model based 

n the linear optimization model (U) presented in Remark 12 . In 

articular, for each instance, we obtain an upper bound of B F max by 

olving the following linear program: 

minimize 
∑ 

i ∈ ̂ I 
θi g i 

subject to (1 − R max ) z 
∗ ≥ βi (1 − g i ) ∀ i ∈ 

ˆ I , 

g i ∈ { 0 } ∪ [ R min , R max ] ∀ i ∈ 

ˆ I , 

here z ∗ is the optimal value without upgrading and 

ˆ I = { i ∈ I :

 i = 1 } is the subset of p open centers also in that case. 

All the math-heuristic parameters are maintained as previously 

escribed for instances based upon pmed1–pmed5, except for the 

topping condition. In fact, the large-scale instances are more chal- 

enging. Accordingly, we set the stopping criterion (time limit) de- 

endent on the value of n . After some preliminary experiments, 

e set a time limit of two hours for instances with n = 200 , three

ours for n = 300 , procedding likewise and ending with a time 

imit of nine hours for n = 900 . 

Table 14 shows the average computing time required by the 

ath-heuristic to find the best solution for all problem sizes con- 

idering p = 5 and p = 10 —the values of p used in all values of
Fig. 10. Average computing time (minutes) of the math-heurist

18 
 . As can be observed, the computing time increases considerably 

oth with the value of p and n . Detailed results of all instances 

ith n > 100 can be found in the Appendix, Tables D1 and D2 . In

hese tables we conclude that, in most cases, the math-heuristic 

id not exhaust the time limit to find the provided solution. Specif- 

cally, in only 16% of the instances the time exceeds 95% of the 

ime limit given as a stopping criterion. Additionally, most of these 

ases occur for intermediate budget values, where it is more diffi- 

ult for the algorithm to reach a good solution. In Tables D1 and 

2 , the execution time to find the best solution is zero in most 

ases when the budget allows an improvement of 80% because the 

lgorithm does not improve the upgraded solution associated to 

he non-upgrading problem that we include at the initial popula- 

ion. For all instances, the results provided by the math-heuristic, 

ven if they are not optimal solutions, provide hopefully good up- 

er bounds for the problems. 

Fig. 10 shows the average computing time of the math-heuristic 

or solving all the instances based upon pmed1–pmed40. Again, it 

an be observed how the time increases with the value of n , as 

ell as that, when the value of p increases, the computing time 

tabilizes for a given n . 

In Fig. 11 we summarize the results obtained for the budget- 

onstrained problems for the instances based upon pmed1–pmed5. 

oth the connection-upgrading problems and the center-upgrading 

roblems are represented in each sub-figure. For center upgrading, 

ince the optimal value is unknown in some cases, the best solu- 

ion found ( Table 12 ) is used in Fig. 11 . We mark with a dot each

ombination “budget” vs. “percentage improvement in the optimal 

alue”. Since four values are considered for the budget in each case 

e observe four dots in each sub-figure. We decided to connect 

he dots with lines to see if some stabilization trend could be ob- 

erved. This is in fact the case: in every sub-figure, we can ob- 
ic for solving the instances based upon pmed1–pmed40. 
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Fig. 11. Improvement observed in the optimal value for different budget values. 
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erve a stabilization in the improvement of the optimal cost when 

he budget grows large. This is very insightful information for a 

ecision-maker who can decide on a maximum budget of interest. 

. Conclusions 

In this paper, we investigated different upgrading strategies 

or the discrete p-center problem. In particular, we looked into 

hether a better solution can be achieved by reducing in some 

ay the allocation costs, thus obtaining the so-called upgraded so- 

utions. We considered the possibility of upgrading a set of con- 

ections to different centers as well as the possibility of upgrading 

ntire centers, that is, upgrading all connections to an open cen- 

er. Two variants of these problems were considered: (i) a limit is 

mposed on the number of connections or centers that can be up- 

raded; (ii) a budget exists that limits the upgrades that can be 

ade. MILP models were introduced for the problems and their 

ariants. Furthermore, lower and upper bounds and optimal solu- 

ion properties were discussed. The models and the new bounds 

ere tested using benchmark instances. Due to the difficulty in 

ackling the budget-constrained center-upgrading model investi- 

ated in this paper, we also proposed a math-heuristic approach 
19 
o this problem. Specifically, we developed a genetic algorithm for 

nding good feasible solutions in a short time. 

The major conclusion drawn from all the work done is that a 

ignificant decrease in the optimal cost can be attained by upgrad- 

ng connections or centers. Therefore, the information provided by 

he new models proposed in this work can be extremely useful to 

 decision-maker because together with the location decision, the 

odels directly seek to find underlying structures of the problem 

hat can be “upgraded” in such a way that a better after-upgrading 

olution is obtained. 

The research done in this work indicates different directions for 

uture work in the topic. First, despite the instances that could be 

olved to proven optimality using the models proposed, it is im- 

ortant to deepen the polyhedral analysis of these models by de- 

iving new valid inequalities that can strengthen them. This is cru- 

ial for later deriving more comprehensive models that can capture 

eatures of practical relevance (e.g. time-dependent decisions). Sec- 

nd, results reported in the paper show that there is room for im- 

roving both the lower and upper bounds for this type of problem. 

inally, a close look into the budget-constrained models reveals a 

i-criteria flavor: in fact, the models proposed seek to minimize 

he maximum cost for satisfying the demand nodes by imposing a 
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Table A2 

Optimal objective function value ( z ∗) and computing time (seconds) for the in- 

stances generated from pmed2. The optimal value without upgrading is 98.0. 

t f z ∗ M1 M1 ′ M2 + ˆ K 1 M2 + ˆ K 2 M3+ ̂ K 1 M3+ ̂ K 2 

5 0.2 88.0 856.1 124.9 22.8 95.0 175.3 213.5 

0.4 83.0 367.5 223.0 164.0 142.1 193.0 276.2 

0.6 83.0 460.5 320.0 136.8 152.1 218.2 243.5 

0.8 83.0 409.5 115.8 179.2 203.0 232.0 243.0 

10 0.2 81.6 240.2 12.8 73.8 48.1 126.1 102.4 

0.4 78.0 263.3 112.1 60.5 75.1 275.1 273.2 

0.6 78.0 458.7 230.7 175.2 161.4 262.6 268.8 

0.8 78.0 465.1 212.4 564.0 234.1 213.1 190.2 

25 0.2 78.4 89.0 11.8 18.5 34.6 148.4 73.2 

0.4 61.2 84.9 102.9 58.0 59.8 172.0 89.8 

0.6 54.0 375.1 135.2 61.9 75.7 234.3 213.8 

0.8 54.0 314.1 74.9 125.1 144.2 203.4 187.7 

Avg. 365.3 139.7 136.7 118.7 204.5 197.9 

Table A3 

Optimal objective function value ( z ∗) and computing time (seconds) for the in- 

stances generated from pmed3. The optimal value without upgrading is 93.0. 

t f z ∗ M1 M1 ′ M2 + ˆ K 1 M2 + ˆ K 2 M3+ ̂ K 1 M3+ ̂ K 2 

5 0.2 86.0 56.8 92.0 101.4 50.1 83.0 114.9 

0.4 85.0 463.1 95.4 172.3 124.2 155.6 152.3 

0.6 85.0 321.4 251.6 140.9 353.5 257.2 440.7 

0.8 85.0 430.6 114.3 172.2 380.5 299.4 256.9 

10 0.2 77.6 271.6 94.7 65.7 41.3 119.6 137.6 

0.4 75.0 622.8 28.9 211.4 128.6 196.9 203.4 

0.6 73.0 441.1 41.5 151.7 213.7 344.5 343.9 

0.8 72.0 329.2 245.1 380.1 189.2 347.3 333.3 

25 0.2 74.4 174.9 23.6 36.2 14.6 93.4 74.2 

0.4 61.0 409.0 109.2 60.4 83.3 279.2 160.3 

0.6 59.0 410.5 106.3 222.9 171.1 449.3 587.4 

0.8 57.0 417.0 124.7 404.1 234.0 405.8 374.7 

Avg. 362.3 110.6 176.6 165.4 252.6 265.0 

Table A4 

Optimal objective function value ( z ∗) and computing time (seconds) for the in- 

stances generated from pmed4. The optimal value without upgrading is 74.0. 

t f z ∗ M1 M1 ′ M2 + ˆ K 1 M2 + ˆ K 2 M3+ ̂ K 1 M3+ ̂ K 2 

5 0.2 67.0 78.5 11.7 8.9 6.2 27.2 36.6 

0.4 67.0 220.6 33.4 18.6 10.6 54.2 77.0 

0.6 67.0 69.8 23.7 65.3 75.3 156.3 176.6 

0.8 67.0 490.7 177.2 156.6 122.4 276.2 258.4 

10 0.2 63.0 80.2 2.0 5.6 7.4 27.9 16.1 

0.4 61.0 362.4 33.7 17.4 24.7 45.1 35.3 

0.6 61.0 447.6 57.6 70.6 78.1 135.8 135.7 

0.8 61.0 419.3 81.6 139.2 205.3 221.9 293.5 

25 0.2 59.2 75.2 4.9 3.8 2.6 24.4 10.5 

0.4 49.0 130.1 10.1 16.1 8.5 55.4 30.5 

0.6 45.0 157.4 11.5 103.8 50.2 157.4 82.9 

0.8 45.0 298.3 44.5 108.4 206.1 417.6 418.7 
imit on the cost compression. Thus, a relevant direction for further 

esearch involves studying specifically a bi-objective setting for the 

roblem when a budget constraint exists. 
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ppendix A. Detailed results for connection upgrading 

In this Appendix we detail the results of the experiments per- 

ormed using models M1, M1 ′ , M2 + ˆ K 1 , M2 + ˆ K 2 , M3+ ̂  K 1 and

3+ ̂  K 2 for the instances generated from pmed1 to pmed5. 
able A1 

ptimal objective function value ( z ∗) and computing time (seconds) for the in- 

tances generated from pmed1. The optimal value without upgrading is 127.0. 

t f z ∗ M1 M1 ′ M2 + ˆ K 1 M2 + ˆ K 2 M3+ ̂ K 1 M3+ ̂ K 2 

5 0.2 108.0 748.5 232.2 36.6 30.2 176.9 139.7 

0.4 108.0 523.0 631.8 93.1 189.9 211.7 270.3 

0.6 108.0 367.4 145.3 296.4 183.0 152.0 164.9 

0.8 108.0 323.8 200.3 279.7 334.0 185.4 210.6 

10 0.2 102.4 415.0 102.7 75.4 93.3 146.7 136.8 

0.4 100.0 488.0 237.3 106.4 151.0 185.4 202.6 

0.6 100.0 638.3 323.5 235.3 211.6 212.4 183.5 

0.8 100.0 1087.7 261.4 256.8 377.4 265.1 134.7 

25 0.2 101.6 192.0 142.1 47.7 103.6 415.0 147.4 

0.4 81.0 506.1 417.6 70.5 140.1 248.5 172.1 

0.6 79.0 696.0 242.2 69.2 149.0 293.3 210.7 

0.8 79.0 504.6 394.3 223.7 197.6 196.4 139.6 

Avg. 540.9 277.6 149.2 180.1 224.1 176.1 

Avg. 235.8 41.0 59.5 66.5 133.3 131.0 

Table A5 

Optimal objective function value ( z ∗) and computing time (seconds) for the in- 

stances generated from pmed5. The optimal value without upgrading is 48.0. 

t f z ∗ M1 M1 ′ M2 + ˆ K 1 M2 + ˆ K 2 M3+ ̂ K 1 M3+ ̂ K 2 

5 0.2 40.0 106.0 5.7 3.5 2.0 22.1 12.0 

0.4 40.0 58.8 3.6 8.6 4.5 41.7 25.8 

0.6 40.0 57.2 15.2 34.4 17.4 100.4 52.6 

0.8 40.0 81.2 131.7 82.3 82.9 291.2 161.5 

10 0.2 38.4 54.8 2.4 2.3 1.4 24.4 6.6 

0.4 36.0 65.8 14.4 9.6 4.1 61.2 13.4 

0.6 36.0 79.8 6.6 31.0 13.6 88.7 42.6 

0.8 36.0 85.0 115.7 89.1 79.7 199.5 177.1 

25 0.2 38.4 59.4 1.2 3.5 1.4 21.6 10.6 

0.4 28.8 62.6 1.9 4.9 2.3 45.9 15.5 

0.6 21.0 69.4 6.5 14.0 5.3 78.1 26.1 

0.8 19.0 107.2 24.9 50.7 44.5 241.2 125.1 

Avg. 73.9 27.5 27.8 21.6 101.3 55.7 

20 
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Table A6 

Percentage of variables x i j , m i j that are set to zero in model (M1 ′ ) for instances 

pme1–pmed5, using bounds lb2 and ub2 for connection upgrading. 

pmed1 pmed2 pmed3 pmed4 pmed5 

t f x i j m i j x i j m i j x i j m i j x i j m i j x i j m i j 

5 0.2 12.1 24.5 18.1 27.8 32.5 39.5 80.3 83.7 83.1 86.4 

0.4 0.4 7.5 1.4 7.0 6.8 11.5 59.4 61.9 63.5 66.2 

0.6 0.0 3.4 0.0 3.2 0.1 3.0 13.0 14.7 22.0 24.1 

0.8 0.0 1.8 0.0 1.8 0.0 1.6 0.0 1.3 0.0 1.5 

10 0.2 12.9 25.3 22.7 32.4 39.4 46.4 81.9 85.3 84.7 88.1 

0.4 0.6 7.6 2.5 8.1 9.9 14.5 62.8 65.3 69.1 71.8 

0.6 0.0 3.4 0.0 3.2 0.4 3.3 16.4 18.1 29.4 31.5 

0.8 0.0 1.8 0.0 1.8 0.0 1.6 0.0 1.3 0.0 1.5 

25 0.2 17.0 29.3 37.5 47.2 49.4 56.4 86.7 90.1 84.7 88.1 

0.4 4.0 11.0 16.0 21.6 20.6 25.2 75.9 78.4 81.3 84.0 

0.6 0.0 3.4 0.1 3.3 1.4 4.3 35.6 37.3 49.3 51.4 

0.8 0.0 1.8 0.0 1.8 0.0 1.6 0.0 1.3 0.4 1.9 

Table A7 

Optimal objective function value ( z ∗) and LP gap (%) for 

the instances generated from pmed1. 

t f z ∗ M1 M1 ′ M2 M3 

5 0.2 108.0 21.4 14.1 25.1 12.2 

0.4 108.0 26.2 22.9 43.6 15.8 

0.6 108.0 30.1 28.9 62.1 16.8 

0.8 108.0 33.5 33.1 80.8 17.4 

10 0.2 102.4 21.0 13.9 21.0 13.3 

0.4 100.0 27.3 24.1 39.2 17.3 

0.6 100.0 33.6 32.4 59.2 20.1 

0.8 100.0 38.5 37.9 79.4 21.3 

25 0.2 101.6 26.8 16.8 20.4 18.9 

0.4 81.0 25.5 20.2 25.0 14.5 

0.6 79.0 36.6 34.2 48.6 21.6 

0.8 79.0 45.5 44.7 74.2 25.7 

Avg. 30.5 26.9 48.2 17.9 

Table A8 

Optimal objective function value ( z ∗) and LP gap (%) for 

the instances generated from pmed2. 

t f z ∗ M1 M1 ′ M2 M3 

5 0.2 88.0 32.0 15.3 24.3 12.7 

0.4 83.0 31.7 21.5 39.8 12.7 

0.6 83.0 35.2 29.5 59.5 15.5 

0.8 83.0 38.3 36.1 79.6 17.1 

10 0.2 81.6 29.6 12.0 18.4 11.6 

0.4 78.0 33.2 22.9 36.0 15.6 

0.6 78.0 39.1 33.9 57.1 20.0 

0.8 78.0 44.1 42.1 78.4 22.1 

25 0.2 78.4 32.8 12.3 15.3 15.1 

0.4 61.2 28.7 14.8 18.6 9.6 

0.6 54.0 34.1 26.3 38.3 11.9 

0.8 54.0 45.6 42.7 69.1 19.5 

Avg. 35.4 25.8 44.5 15.3 

Table A9 

Optimal objective function value ( z ∗) and LP gap (%) for 

the instances generated from pmed3. 

t f z ∗ M1 M1 ′ M2 M3 

5 0.2 86.0 30.9 19.0 31.8 15.0 

0.4 85.0 33.5 25.6 48.2 17.6 

0.6 85.0 36.6 32.0 65.0 18.8 

0.8 85.0 39.3 37.3 82.4 19.7 

10 0.2 77.6 26.5 13.8 24.5 12.2 

0.4 75.0 30.3 22.3 41.5 15.3 

0.6 73.0 34.1 29.5 59.5 16.1 

0.8 72.0 38.4 36.5 79.4 16.8 

25 0.2 74.4 29.5 14.4 21.4 17.2 

0.4 61.0 27.7 18.5 28.1 14.1 

0.6 59.0 38.5 32.9 50.2 21.9 

0.8 57.0 47.3 45.2 74.2 24.2 

Avg. 34.4 27.2 50.5 17.4 

Table A10 

Optimal objective function value ( z ∗) and LP gap (%) for 

the instances generated from pmed4. 

t f z ∗ M1 M1 ′ M2 M3 

5 0.2 67.0 40.5 19.7 33.0 11.1 

0.4 67.0 42.8 29.2 49.6 15.8 

0.6 67.0 45.0 36.7 66.1 18.4 

0.8 67.0 47.3 43.5 82.9 20.7 

10 0.2 63.0 38.8 17.5 28.8 13.2 

0.4 61.0 41.4 27.4 44.7 17.0 

0.6 61.0 45.9 37.6 62.9 20.1 

0.8 61.0 50.3 46.7 81.3 23.1 

25 0.2 59.2 40.1 16.6 24.3 20.2 

0.4 49.0 38.7 21.5 31.3 17.0 

0.6 45.0 44.6 34.9 49.9 19.3 

0.8 45.0 55.1 50.9 74.9 27.3 

Avg. 44.2 31.8 52.5 18.6 

Table A11 

Optimal objective function value ( z ∗) and LP gap (%) for 

the instances generated from pmed5. 

t f z ∗ M1 M1 ′ M2 M3 

5 0.2 40.0 54.3 17.0 23.7 8.9 

0.4 40.0 56.4 30.3 42.9 17.4 

0.6 40.0 58.4 42.7 61.6 20.9 

0.8 40.0 60.3 53.1 80.7 24.3 

10 0.2 38.4 54.4 16.2 20.7 14.0 

0.4 36.0 55.7 27.7 36.6 19.9 

0.6 36.0 59.8 43.0 57.4 24.4 

0.8 36.0 63.4 55.8 78.6 29.1 

25 0.2 38.4 58.3 18.2 20.8 20.8 

0.4 28.8 54.7 18.4 20.8 20.8 

0.6 21.0 51.8 23.0 27.4 14.6 

0.8 19.0 60.0 46.6 59.7 21.3 

Avg. 57.3 32.7 44.2 19.7 

Table A12 

Percentage decrease in the optimal cost by upgrading connections. 

t f pmed1 pmed2 pmed3 pmed4 pmed5 

5 0.2 −15.0 −10.2 −7.5 −9.5 −16.7 

0.4 −15.0 −15.3 −8.6 −9.5 −16.7 

0.6 −15.0 −15.3 −8.6 −9.5 −16.7 

0.8 −15.0 −15.3 −8.6 −9.5 −16.7 

10 0.2 −19.4 −16.7 −16.6 −14.9 −20.0 

0.4 −21.3 −20.4 −19.4 −17.6 −25.0 

0.6 −21.3 −20.4 −21.5 −17.6 −25.0 

0.8 −21.3 −20.4 −22.6 −17.6 −25.0 

25 0.2 −20.0 −20.0 −20.0 −20.0 −20.0 

0.4 −36.2 −37.6 −34.4 −33.8 −40.0 

0.6 −37.8 −44.9 −36.6 −39.2 −56.3 

0.8 −37.8 −44.9 −38.7 −39.2 −60.4 

A

f  

t

21 
ppendix B. Detailed results for center upgrading 

In this Appendix we detail the results of the experiments per- 

ormed using models Q1, Q1 ′ , Q2+ ̂  K 1 , Q2+ ̂  K 2 , Q3+ ̂  K 1 and Q3+ ̂  K 2 for

he instances generated from pmed1 to pmed5. 
Table B1 

Optimal objective function value ( z ∗) and computing time (seconds) for the in- 

stances generated from pmed1. The optimal value without upgrading is 127.0. 

t f z ∗ Q1 Q1 ′ Q2+ ̂ K 1 Q2+ ̂ K 2 Q3+ ̂ K 1 Q3+ ̂ K 2 

1 0.2 110.0 2186.8 460.0 35.8 117.2 206.5 84.7 

0.4 92.4 1106.9 392.3 205.6 42.3 380.2 122.1 

0.6 64.4 520.6 217.9 148.7 62.0 203.1 114.3 

0.8 32.2 237.3 112.8 37.9 37.8 106.6 90.6 

2 0.2 106.4 682.0 507.6 74.3 67.4 977.8 466.4 

0.4 82.8 2217.9 87.2 47.6 33.7 156.1 175.7 

0.6 56.4 3228.0 105.7 23.6 92.9 139.6 209.8 

0.8 28.4 273.5 111.7 37.8 45.5 98.2 172.1 

Avg. 1306.6 249.4 76.4 62.3 283.5 179.5 
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Table B2 

Optimal objective function value ( z ∗) and computing time (seconds) for the in- 

stances generated from pmed2. The optimal value without upgrading is 98.0. 

t f z ∗ Q1 Q1 ′ Q2+ ̂ K 1 Q2+ ̂ K 2 Q3+ ̂ K 1 Q3+ ̂ K 2 

1 0.2 90.0 702.8 44.8 13.3 20.6 58.9 104.1 

0.4 76.8 1372.6 593.9 25.4 27.4 68.7 115.7 

0.6 55.2 634.7 157.3 34.2 49.9 83.1 130.8 

0.8 29.0 220.0 118.9 35.3 58.6 71.6 163.8 

3 0.2 83.0 410.6 123.5 58.2 49.0 534.9 626.8 

0.4 65.4 148.4 720.2 23.3 23.6 122.0 206.5 

0.6 48.0 176.5 842.9 29.0 49.5 130.5 157.0 

0.8 24.0 1731.2 236.7 53.5 48.3 147.8 190.2 

Avg. 674.6 354.8 34.0 40.9 152.2 211.9 

Table B3 

Optimal objective function value ( z ∗) and computing time (seconds) for the in- 

stances generated from pmed3. The optimal value without upgrading is 93.0. 

t f z ∗ Q1 Q1 ′ Q2+ ̂ K 1 Q2+ ̂ K 2 Q3+ ̂ K 1 Q3+ ̂ K 2 

1 0.2 91.0 934.0 195.9 34.3 24.5 57.1 114.7 

0.4 82.0 1018.1 600.0 102.7 86.6 114.2 166.7 

0.6 60.4 1326.4 304.4 51.9 43.7 165.1 205.7 

0.8 33.0 387.7 145.0 66.7 60.3 192.9 339.2 

3 0.2 79.2 865.6 16.6 34.3 24.7 162.7 199.0 

0.4 69.6 1262.6 988.8 17.0 77.1 132.3 302.6 

0.6 48.0 1148.7 642.7 29.4 39.9 180.9 232.5 

0.8 24.2 4683.8 1170.6 39.4 52.2 222.8 216.4 

Avg. 1453.4 508.0 47.0 51.1 153.5 222.1 

Table B4 

Optimal objective function value ( z ∗) and computing time (seconds) for the in- 

stances generated from pmed4. The optimal value without upgrading is 74.0. 

t f z ∗ Q1 Q1 ′ Q2+ ̂ K 1 Q2+ ̂ K 2 Q3+ ̂ K 1 Q3+ ̂ K 2 

1 0.2 70.0 99.1 49.2 4.1 3.2 10.4 11.7 

0.4 67.0 653.9 330.3 12.8 8.9 23.9 20.2 

0.6 54.0 1213.4 224.8 61.8 34.2 105.9 76.1 

0.8 30.2 248.4 156.2 50.5 40.9 135.4 192.9 

2 0.2 67.0 217.6 61.5 5.7 3.1 11.6 10.6 

0.4 61.0 390.4 233.2 23.2 8.1 35.0 38.2 

0.6 45.6 125.7 326.2 25.1 17.2 103.6 129.3 

0.8 24.8 435.2 362.7 35.8 30.7 172.3 313.5 

5 0.2 63.2 418.4 2.8 4.2 3.7 88.7 78.3 

0.4 48.6 91.9 12.0 9.3 7.8 63.1 72.3 

0.6 34.8 371.8 48.9 84.1 14.4 310.4 229.7 

0.8 19.4 423.0 400.2 49.1 29.1 141.1 219.9 

Avg. 390.7 184.0 30.5 16.8 100.1 116.1 

Table B5 

Optimal objective function value ( z ∗) and computing time (seconds) for the in- 

stances generated from pmed5. The optimal value without upgrading is 48.0. 

t f z ∗ Q1 Q1 ′ Q2+ ̂ K 1 Q2+ ̂ K 2 Q3+ ̂ K 1 Q3+ ̂ K 2 

1 0.2 43.0 88.4 36.6 4.1 2.6 12.3 11.1 

0.4 40.0 530.1 93.5 9.5 5.2 22.4 27.8 

0.6 33.2 160.7 111.3 12.4 17.7 73.4 66.5 

0.8 18.8 176.4 150.6 34.8 20.7 106.2 126.5 

2 0.2 40.0 59.6 13.8 3.3 2.5 9.9 9.6 

0.4 36.6 216.0 20.0 7.6 4.8 22.4 37.3 

0.6 28.0 362.1 116.6 27.9 14.0 56.6 66.2 

0.8 15.4 203.8 285.3 38.4 25.1 109.1 193.7 

3 0.2 40.0 74.4 12.9 3.4 2.1 9.3 12.1 

0.4 36.0 339.1 36.4 8.8 5.2 43.3 44.3 

0.6 24.4 130.0 55.2 20.6 8.4 49.8 45.9 

0.8 13.2 329.4 376.1 35.0 19.2 106.9 192.1 

8 0.2 38.4 91.4 2.1 3.0 1.6 32.9 33.5 

0.4 28.8 95.2 9.3 4.6 2.8 41.5 23.5 

0.6 19.6 146.6 87.8 11.1 5.0 59.3 69.6 

0.8 10.0 290.7 93.7 35.8 13.5 102.1 139.8 

Avg. 205.9 93.8 16.3 9.4 53.6 68.7 

Table B6 

Percentage of variables x i j , m i j that are set to zero in model (Q1 ′ ) for instances 

pme1–pmed5, using bounds lb2 and ub2 for center upgrading. 

pmed1 pmed2 pmed3 pmed4 pmed5 

f t x i j m i j t x i j m i j t x i j m i j t x i j m i j t x i j m i j 

0.2 1 9.9 22.3 1 17.5 27.2 1 25.3 32.3 1 80.6 84.1 1 77.3 80.7 

0.4 0.2 7.3 1.2 6.8 4.3 8.9 60.8 63.4 54.4 57.1 

0.6 0.0 3.4 0.0 3.2 0.0 2.9 14.3 16.0 13.0 15.1 

0.8 0.0 1.8 0.0 1.8 0.0 1.6 0.0 1.3 0.0 1.5 

0.2 2 10.9 23.2 3 24.6 34.3 3 37.8 44.8 3 81.0 84.5 2 80.7 84.0 

0.4 0.3 7.3 3.3 8.9 9.0 13.7 61.4 64.0 59.4 62.1 

0.6 0.0 3.4 0.0 3.2 0.3 3.2 15.1 16.8 17.8 19.9 

0.8 0.0 1.8 0.0 1.8 0.0 1.6 0.0 1.3 0.0 1.5 

0.2 5 82.2 85.6 3 80.7 84.0 

0.4 63.9 66.5 59.4 62.1 

0.6 17.4 19.1 17.8 19.9 

0.8 0.0 1.3 0.0 1.5 

0.2 8 84.7 88.1 

0.4 67.2 69.9 

0.6 27.2 29.3 

0.8 0.0 1.5 

Table B7 

Optimal objective function value ( z ∗) and LP gap (%) for 

the instances generated from pmed1. 

t f z ∗ Q1 Q1 ′ Q2 Q3 

1 0.2 110.0 26.5 16.4 26.5 14.3 

0.4 92.4 29.0 20.6 34.1 15.7 

0.6 64.4 29.0 20.2 36.7 12.6 

0.8 32.2 27.4 18.3 36.4 10.1 

2 0.2 106.4 28.6 17.4 24.0 17.0 

0.4 82.8 28.9 19.5 26.5 14.0 

0.6 56.4 28.8 19.2 27.9 12.5 

0.8 28.4 28.6 19.6 28.3 11.7 

Avg. 28.3 18.9 30.0 13.5 

Table B8 

Optimal objective function value ( z ∗) and LP gap (%) 

for the instances generated from pmed2. 

t f z ∗ Q1 Q1 ′ Q2 Q3 

1 0.2 90.0 35.6 17.3 25.9 13.4 

0.4 76.8 36.9 21.7 34.9 14.6 

0.6 55.2 35.8 22.0 39.1 13.2 

0.8 29.0 35.6 23.3 42.0 13.6 

3 0.2 83.0 34.9 14.8 19.8 13.9 

0.4 65.4 34.3 17.1 23.7 13.0 

0.6 48.0 37.7 23.2 30.4 16.3 

0.8 24.0 36.7 24.1 30.4 14.3 

Avg. 35.9 20.4 30.8 14.1 

Table B9 

Optimal objective function value ( z ∗) and LP gap (%) 

for the instances generated from pmed3. 

t f z ∗ Q1 Q1 ′ Q2 Q3 

1 0.2 91.0 36.1 22.1 35.4 16.9 

0.4 82.0 37.2 26.2 46.3 18.5 

0.6 60.4 36.2 26.7 50.9 17.0 

0.8 33.0 38.7 30.8 55.0 21.2 

3 0.2 79.2 31.7 15.6 25.9 13.9 

0.4 69.6 37.7 24.2 36.9 19.4 

0.6 48.0 37.9 25.4 38.6 18.3 

0.8 24.2 37.9 27.0 39.1 18.0 

Avg. 36.7 24.8 41.0 17.9 
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Table B10 

Optimal objective function value ( z ∗) and LP gap (%) 

for the instances generated from pmed4. 

t f z ∗ Q1 Q1 ′ Q2 Q3 

1 0.2 70.0 44.1 23.0 35.9 13.4 

0.4 67.0 46.8 31.7 49.5 20.4 

0.6 54.0 46.4 35.3 57.9 23.5 

0.8 30.2 44.0 35.1 62.2 23.6 

2 0.2 67.0 43.8 21.2 33.0 13.5 

0.4 61.0 47.0 29.6 44.6 21.2 

0.6 45.6 46.7 32.7 50.3 21.9 

0.8 24.8 46.0 33.9 54.2 22.3 

5 0.2 63.2 43.8 19.3 29.0 17.0 

0.4 48.6 42.2 19.7 30.6 14.6 

0.6 34.8 43.4 23.7 35.1 16.9 

0.8 19.4 46.4 31.5 41.8 20.7 

Avg. 45.1 28.1 43.7 19.1 

Table B11 

Optimal objective function value ( z ∗) and LP gap (%) 

for the instances generated from pmed5. 

t f z ∗ Q1 Q1 ′ Q2 Q3 

1 0.2 43.0 57.7 21.7 28.9 12.8 

0.4 40.0 58.5 31.0 42.8 21.5 

0.6 33.2 58.8 39.3 53.7 26.9 

0.8 18.8 56.0 40.5 59.1 27.5 

2 0.2 40.0 56.0 17.2 23.7 11.1 

0.4 36.6 58.2 28.1 37.5 21.4 

0.6 28.0 57.7 34.2 45.2 23.6 

0.8 15.4 55.8 36.4 50.1 24.9 

3 0.2 40.0 57.0 18.3 23.7 14.4 

0.4 36.0 59.8 29.2 36.5 24.6 

0.6 24.4 55.4 28.0 37.2 19.0 

0.8 13.2 54.1 31.4 41.9 20.2 

8 0.2 38.4 58.7 18.0 20.8 18.6 

0.4 28.8 57.3 17.6 20.8 16.8 

0.6 19.6 56.2 19.7 22.2 16.0 

0.8 10.0 55.8 24.5 23.7 15.3 

Avg. 57.1 27.2 35.5 19.7 

Table B12 

Percentage decrease in the optimal cost by upgrading centers. 

f t pmed1 t pmed2 t pmed3 t pmed4 t pmed5 

0.2 1 −13.4 1 −8.2 1 −2.2 1 −5.4 1 −10.4 

0.4 −27.2 −21.6 −11.8 −9.5 −16.7 

0.6 −49.3 −43.7 −35.1 −27.0 −30.8 

0.8 −74.6 −70.4 −64.5 −59.2 −60.8 

0.2 2 −16.2 3 −15.3 3 −14.8 3 −9.5 2 −16.7 

0.4 −34.8 −33.3 −25.2 −17.6 −23.8 

0.6 −55.6 −51.0 −48.4 −38.4 −41.7 

0.8 −77.6 −75.5 −74.0 −66.5 −67.9 

0.2 5 −14.6 3 −16.7 

0.4 −34.3 −25.0 

0.6 −53.0 −49.2 

0.8 −73.8 −72.5 

0.2 8 −20.0 

0.4 −40.0 

0.6 −59.2 

0.8 −79.2 
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A

mputing time (seconds) required by models (M2) and (Q2). Each row 

i he pmed instance heading the row. We remove from the average the 

i limit of 6 h, i.e., we do not take into account the computing time of 

t  values. In this table we also present the percentage deviation of the 

a pared to lb 1 and ub 1 . A positive deviation indicates that by using the 

l

ppendix C. Detailed results for all instances 

In this Appendix we present detailed results concerning the co

n Table C1 presents average results for the instances built from t

nstances such that one of the models or both exhaust the time 

hese instances for any of the models when obtaining the average

verage time using the lower and upper bounds lb 2 and ub 2 com

atter bounds, a smaller average computing time was obtained. 
Table C1 

Average computing time (seconds) using models (M2) (connection upgrading) and (Q2) (center upgrading). 

Instance n p M2 + ˆ K 1 M2 + ˆ K 2 Deviation (%) Q2+ ̂ K 1 Q2+ ̂ K 2 Deviation (%) 

pmed1 100 5 149.2 180.1 20.7 76.4 62.3 −18.4 

pmed2 10 136.7 118.7 −13.1 34.0 40.9 20.1 

pmed3 10 176.6 165.4 −6.4 47.0 51.1 8.8 

pmed4 20 59.5 66.5 11.6 30.5 16.8 −44.9 

pmed5 33 27.8 21.6 −22.4 16.3 9.4 −42.3 

pmed6 200 5 1703.3 1280.1 −24.8 625.9 443.2 −29.2 

pmed7 10 623.1 584.4 −6.2 1061.1 787.3 −25.8 

pmed8 20 625.2 502.0 −19.7 745.7 401.3 −46.2 

pmed9 40 298.8 187.2 −37.4 651.6 517.9 −20.5 

pmed10 67 96.7 78.4 −18.9 143.0 119.7 −16.3 

pmed11 300 5 965.2 662.9 −31.3 893.4 1166.8 30.6 

pmed12 10 2264.5 1312.7 −42.0 2107.2 1149.8 −45.4 

pmed13 30 1051.4 1146.2 9.0 1772.1 1879.3 6.1 

pmed14 60 485.2 421.1 −13.2 1200.5 1179.0 −1.8 

pmed15 100 246.3 146.1 −40.7 434.7 405.8 −6.7 

pmed16 400 5 1744.6 1124.1 −35.6 1122.3 722.0 −35.7 

pmed17 10 2796 2009.4 −28.1 2515.0 1909.9 −24.1 

pmed18 40 2736.1 1574.3 −42.5 6777.1 4344.2 −35.9 

pmed19 80 1639.6 520.6 −68.2 1763.6 1761.7 −0.1 

pmed20 133 576.0 311.5 −45.9 873.8 794.3 −9.1 

pmed21 500 5 3259.4 1821.0 −44.1 2730.9 3123.3 14.4 

pmed22 10 8341.4 6501.6 −22.1 6236.0 6624.0 6.2 

pmed23 50 2217.4 2999.4 35.3 4239.2 4103.0 −3.2 

pmed24 100 963.8 1057.5 9.7 2022.9 1924.5 −4.9 

pmed25 167 457.7 823.3 79.9 667.7 613.7 −8.1 

pmed26 600 5 6414.6 6363.0 −0.8 8811.6 4593.7 −47.9 

pmed27 10 9545.0 5668.8 −40.6 6974.0 6085.4 −12.7 

pmed28 60 4251.4 2852.0 −32.9 5840.7 5501.5 −5.8 

pmed29 120 1733.3 2290.7 32.2 5137.3 4165.4 −18.9 

pmed30 200 932.7 2201.8 136.1 2586.5 1713.5 −33.8 

pmed31 700 5 5297.1 4774.4 −9.9 5731.6 4291.3 −25.1 

pmed32 10 9706.3 8725.7 −10.1 14112.1 9182.7 −34.9 

pmed33 70 4419.0 5040.7 14.1 7948.8 6573.3 −17.3 

pmed34 140 2538.3 1959.1 −22.8 3578.2 3497.2 −2.3 

pmed35 800 5 7044.4 4863.3 −31.0 5180.0 4670.0 −9.8 

pmed36 10 7906.5 8369.2 5.9 6224.1 10954.4 76.0 

pmed37 80 8472.7 6439.0 −24.0 8851.2 7184.7 −18.8 

pmed38 900 5 10787.5 9988.9 −7.4 7888.6 4523.0 −42.7 

pmed39 10 11595.3 9371.0 −19.2 14939.0 8245.7 −44.8 

pmed40 90 4507.8 5985.7 32.8 10029.3 7451.7 −15.7 
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A

med using the math-heuristic proposed in Section 5 . Tables D1 and D2 

s  100 ). For each instance, the number of nodes, n , the number of open 

c n. Each instance was solved with four different budgets, therefore the 

t r each budget, the improvement that it implies over the initial optimal 

v

ppendix D. Math-heuristic results for instances with n > 100 

In this Appendix we detail the results of the experiments perfor

how the results for the instances based upon pmed6–pmed40 ( n >

enters, p, and the optimal value without upgrading, z ∗, are show

ables also show, for each instance, the solution with upgrading fo

alue, and the execution time in seconds to find the best solution. 
Table D1 

Math-heuristic results for the instances based upon pmed6–pmed25. 

Base Upgr. Impr. Base Upgr. Impr. 

n p instance Budget z ∗ (%) Time n p instance Budget z ∗ (%) Time 

200 5 pmed6 1783.3 61.3 27.0 738.7 300 5 pmed11 1895.4 40.0 32.2 262.7 

z ∗ = 84 3566.5 43.1 48.7 1147.3 z ∗ = 59 3790.6 26.2 55.7 1332.8 

5349.6 25.7 69.4 474.5 5685.8 14.6 75.3 1033.0 

7132.7 16.8 80.0 0.0 7581.0 11.8 80.0 0.0 

10 pmed7 1278.9 47.9 25.1 2019.5 10 pmed12 1622.1 35.0 31.4 2200.4 

z ∗ = 64 2557.5 31.6 50.6 1140.2 z ∗ = 51 3243.9 23.1 54.8 9421.6 

3836.1 19.2 69.9 680.3 4865.8 13.2 74.1 5449.3 

5114.8 12.8 80.0 0.0 6487.6 10.2 80.0 0.0 

20 pmed8 1075.8 35.1 36.2 5850.1 30 pmed13 1082.8 26.0 27.8 7893.9 

z ∗ = 55 2151.4 23.6 57.1 7056.6 z ∗ = 36 2165.4 17.0 52.9 9286.9 

3227.0 14.2 74.1 6883.1 3248.0 9.2 74.5 10361.1 

4302.6 11.0 80.0 0.0 4330.6 7.2 80.0 0.0 

40 pmed9 691.6 25.0 32.4 5326.5 60 pmed14 707.9 18.0 30.8 4108.5 

z ∗ = 37 1383.0 15.6 57.8 6478.5 z ∗ = 26 1415.7 12.1 53.4 9713.7 

2074.4 8.8 76.2 4465.4 2123.4 7.0 73.1 10740.8 

2765.8 7.4 80.0 0.0 2831.1 5.2 80.0 0.0 

67 pmed10 275.3 14.0 30.0 278.9 100 pmed15 424.8 12.6 30.2 10514.4 

z ∗ = 20 550.4 8.8 56.1 6661.4 z ∗ = 18 849.5 8.2 54.5 9944.9 

825.5 5.3 73.5 7039.9 1274.1 4.9 73.0 10248.6 

1100.6 4.0 80.0 0.0 1698.7 3.6 80.0 0.0 

400 5 pmed16 1747.2 34.0 27.7 606.4 500 5 pmed21 2105.3 28.1 29.8 4534.0 

z ∗ = 47 3494.1 23.6 49.7 8360.3 z ∗ = 40 4210.4 19.0 52.6 3428.7 

5241.1 15.2 67.6 13140.0 6315.5 11.3 71.7 4459.9 

6988.1 9.4 80.0 0.0 8420.6 8.0 80.0 0.0 

10 pmed17 1621.5 28.0 28.2 1372.0 10 pmed22 2041.8 26.0 31.5 16650.1 

z ∗ = 39 3242.9 19.3 50.4 5849.1 z ∗ = 38 4083.4 17.7 53.3 13394.3 

4864.2 11.1 71.6 10778.8 6125.0 10.6 72.1 4339.5 

6485.5 7.8 80.0 0.0 8166.6 7.6 80.0 0.0 

40 pmed18 1223.0 21.0 25.1 12539.9 50 pmed23 1210.0 17.0 22.7 1006.2 

z ∗ = 28 2445.9 13.1 53.1 13405.2 z ∗= 22 2419.8 10.4 52.7 17938.8 

3668.7 8.0 71.4 3157.0 3629.6 6.4 70.9 9289.0 

4891.5 5.6 80.0 0.0 4839.4 4.4 80.0 0.0 

80 pmed19 709.7 13.7 23.8 13793.5 100 pmed24 739.2 11.0 26.7 13484.5 

z ∗ = 18 1419.2 8.4 53.3 14153.3 z ∗ = 15 1478.2 7.6 49.3 17399.2 

2128.7 5.0 72.4 13617.8 2217.2 4.5 69.7 17038.4 

2838.2 3.6 80.0 0.0 2956.2 3.0 80.0 0.0 

133 pmed20 401.4 9.5 26.8 13593.1 167 pmed25 432.2 8.0 27.3 2602.0 

z ∗ = 13 802.7 6.7 48.7 13723.3 z ∗ = 11 864.2 5.4 51.2 17658.4 

1203.9 4.3 66.9 13641.7 1296.2 3.4 69.1 16453.7 

1605.2 2.6 80.0 0.0 1728.1 2.2 80.0 0.0 
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Table D2 

Math-heuristic results for the instances based upon pmed26–pmed40. 

Base Upgr. Impr. Base Upgr. Impr. 

n p instance Budget z ∗ (%) Time n p instance Budget z ∗ (%) Time 

600 5 pmed26 2412.4 25.9 31.7 11873.4 700 5 pmed31 2156.5 23.0 23.3 3023.6 

z ∗ = 38 4824.7 17.2 54.8 1689.9 z ∗ = 30 4312.8 16.4 45.3 1784.8 

7236.9 9.6 74.7 1436.9 6469.0 10.3 65.5 9183.8 

9649.1 7.6 80.0 0.0 8625.3 6.0 80.0 0.0 

10 pmed27 1925.2 23.0 28.1 3785.4 10 pmed32 2289.3 20.4 29.6 24942.1 

z ∗ = 32 3850.3 15.5 51.6 17600.4 z ∗ = 29 4578.5 13.6 53.0 19545.1 

5775.3 9.1 71.5 14485.1 6867.6 7.4 74.4 6391.1 

7700.3 6.4 80.0 0.0 9156.7 5.8 80.0 0.0 

60 pmed28 1136.6 14.0 22.2 1064.4 70 pmed33 1148.7 11.7 21.9 20365.6 

z ∗ = 18 2273.1 8.6 52.3 21354.7 z ∗ = 15 2297.3 8.0 46.8 23948.6 

3409.5 5.2 71.1 13419.8 3446.0 4.7 68.5 24500.7 

4546.0 3.6 80.0 0.0 4594.7 3.0 80.0 0.0 

120 pmed29 738.4 10.0 23.1 1875.7 140 pmed34 755.9 8.2 25.9 24773.7 

z ∗ = 13 1476.6 6.8 48.0 20240.1 z ∗ = 11 1511.9 5.7 48.0 24729.3 

2214.8 4.0 69.2 20923.3 2267.8 3.5 67.8 24203.1 

2953.1 2.6 80.0 0.0 3023.8 2.2 80.0 0.0 

200 pmed30 465.8 7.0 22.2 0.0 

z ∗ = 9 931.4 4.9 45.8 19763.6 

1397.0 3.1 65.0 20566.8 

1862.6 1.8 80.0 0.0 

800 5 pmed35 2274.9 21.3 29.0 16108.7 900 5 pmed38 2632.0 21.0 27.6 728.8 

z ∗ = 30 4549.7 14.9 50.4 15148.1 z ∗ = 29 5264.0 13.2 54.4 17760.7 

6824.6 9.0 69.9 13709.7 7896.0 8.1 72.2 14322.4 

9099.4 6.0 80.0 582.0 10528.0 5.8 80.0 0.0 

10 pmed36 2207.9 20.0 25.9 19755.5 10 pmed39 2183.2 17.0 26.1 29499.1 

z ∗ = 27 4415.8 13.7 49.2 22984.6 z ∗ = 23 4366.5 11.7 49.2 14251.3 

6623.7 8.6 68.1 20554.0 6549.7 6.9 70.0 10325.3 

8831.6 5.4 80.0 9010.9 8733.0 4.6 80.0 0.0 

80 pmed37 1307.7 11.0 26.7 26633.0 90 pmed40 1265.8 10.0 23.1 15049.1 

z ∗ = 15 2615.4 7.7 48.8 25193.9 z ∗ = 13 2531.7 6.9 46.8 30973.5 

3923.0 4.3 71.1 27070.3 3797.5 4.0 69.2 31594.6 

5230.7 3.0 80.0 0.0 5063.3 2.6 80.0 0.0 
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