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ABSTRACT

In this paper, different upgrading strategies are investigated in the context of the p-center problem. The
possibility of upgrading a set of connections to different centers is considered as well as the possibility of
upgrading entire centers, i.e., all connections made to them. Two variants for these perspectives are ana-
lyzed: in the first, there is a limit on the number of connections or centers that can be upgraded; in the
second, an existing budget is assumed for the same purpose. Different mixed-integer linear programming
models are introduced for those problems as well as data-driven lower and upper bounds. In most cases,
an optimal solution can be obtained within an acceptable computing time using an off-the-shelf solver.
Nevertheless, this is not the case for one particular family of problems. This motivated the development
of a math-heuristic seeking high-quality feasible solutions in that specific case. Extensive computational
experiments are reported highlighting the relevance of upgrading connections or centers in the context

of the p-center problem.

© 2023 The Author(s). Published by Elsevier Ltd.
This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/)

1. Introduction

Given a set of nodes in a metric space, the p-center problem
consists of determining at most p points in such a way that the
maximum distance between the given nodes and the closest cen-
ters is minimized. This is a minmax problem that has been widely
studied [5].

The p-center problem on a network gained much notoriety and
momentum with the work by Hakimi [15]. This is a problem that
consists of selecting p points (centers) in a network so as to mini-
mize the maximum weighted distance of the nodes of the network
to the selected points.

The classical p-center problem and its variants have many ap-
plications among which we can point out those in telecommunica-
tions, emergency facility location, and logistics. p-Center problems
are particularly appropriate for situations when equity is impor-
tant, as in a disaster management environment (see, e.g. Akgiin
et al. [1], Dénmez et al. [11], Stienen et al. [25]) or in the con-
text of strategic defense sites (see, e.g., Bell et al. [3]). The inter-

* This manuscript was processed by Associate Editor Prof. Benjamin Lev
* Corresponding author at: Departamento de Estadistica, Matematicas e Infor-
matica, Universidad Miguel Herndndez, Elche, Alicante 03202, Spain.
E-mail address: l.anton@umh.es (L. Anton-Sanchez).

https://doi.org/10.1016/j.0mega.2023.102894

ested reader can refer to the overviews provided by Calik et al.
[5], Fadda et al. [13] and Wang et al. [26] as well as to the ref-
erences therein. What is more, the same problem can be used in
applications where measures other than distances are of relevance
when connecting demand nodes and centers, such as travel times
or transportation costs. For this reason, to make our manuscript
more general, hereafter we use the term “cost” or “allocation cost”
to refer to the measure of interest when connecting a demand
node and a center.

Different variants of the p-center problem have been dealt with
in the literature triggered by practical needs. In this work, we fo-
cus on the case in which all nodes have identical weights and a
finite set of possibilities have been identified for locating the cen-
ters. This allows casting the problem as a discrete minmax facility
location problem, which in turn can be formulated as an integer
programming problem.

To the best of the authors’ knowledge, the literature on p-center
problems assumes that the costs for connecting the demand nodes
and the open centers are known beforehand and do not change.
Nevertheless, in practice, one may ask whether a better solution
can be ultimately achieved if we can somehow compress or re-
duce beforehand the allocation costs, thus obtaining what could be
coined as upgraded connections. Such compression can materialize
in different ways.
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One possibility regards individual connections. For instance, if
a connection corresponds to a road, compression may be achieved
by redesigning the road (e.g. straightening some curves if possi-
ble) or simply by selecting a different trajectory such as a highway
instead of a secondary road. In the context of logistics and trans-
portation, a more interesting possibility is to focus on travel time.
In this case, changing the transportation mode (e.g. to a faster ve-
hicle) may be a way to decrease the travel time thus upgrading the
connection. The reader can refer to the recent paper by Baldomero-
Naranjo et al. [2] for other examples of upgrading connections be-
tween demand nodes and centers in covering-type facility location
problems.

Another possibility for compressing the allocation costs con-
sists of working directly at a center level—center upgrade. When
a center is upgraded, all the connections to it are considered so
as to decrease the allocation cost for all of them. For instance, in
the case of mobile centers, a technological upgrade or the use of
more skilled human resources may lead to a service being pro-
vided faster to all demand nodes allocated to the center.

The possibility of improving some parameter values “before op-
timizing” to further improve the optimal solutions is not new in
Operations Research and Management Science. The best-known
case is possibly the compression of execution times in project
management and machine scheduling problems (see, e.g. Lamber-
son and Hocking [21], Shioura et al. [24], Yang [27]). In that case,
by assigning more resources to some (critical) activities or jobs
it may be possible to reduce their execution time thus reducing
the makespan of a project or batch production. Similarly in flight
scheduling problems the flight upgrade depends on some timing
flexibility indicators (see, e.g. Katsigiannis and Zografos [20]).

In the context of facility location problems, Blanco and Marin
[4] investigated cost compression in the so-called tree of hubs lo-
cation problem [7,8]. The goal is to upgrade hubs (by upgrading all
the connections to a hub) to improve the optimal distribution cost.
Two enhanced mixed-integer linear programming (MILP) models
are derived and empirically compared for the problem. The au-
thors review the literature on connection upgrading in the context
of network optimization problems, which include shortest path
problems, minimum cost spanning tree problems, and the 1-center
problem. The latter is investigated in a network by Sepasian [23].
In all cases, as in the case of the discrete p-center problem that
we are investigating in the current paper, the goal is to choose the
best-after-changes solution.

In the context of network design and optimization, we also cite
the work by Ibaraki et al. [16] who seek to reduce the eccentricity
of a network by upgrading some nodes, i.e., reducing the lengths of
the edges incident to such nodes. The authors consider separately
continuous- and discrete-upgrading strategies.

More recently, Baldomero-Naranjo et al. [2] investigated edge
upgrading in the context of maximal covering facility location. Un-
like the p-center problem, in which the coverage radius is endoge-
nous, a maximum coverage radius is initially imposed and the goal
is to install a certain number of facilities so that the maximum
possible demand is covered. For the upgraded version of the prob-
lem, the authors propose and compare different mixed-integer pro-
gramming models.

Throughout this paper, we analyze two perspectives when it
comes to upgrading: (i) there is a given number of components
(connections or centers) that can be upgraded; (ii) there is a bud-
get that limits the upgrades that can be made.

Upgrading in the context of the p-center problem when possi-
ble is actually a means to ensure a priori that better service quality
will be achieved. By seeking an upgraded solution we aim at finding
connections or centers whose cost reduction implies an improve-
ment of the system. We should note that other possibilities have
been considered in the literature such as positioning the commodi-
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ties closer to where they are required (see, e.g., Corberdn et al.
[9] for such a possibility in the context of a minsum facility lo-
cation problem).

Our work lies in a stream of research aiming at developing
models and techniques for extensions of the classical discrete p-
center problem triggered by practical needs (see Calik et al. [5], Ca-
lik and Tansel [6]). We also refer to Kahr [17], Karatas and Eriskin
[18], Pelegrin and Xu [22], and Wang et al. [26] on the role of
achieving an optimal demand covering in the context of Logistics
problems.

The main contributions of this work can be summarized as fol-
lows:

i. Four different extensions of the classical p-center problem are
introduced, namely,
upgrading individual connections and upgrading centers, both
combined with a maximum number of upgrades or a limited
budget for upgrading.

ii. Different optimization models are derived for the above vari-
ants.

iii. Lower and upper bounds as well as optimal solution properties
are discussed.

iv. A math-heuristic approach is designed and implemented for
budget-constrained center upgrading.

v. Extensive computational experiments are conducted. Instances
with a number of nodes ranging from 100 to 900 are solved
and the results are thoroughly reported, which gives strong ev-
idence that a significant decrease in the optimal covering cost
can be achieved through upgrading.

The remainder of this paper is organized as follows. In
Section 2 we revisit several modeling aspects related to the dis-
crete p-center problem to ensure a self-contained manuscript. In
Section 3 we look into the possibility of upgrading a set of indi-
vidual connections. In Section 4 we focus on upgrading centers. In
Section 5 we propose a math-heuristic approach for the hardest
problems to solve. In Section 6 we report on extensive computa-
tional experiments performed to empirically assess the relevance
of upgrading. Finally, we provide some discussion and conclusions
in Section 7.

2. The discrete p-center problem

To make this manuscript self-contained, we review several well-
known aspects related to the discrete p-center problem. Let I be
the set of potential center locations and J the set of demand nodes.
Consider a cost, say ¢;;, for allocating node j €] to center i € I. As
discussed in the previous section, this cost may correspond to dis-
tance (e.g. road, euclidean), travel time, fuel consumption, vehicle
utilization, et cetera. We assume that costs are non-negative and
satisfy the triangle inequality. Consider the following two sets of
binary decision variables: y; (i € I) equal to 1 if and only if node i is
selected for opening a center; x;; equal to 1 if and only if demand
node j €] is allocated to center i € I. The objective of the problem
is to select p centers to minimize the maximum allocation cost of
the demand nodes to the selected centers.

Daskin [10], proposed the following integer programming
model for the discrete p-center problem:

minimize z (1)
subjectto )" ¢jx;; <z Vjel. (2)
iel
ZXU =1 V] E_], (3)
iel
Xij < i Viel, je], (4)
> vi<p (3)

iel
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yi€{0.1}
Xij € {0,]}

Yiel, (6)
Viel je] (7)

In the above model, the objective function (1) together
with inequalities (2) define the minmax cost objective; con-
straints (3) guarantee that every demand node is allocated to
one and only one center; inequalities (4) ensure that demand
nodes can only be allocated to open centers; the maximum
number of p centers to open is imposed by constraint (5). Finally,
constraints (6) and (7) state the binary domain of the decision
variables.

Other models have been proposed for the problem namely, that
by Elloumi et al. [12] and the models (P3) and (P4) introduced by
Calik and Tansel [6]. In these three cases, all costs ¢;j,iel, je],
are sorted non-decreasingly ignoring duplicates. Let )4, ..., ¥« be
the resulting sorting with « denoting the number of distinct values
and define K={1,..., k}. Foriel, je], and k €K, let g;j be a
binary parameter indicating whether the cost ¢;; is smaller than or
equal to the kth cost, y,, i.e,

1,
Qjjk = 0.

Consider now a binary variable z; equal to 1 if and only if
the maximum allocation cost induced by the selected p centers is
equal to y,. The discrete p-center problem can be formulated as
follows:

if C,‘j < Yk
otherwise.

minimize "y, z (8)
keK

subjectto (5), (6),
Z ijrYi = Zk
iel
sz =1, (10)
keK
Zy € {0, 1}

Viel kek, (9)

Vk e K. (11)

In the above model, which corresponds to model (P3) introduced
by Calik and Tansel [6], the objective function (8) and constraints
(9) ensure that the variable z, corresponding to the maximum al-
location cost is selected and the corresponding solution value is
accounted for. Constraint (10) ensures that exactly one maximum
allocation cost is defined; the domain of the new z-variables is
stated in constraints (11).

Given that exactly one of the variables z;, is selected as 1—
constraint (10)—and that all distinct cost values are considered in
increasing order, it is possible to strengthen model (P3) by replac-
ing (9) with

k
D apyi=y zg Vjel kek (12)

iel q=1

This enhancement leads to model (P4) proposed by Calik and
Tansel [6]. Those authors also show that the above z-variables re-
late straightforwardly with the u-variables introduced by Elloumi
et al. [12]. In the latter work, the authors consider u, as a bi-
nary variable equal to 1 if and only if the radius covering all de-
mand nodes is greater than or equal to y, (ke K\ {1}), ie., the
u-variables are all equal to 1 until y, is reached, then they are
all equal to 0, unlike the z-variables where only one is equal to
1. Therefore, the relation between these variables is

ukzizq ke K\ {1}. (13)

q=k

The above relation can be embedded in a set of constraints pre-
sented by Elloumi et al. [12].
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Fig. 1. A 1-center problem with a single connection upgrading.

The models just revisited namely, the model by Daskin [10] and
models (P3), (P4) introduced by Calik and Tansel [6], are at the
core of the developments we propose for upgrading the p-center
solution.

3. Upgrading connections

In this section, we focus on the case in which up to a certain
given number of connections can be upgraded. Afterwards, we as-
sume a cost for upgrading the connections together with the exis-
tence of a budget for upgrading.

3.1. Upgrading a maximum number of connections

Let us assume that up to t connections can be upgraded. We
assume that upgrading a connection between demand node j €]
and potential center i € [ means that the cost for allocating i to j
is reduced according to a certain factor. We define the new cost
as (1 — f)c;; where f € [0, Fnax], and Fnax < 1. The parameter f is
called the discount or compression factor.

Example 1. Consider the example depicted in Fig. 1 where A, B, C,
and D are the demand nodes and F1 ad F2 are the potential cen-
ters. Assume that the values next to the edges indicate the travel
time between the corresponding demand node and the potential
center. Suppose the objective is to select one single center. In this
case, the optimal solution calls for opening the center in F2 with a
maximum travel time of 3.

Assume now that it is possible to upgrade one connection by
a factor of at most 0.5. In this case, connection (D,F1) can be up-
graded and the resulting travel time becomes 2. This calls for a
new optimal solution: opening center F1 with a maximum travel
time of 2.5.

This simple illustration shows the impact that an integrated
upgrading-and-location-decision can have in the final solution.

O

Given the possibility of upgrading some connections before se-
lecting the p centers, we consider now a mathematical model that
requires the introduction of one additional set of binary decision
variables. For i e I and j € J] we define

1, if connection between demand node j
m;j = and location i is upgraded;

0, otherwise.
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The p-center problem with upgraded connections can be for-
mulated mathematically as follows:
(M1) minimize z(1)
subjectto ) " (cijx;j — feijmyj) <z

iel

Vjel (14)

mijfxij ViEI, jE], (15)
YD my =t (16)
iel jeJ

3) -,

my; € {0,1} Viel, je] (17)

In the above model, constraints (14) adapt the actual maximum
radius to the upgrading; constraints (15) ensure that a connection
can only be upgraded if it is used; conversely, it is not useful to
upgrade it. Finally, constraints (17) define the domain of the new
decision variables.

Likewise, we can adapt the model (P3) introduced by Calik and
Tansel [6] to the above upgrading strategy. Given that we do not
know beforehand which cost will be used in a connection (the
original one or its upgrade) we must consider both possibilities.
Accordingly, we now sort all costs ¢;; and (1 - f)¢; (iel, je])

non-decreasingly (ignoring duplicates). Let 1, ..., V¢ be the result-
ing sorting and K = {1,..., £}, with £ denoting the total number of

(different) values found.

To model the problem we need to keep track of the upgraded
connections used since we are imposing a limit (t) on their num-
ber. For this reason, we keep considering a binary parameter now
denoted by d;, associated with the original costs defined as fol-
lows:

R 1,
Qjjk = 0.

Additionally, we introduce a similar parameter for the upgraded
costs:

if ¢;; < P4 N
WSV el keR.
otherwise.

- 1, if(l—f)C,‘jS)?k; N
b = iel, je] keKk.

o {0, otherwise. Tl

We use again variables z, but now considering k € K. Finally, we
introduce one additional set of decision variables for keeping track
of the upgraded connections used. In particular, for j ], we de-
fine

1, if demand node j makes use of an upgraded
sj = connection;

0, otherwise.

We can now extend to our problem the model (P3) by Calik and
Tansel [6], which leads to:

(M2) minimize ) $z (18)

keK
subject to Zdijky,- + ZB,‘jkyl' >z, VjeJ kek, (19)

iel iel
> iy + i =z Viel keR, (20)
iel
Y s<t, (21)
Jjel
S z=1, (22)
keK
(5), (6),
z, € {0,1} Vk e R, (23)

sje{0.1} Vjel (24)
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Table 1
Size of the models in terms of (maximum number of)
binary variables and constraints.

Model # 0/1 variables # constraints
(M1) [-+21ul 20+ U1+ 11D
(M2), (M3) I+ Ul +211Ul 3+411U1?

In the above model, the objective function (18) together with con-
straints (19) and (22) account for the maximum cost used (to min-
imize). Constraints (20) check the exact upgrades used: in case all
demand points are allocated within a cost , then z; is equal to 1
and we know that for every demand point, there is an open center
within that cost. Hence, either d;;, = 1 or b, = 1 or both for some
open center i (y; =1). In this case, if we observe that for some
demand point j there is no d;; =1 but there is a Bijk =1 then
we know that an upgraded connection with a cost smaller than or
equal to y, is being used and thus by constraints (20) we must
have s; =1. Constraint (21) ensures that at most ¢ connections
are upgraded; constraint (22) reads as before. Finally, we have the
maximum number of centers to open and the domain constraints.

The model (P4) proposed by Calik and Tansel [6] can also be
extended to our case. The new model, that we call (M3), results
from (M2) by replacing (19) and (20) with

k
DoGpyi+ ) bipyi=) zg Viel kek, (25)
iel iel q=1
and
k .
> dyi+si=> zg Viel kek. (26)
iel q=1

Models (M2) and (M3) have potentially many more constraints
than (M1) because in case no ties exist, the number & of differ-
ent costs can be 2|I| |J|. This can be assessed in Table 1. The p-
center problem with upgrading has a discrete p-center problem as
a particular case and thus, not surprisingly, it is NP-hard (see Kariv
and Hakimi [19], for the complexity of the p-center problem in the
general case).

When [6] introduced their models (P3) and (P4), they reduced
the model size by restricting the index set (K, in our case). This
can be accomplished by using valid lower and upper bounds, say
Ib and ub, on the optimal objective function value. The restricted
set of indices is set as K’ = {ke K | Ib < ), < ub).

A lower and upper bound that we can directly consider are

Iby = (1 - f)LB2 and ub; = UB2,

respectively, where LB2 and UB2 are the best lower and upper
bounds proposed in Calik and Tansel [6] for the original p-center
problem, i.e., without upgrading. We denote the resulting restricted
set of indices by K;. Nevertheless, other alternatives can be pro-
posed, which hopefully lead to improved bounds.

Focusing on feasibility, let V C I be the set of p centers yielding
uby; (UB2 in Calik and Tansel [6]). Each center induces a cluster
of demand nodes—those allocated to that center—(ties arbitrarily
broken). Let T; be the maximum distance to center i € V from a
demand node of its cluster. Naturally, ub; = max;.y T;.

Let i* be a cluster (center) such that i* € argmax;.y T; and let
e be an edge in that cluster whose length is equal to T;<. By up-
grading edge e, its cost becomes equal to (1 — f)T;.. After doing so,
we recompute T and max;.y T;. If max;.y T; corresponds to the dis-
tance of some upgraded edge, then ub, = max;.y, T; defines an im-
proved upper bound. Otherwise, we can repeat this procedure (at
most until ¢ connections are upgraded). In this case the improved
upper bound, ub, is given by the final value found for max;.y T;.
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The above procedure is in fact a mechanism for obtaining a
hopefully improved feasible solution to the problem.

In terms of the lower bound, we can also attempt to improve it
as follows. We start by considering the upper bound UB1 proposed
by Calik and Tansel [6]. As those authors point out, that value is
smaller than or equal to two times the optimal value (see Gonzalez
[14]). Hence, UB1/2 provides a lower bound on the optimal value
(without upgrading). Thus, (1 — f)UB1/2 provides a lower bound
on the optimal value with upgrading. The smallest cost p, (k € R)
which is greater than or equal to (1 — f)UB1/2 yields an improved
lower bound that we denote by [b,.

Eventually, the restricted index set induced by Ib; and ubq can
be fine-tuned leading to K, = {k € K | Iby <, < ub,}.

3.1.1. Pre-processing data and fixing variables

Models (M2) and (M3) have more variables and potentially
many more constraints than model (M1) (Table 1). The practical
success of models (M2) and (M3) stems from the use of upper
and lower bounds on the optimal value to eliminate many vari-
ables and constraints. The purpose of this section is to extend the
use of such bounds to fix variables in the model (M1) and also
to strengthen the LP relaxation. It could happen that by eliminat-
ing variables all the models turn out to be equally competitive in
computing time.

The following remark makes it explicit how to set variables to
zero in the model (M1) using bounds on the optimal value.

Remark 1. Let ub and Ib be upper and lower bounds on the op-
timal value of model (M1), respectively. Let (z*, x*,y*, m*) be an
optimal solution of model (M1).

i. If (1 - f)cjj > ub, then x;‘j = m;‘j =0.
ii. If ¢;j < Ib, then m;‘j =0.

In other words, the remark states that (i) if the upgrade of a
connection exceeds a known upper bound, then neither is this con-
nection used nor upgraded in the optimal solution and (ii) if the
cost of an edge is smaller than or equal to a known lower bound,
then, surely this connection is not upgraded in the optimal solu-
tion.

The properties of the optimal solutions in Remark 1 are trans-
lated into equalities that can be added to the model (M1) without
changing its optimal value.

xj=mjj=0 Viel jeJ:(1- f)c;>ub (27)
ij‘:O Viel,jGJZCijflb (28)

Apart from fixing variables to zero, upper and lower bounds can
be used for modifying the cost matrix.

Remark 2. Let ub and Ib be upper and lower bounds on the op-
timal value of model (M1), respectively. If ¢;; is replaced by a big
constant M for all i e I, j € J such that (1 — f)¢;; > ub and ¢;; is re-
placed by Ib for all i e[, j €] such that ¢;; <Ib, then the optimal
value of model (M1) remains the same.

It is worth noting that setting variables to zero, as indicated
in Remark 1, does not modify the value of the linear relaxation
of the model (M1), while modifying the values in the cost matrix
(Remark 2) may change the value of the linear relaxation thus re-
ducing the integrality gap.

A similar result to Remark 1 can be obtained by setting the
variables to zero in models (M2) and (M3) as follows:

s;=0 Vje]:(l—f)milncij>ub, (29)
1e
sj=0 Vje]:malxcijslb. (30)
le
Note, however, that this requirement is much more demanding and

less likely to be met in a cost matrix. So, we do not consider its
inclusion of relevance.
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3.2. Budget-constrained connection upgrading

We assume now that there is a limited budget for upgrading
connections. If the discount factor is the same for all connections
as in the previous section, then a budget constraint is equivalent to
a limit in the number of connections that can be upgraded. Since
this case has already been analyzed, we assume that the discount
factor is connection-dependent and the extent of cost compression
of a connection is a decision to make.

Let us assume the existence of a maximum amount, say B, that
can be spent on upgrading. Let r;; be a decision variable represent-
ing the discount factor to adopt in the connection between loca-
tion i € I and demand node j € J. If the connection is not upgraded,
then r;; = 0. Otherwise, the new cost for allocating node j to cen-
ter i becomes (1 —rj;)c;j where ry; € [Rpin, Rmax], with 0 < Ry <
Rmax < 1.

We assume a unit compression/reduction cost similar for all
connections. This allows expressing the available budget, B, in
terms of the maximum total cost units that can be reduced. The
new problem can be formulated mathematically as follows:

(M4) minimize z (1)

SUbjECt to Z(C,’_"X,‘j — C,-jr,j) <z V] G]s (31)
iel
3)-(1)
rij < xij Vl S I,_] GJ, (32)

ZZCUT,'] <B, (33)

iel jeJ
Tij € {0} U [Rinin, Rmax]

Constraints (31) adapt the actual maximum radius to the up-
grading; constraints (32) ensure that a connection can only be up-
graded if it is used; constraint (33) is the budget constraint. Finally,
constraints (34) define the domain of the new decision variables.

Model (M4) has |I| + |I| |J| binary variables and 2(1 + |J| + || |J])
constraints.

Vielje] (34)

Proposition 1. Consider a connection between location i € I and de-
mand node j €], and suppose that Ry, = 0. Let z* be the optimal
value of the objective function. If an optimal solution calls for upgrad-
ing connection between i and j, then z* = (1 —Tj;)c;;, where fj; de-
notes the value of variable r;; in that optimal solution.

Proof. Let us consider an optimal solution to the problem de-
noted by (z*,x*,y*, r*) such that j; > 0, i.e., the connection be-
tween location i and demand node j is upgraded. In this case,
due to (32) the connection must be used and so we must have
(1 —Tjj)cij < z*. If equality holds, then the proof is completed. Oth-
erwise, we have (1-—7;)¢;; <z*. In this case, we can reduce the
value of variable r;; from the current one 7;; to the value 0 < ?,-j <
fij such that (1 - ?ij)cij = z* without changing the solution value,
which completes the proof. O

When R,;, = 0 we can distinguish among three different cases
according to the magnitude of Rnax. Let z* be the optimal value
of the problem and denote by c; the t-th maximum cost in the
optimal solution (c; is the largest cost, ¢, is the second largest,
etc.). If ¢; — ¢;Rmax > ¢ then we say that Rmax is small; else, if
€1 — €1Rmax < ¢; for some t > 2 we say that the parameter has a
medium value; else, we say that Rpax is large.

We provide some insights using Fig. 2. In this figure, we focus
on the 6 connections and costs defining an optimal solution for
some instance. The horizontal bar depicted for each cost indicates
the range for that cost, starting from a maximum compression and
ending with the original cost value. The figure is divided into three
sub-figures corresponding to Rmax = 0.1, 0.5, 0.9, respectively.
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Optimal range for the solution R ; =0, R, =0.1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
cl=22 | ]
c2=18 [ ]
c3=16 | ]
c4=10 -

c5=7 [ ]
c6=4 [ ]

Optimal range for the solution R ; =0, R, =0.5

6 7 8 9

16

15
1

cl=22

c2=18

c3=16

c4=10

10 11 12 13 14 16 17 18 19 20 21 22 23
I

|
5=7 |
c6=4 I

Optimal range for the solution R _; =0, R, . =0.9

1 2 3 b 5 6 7 8 9 10 11
ci=22
=15 |
=16 |
ci=10 -
=7
co=+

Fig. 2. Optimal solution description when Ry, = 0.

When Rpax is small, independently from the budget, only up-
grades on the most-costly connection lead to an improvement in
the optimal value. This is illustrated in the upper part of Fig. 2.
In this case, we can observe that even if the budget allowed the
maximal decrease in the cost c¢; (2.2 units) such decrease would
still render ¢, a value larger than the largest value of c,.

If Rmax lies in the so-called range of medium values, then the
optimal solution involves upgrading connections starting from the
most expensive one (corresponding to c¢;) and proceeding to up-
grade other connections. However, the upgrade stops either when
the budget is attained or when the optimal value reaches c;(1 —
Rmax). Fig. 2, middle, illustrates this. In this case, for a budget
B = 11, the optimal solution would be 15 (marked by the dark grey
bar) while for a budget B =23, it would be 11 (marked by the
dashed grey bar). In particular, for any budget larger than B = 23
the optimal objective function value would remain equal to 11
since it cannot be less than the minimum value possible for the
highest cost (¢ (1 — Rmax) = 11).

Finally, if Rmax is large all connections can be upgraded. This is
what we illustrate in Fig. 2 bottom.

Despite the fact that the above results and comments refer to
the case Ry, =0, we note that our models are general in the
sense that we may have R, > 0. In fact, we explore this possibil-
ity in the computational experiments whose results are reported
in Section 6.

Remark 3. Adapting the models (P3) and (P4) by Calik and Tansel
[6] to budget-constrained upgrading poses a major challenge: the
sorting for the costs depends on the compression decisions made
and thus those models (P3) and (P4) can be adapted only if
that sorting is also modeled mathematically and embedded in the
model. For this reason, we do not consider adapting those mod-
els to our case since we do not foresee any particular advantage of
doing so.

An interesting aspect related to the budget-constrained model
just presented is related to the values of B that make sense to con-
sider. In fact, the budget constraints become of relevance only if
the existing budget is binding and allows changing the solution.

Given that all rj; € {0} U[Rpn, Rmax] it is easy to conclude that
the minimum cost we need to pay for implementing an upgrade is
equal to

c .
Bhin = Rmin x min {Cij}'
iel, je

Thus, a budget below this threshold prevents any upgrade from be-
ing feasible.

Suppose now that we ignore the budget constraint (33) in the
model (M4) and solve it. In this case, we obtain the minimum ob-
jective function value, say Z, independently from the budget. Con-
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sider now the following model:

(M4) minimize DO it (35)
iel jeJ
subject to ) " (cijx;j — Cijfyj) < Z Vie] (36)
iel

(3)-(7). (32). (34).

The optimal value of (m) gives the minimum budget that
needs to be considered to make the budget constraint non-binding.
Thus, the optimal value of this model sets an upper threshold B,
that is interesting to consider.

In our experiments, we set B

and BS,,, as just introduced.

Remark 4. It is not necessary to solve model (M4) ignoring con-
straints (33) to obtain Z, since Z = (1 — Rmax)z*, where z* is the
optimal value of the original problem without upgrading. Further-
more, if we were interested in obtaining the minimum budget that
ensures an improvement of R%, we could solve the model (M4) by

fixing Z= (1 — R%)z*.

3.2.1. Pre-processing data and fixing variables

Variables z, x;; and y; have the same meaning in model (M4) as
in model (M1). Thus, conditions in Remarks 1 and 2 can be easily
adapted for model (M4). In particular, the statement in the follow-
ing remark holds.

Remark 5. Let ub and Ib be upper and lower bounds on the opti-
mal value of model (M4), respectively. Let (z*, x*, y*,r*) be an op-
timal solution of model (M4).

i If (1 —Rmax)cij > ub, then X;fj = rl.*j =0.
ii. If ¢;j < Ib, then r;‘j =0.

The number of variables that can be set to zero using
Remark 5 depends very much on the value of Rpax. When Rpax is
very large, the condition (1 meax)cij > ub will be fulfilled much
fewer times than when this value is smaller.

Remark 2 remains the same by replacing (M1) by (M4) and f
by Rmax.

In order to apply Remark 5 to model (M4), we propose in
Remark 6 two bounds for this model.

Remark 6. Any of the lower bounds proposed in Section 3.1 for
model (M1) with f = Rmax is a lower bound for the optimal value
of model (M4). An upper bound can be obtained by following
Algorithm 1.

Algorithm 1 (M4) upper bound algorithm.

1: Let yq,..., ¥« be the sorted costs ;

2: Forall ke {1,...,«}, let ;; = Rmaxy) be the maximum amount
that can be spent on upgrading the connection with cost y; ;

3: Let T + 1 be the minimum number of p-values that can exceed
the budget: Y _, ;. qur<Band >}_, ;> B;

4: Let v* be the optimal value of the problem of upgrading a max-
imum number of T connections (optimal value of models (M1),
(M2) or (M3) witht =T) ;

5: v* is an upper bound of the budget-constrained upgrading
model (M4).

Algorithm 1 gives an upper bound on the optimal value of the
model (M4) because it obtains the objective value of a feasible so-
lution. Value T is the minimum number of connections that a fea-
sible solution to model (M4) would upgrade because it is obtained
by assuming that all the budget is invested to upgrade the most
expensive connections and that the maximum amount of budget
is spent for each of these expensive connections. In other words,
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Table 2

[lustration of the calculation of T in Algorithm 1.
k 1 2 3 4 5 6
Vi 1 5 7 9 10 14
Ik 0.8 4 56 7.2 8 11.2
e, 368 36 32 264 192 112

whatever the selected T connections are, budget B is enough to
upgrade them. Any feasible solution of models (M1), (M2), or (M3)
with t =T is a feasible solution of model (M4), in particular the
optimal one.

Example 2. Let suppose that Rpax = 0.8, the budget is B =28 and
Algorithm 1 is applied to the data in Table 2. Then, T is 3 because
26.4 < 28 < 32. It means that investing as much as possible in up-
grading the most expensive connections, 3 connections can be up-
graded.

4. Upgrading centers

We now turn our attention to the possibility of upgrading cen-
ters, i.e.,, by considering upgrading all the costs corresponding to
allocations decided for a center. We analyze separately the case
in which there is a maximum number of centers that can be up-
graded and the case in which we have an exogenous budget for
the upgrading.

4.1. Upgrading a maximum number of centers

Let t < p be the maximum number of centers that can be up-
graded. As done in the previous section when upgrading connec-
tions, we consider a fixed compression factor f. As before, when
the connection between demand node j € J and location/center i €
I is upgraded, the corresponding allocation cost becomes (1 — f)c;;
where f € [0, Fnax], with Fpax < 1.

We consider again the m-variables already introduced in
Section 3.1. For each iel and je], m; is equal to one if and
only if the connection between demand node j and center i is up-
graded. Now, we also need to consider decision variables indicating
whether a center is upgraded. For every i € I we define

1,
Vi = 0

The new problem can be formulated as follows:

if center i € I is upgraded;
otherwise.

(Q1) minimize z (1)
subjectto (3) — (7), (14), (15), (17),

Vi <Y Viel, (37)

mij < V; Viel, je] (38)

Vi + X <myj+ 1 Viel, je] (39)

<t (40)

iel
v; €{0,1} Viel (41)

In addition to the constraints already introduced, we have now
constraints (37) ensuring that a center is upgraded only if it
is open. Inequalities (38) impose that a connection can only
be upgraded if it is allocated to an upgraded center. Con-
straints (39) guarantee that if a center is upgraded and a de-
mand node is assigned to it then the connection between the de-
mand node and the center is upgraded. Without these constraints,
the feasible region would contain solutions where a center is up-
graded but not all of its used links are. Constraint (40) states the
limit for the number of centers that can be upgraded. Finally, con-
straints (41) define the domain of the new v-variables.
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Table 3
Size of the models in terms of (maximum number
of) binary variables and constraints.

Model # 0/1 variables  # constraints
Q1) 211+ 1D 2+201+3(111
(Q2), (Q3) 2N +InUn 3++1U1R

Remark 7. We note that constraints (37) are actually not neces-
sary and thus they can be seen as an enhancement. In fact, if we
ignore such constraints we allow obtaining a solution such that
v; = 1 with y; = 0 which means that we would be upgrading a cen-
ter that ends up not having any demand node connected to it. In
this case, we can just neglect upgrading without neither losing fea-
sibility or deteriorating the objective function value.

Remark 8. A close look into the above model reveals that con-
straints (39) can be removed from the problem without deterio-
rating the optimal value. In fact, in case some nodes are allocated
to an ungraded center with the original cost and this does not de-
teriorate the objective function value then it is irrelevant to im-
pose that the upgrade is used: the optimal value for the upgraded
problem may be attained upgrading some center without explicitly
upgrading all the costs for connecting demand nodes to it.

Remark 9. We note that in the model (Q1) it is possible to relax
the integrality constraints for variables y; and v;, i.e., constraints
(6) and (41), respectively.

We can now extend the model (P3) from Calik and Tansel [6] to
the new problem. This is straightforward giving the above contents
as well as those presented in Section 3.1.

(Q2) minimize ) Pz (18)
kek
subjectto > diyi+ Y bipvi=z Vje) keK. (42)
iel iel
(5). (6), (22), (23),
(37), (40), (41).

Finally, we can adapt model (P4) in Calik and Tansel [6] to center
upgrading. This can be easily achieved by replacing in the above
model (Q2), constraints (42) with

k
Zdijk.yi + Zbiikv,- > qu Vie] kek. (43)
iel iel q=1

The enhanced model will be called (Q3).

In Table 3 we can observe the dimension of the models in
terms of binary variables and constraints (excluding unnecessary
constraints as already explained). Similar to what we propose in
Section 3.1, K can be restricted to K; = {ke K | Ib; <, < uby}.
Again we can try to fine-tune that set further. In fact, the lower
bound [b, introduced in the previous section is also valid for these
models.

Regarding the upper bound, a similar reasoning can be followed
as before leading to an improved upper bound ub,, which again,
corresponds to the final value obtained for max;., T;. Eventually,
the restricted index set induced by Ib; and uby can be further en-
hanced using Ib, and ub, yielding a restricted set K.

4.1.1. Pre-processing data and fixing variables

Although variables x;; and m;; have the same meaning in the
model (M1) and model (Q1) and the intuition calls for using the
results from Section 3.1.1, there is a fact deserving special at-
tention. Let (z*, x*,y*, m*,v*) be an optimal to model (Q1). Be-
cause of constraints (39) it can happen that ¢;; <Ib and m;*j =1,
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i.e., even if there is no optimal value upgrade, some connections
will be upgraded only for guaranteeing that the incident connec-
tions to an upgraded center are all upgraded. On the other hand,
Remark 8 states that constraints (39) can be removed without de-
teriorating the optimal value. Fixing to zero all the m;; with ¢;; < Ib
modifies the feasible region but keeps the optimal value. Then,
Remarks 1 and 2 apply to this section replacing (M1) by (Q1). The
first remark indicates how to fix variables to zero and the second
how to modify the cost matrix: the first enhancement potentially
reduces computing time and the second potentially reduces the LP
gap.

We do not consider the use of the presented bounds for tack-
ling models (Q2) and (Q3) because, as reasoned for models (M2)
and (M3) and variables s; in Section 3.1.1, the requirements to fix
the variables v; to zero in models (Q2) and (Q3) are more demand-
ing and unlikely to be met in a cost matrix.

4.2. Budget-constrained center upgrading

We assume now an exogenous budget of B for upgrading cen-
ters. Similarly, as for budget-constrained connection upgrading,
we define a decision variable r;; representing the discount fac-
tor to adopt for connection between location i eI and demand
node j €. If the connection between location i and demand node
j is upgraded then the cost ¢;; becomes (1 —r;j)c;; where rj; €
[Rimins Rmax], with 0 < Ryin < Rmax < 1. If center i is not upgraded,
then r;; =0, Vj € J. From the above notation, it is relevant to em-
phasize that only variable costs are assumed in this work for
budget-constrained center upgrading.

As done for connection upgrading, we assume a unit compres-
sion/reduction cost similar for all connections, which allows cast-
ing the available budget, B, as the maximum total cost units that
can be reduced. Considering the notation already presented, the
problem can be formulated as follows:

(Q4) minimize z (1)
subjectto (3) — (7), (31) — (34),
(37), (41),
rij <V Viel, (44)

Vi +Xij < 2+ Tij — Rmin
Tij = Tie <2 =X — Xt

Viel,je] (45)
Viel j,te] (46)

The novelty in the above model stems from constraints (45),
which impose that in case a center i is upgraded and demand node
j is allocated to it, the corresponding discount factor r;; is strictly
positive (at least equal to R,), which, in turn, ensures that the
discount factor is applied to all costs for satisfying demand nodes
allocated to the center. Finally, if demand nodes j and t are both
allocated to center i, constraints (46) guarantee that their discount
factors are equal.

Remark 3 is valid for this model. In terms of the model size,
we observe a number of binary variables equal to 2|I| + |I| |J| and
a number of constraints equal to 2(1+ |I| + |J|) + 31| U] + |I| |2

As for the connection-upgrading problem, we may inquire
about the relevant values for B, i.e., the values that may be of in-
terest to consider since they interfere with the solution.

As before, the budget should be enough to allow at least one
upgrade. Define as before By, = min;¢; jj{Cij x Rmin}. Additionally,
let

@i, j*) e arg {Rmin x min {Cij}}~
iel, jeJ

The minimum budget that we need for implementing an up-
grade corresponds to having node j* as the only demand node al-

; F _ pC
located to center i*. Thus, we have B, =B . .
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Now, let us assume that we relax the budget constraint in the
model (Q4). In this case, we obtain an optimal objective function
value, say Z, which is the best we can get no matter the budget
we have. As in the case of budget-constrained connection upgrad-
ing, Z = (1 — Rmax)z*, where z* is the optimal value of the problem
without upgrading. We can now do as for connection upgrading:
we can solve an auxiliary model in which we look for the mini-
mum budget that ensures a coverage radius equal to Z. This is the
maximum value that makes sense to consider for the budget and
thus we denote it by Bf, ..

We have now the minimum and maximum thresholds, B;in and
BF .« that we consider for the budget in our analysis.

4.2.1. Pre-processing data and fixing variables
Remark 10 indicates how to adapt Remark 5 to budget-
constrained center upgrading.

Remark 10. Let ub be an upper bound on the optimal value of
model (Q4) and let (z*, x*, y*, r*, v*) be an optimal solution.

i If(1- Rmax)cij > ub, then X?j = rff =0.

As was the case with Remark 5, the number of variables set to
zero strongly depends on the value of Rpax.

Let Ib be a lower bound on the optimal value of model (Q4),
note that it is not true that if ¢;; < Ib, then = 0. In model (Q4)
some upgrades are forced because all the connections that are in-
cident to an upgraded center are upgraded. Analogously, the cost
matrix can only make use of an upper bound for its modification
because some connections, despite having a cost smaller than or
equal to b, will be upgraded as they are incident to an upgraded
center and the budget required for that will depend on the cost of
the connection.

Remark 11. Let ub be an upper bound on the optimal value of the
model (Q4). If ¢;; is replaced by a big constant M for all iel, j €]
such that (1 — Rmax)cij > ub, then the optimal value of model (Q4)
remains the same.

Finally, feasible solutions of the classical p-center problem
without upgrading help to obtain an upper bound of the budget-
constrained center-upgrading optimal value. Remark 12 proposes
an auxiliary problem for obtaining an upper bound for the model

(Q4).

Remark 12. Let (x,y) be a feasible solution to the p-center prob-
lem. Let [={iel:y; =1} be the subset of p selected centers. For
all iefl, let 6, = > jej Cijxij be the total cost of the allocated de-
mand nodes and let B; = maxj; ¢;;x;; be the maximum cost of an
allocated demand node. The optimal value of the following model
whose variables are w and g; is an upper bound of the budget-
constrained center-upgrading optimal value. For all i e [, variable
g; represents the discount factor applied to all demand nodes allo-
cated to center i.

(U) minimize w
subject to > 60g =B
iel
w=> Bi(1-g) Viel
&i € {0} U [Rinin, Rimax] Viel

5. Math-heuristic procedure for budget-constrained upgrading

As shown by the Empirical analysis presented in the next sec-
tion, model (Q4) can be solved to proven optimality only in a very
limited number of instances. This motivates the development of a
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heuristic for tackling that model as we propose in this section. In
particular, we propose a genetic algorithm for budget-constrained
center upgrading.

The structure of the procedure we propose is formalized in
Algorithm 2: once an N-dimensional initial population, Py, has

Algorithm 2 Genetic algorithm for budget-constrained center up-
grading.
1: i < 0;
2: P < create_initial_population(N);
3: repeat
P, < crossover(P,);
5 P, < mutation(P,);
6: P, < local_search(P);
7. if random < probability then
8
9

A

P, < intensive_local_search(P,);

: end if
10: Py < B
11: i<—i+1;

12: until stopping criterion occurs

been generated, crossover, mutation, and local search operators are
iteratively carried out until the stopping condition occurs. We have
encoded the solutions in such a way that we only save the value of
the p open centers. Hence, each individual of the initial population
is a combination of p centers from the |I| candidates.

Initially, we randomly generate N — 1 combinations of p centers
from the |I| potential ones. Then, we also consider the optimal so-
lution of the associated non-upgrading problem. This way, we ob-
tain the initial N individuals.

Note that given an individual, i.e., a set of p open centers, the
assignment of demand nodes to the open centers in the upgraded
solution does depend on the budget. The condition in model (Q4)
imposing that all the incident connections to an upgraded center
have the same discount factor means that for some nodes, the best
assignment may not correspond to the closest center among those
that are open. For this reason, we decided to approximate the fit-
ness of an individual (objective function value) by using the linear
optimization model (U) presented in Remark 12 since it provides a
good upper bound on that value. Nevertheless, we try to improve
this upper bound further by reallocating some demand nodes in
each individual as detailed in Algorithm 3.

Algorithm 3 Improving the fitness of an individual when tackling
model (Q4).

1: Let (w, 8, g) be the solution to model (U) in Remark 12;

2: For each i e I, let j(i) be the demand node such that Gijay = Bis
3: foralli,sel: B> p; do

4: if (1 _gi)ﬂi > (1 _gS)CSj(i) then

5: Reallocate demand node j(i) to center s;

6: Update B;, 6; and 65 and solve model (U);

7. end if

8: end for

The “spirit” of Algorithm 3 is to reallocate the demand points
to centers that, even though they are not the closest, they are
the least costly when a discount factor is applied. If the condition
(1—-g)B;i > (1 — g)cqj(;) holds, then we have that although the de-
mand node j(i) is closer to center i than to center s in the cost
matrix (i.e., B; = ¢jji) < Csjy), when both centers are upgraded, it
is cheaper to allocate j(i) to center s than to allocate it to cen-
ter i. We repeat this check until there is no exchange that reduces
the cost. Finally, the fitness value of each individual in the genetic
algorithm population is the value of its largest 8 value.
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Fig. 3. Non-optimal allocation of demand nodes under center upgrading.

Example 3. Consider the example depicted in Fig. 3 where i and s
are two open centers with compression factors g; = 0.25 and gs =
0.5 respectively. The circles represent demand nodes allocated to
the centers. Next to each edge, we present the original costs and
their upgrades (obtained by multiplying the former by (1 —g;) or
(1 —gs), as appropriate). The black node represents the demand
node served by i that is the furthest (more costly) served by this
center, i.e., it represents j(i). To the right of this node we present
its original assignment cost to s and the corresponding upgrading.
The gray node is the furthest from center s, i.e., j(s). Hence, in
this example we have fB; =4 and Bs = 6. Since the distance (cost)
from the black node to i is smaller than its distance from s (4 and
5, respectively), that node is initially allocated to i. However, the
upgraded distance is smaller from s than from i. Algorithm 3 gives
the details for this improved allocation.

As a consequence of the way the fitness of an individual is ob-
tained, Algorithm 2 turns out to be a math-heuristic, in which the
calculation of the fitness function is not trivial. The adequacy of the
fitness computation to a specific instance being considered confers
quality to the algorithm.

The crossover operator randomly selects two individuals of the
population (parents), merges them, and assigns to each center in
the union a probability proportional to the number of times it ap-
pears in the parents (each center can appear once or twice). Fi-
nally, the crossover operator generates two offspring, selecting for
each of them p centers of the union with the assigned probabili-
ties. Each offspring replaces the worst individual of the population
(in terms of fitness value) if the fitness of the offspring is better
(smaller) than that of the worst, as long as the offspring is not
already in the population. We do not allow for duplicates of indi-
viduals in the population to avoid premature convergence of the
algorithm since, after some preliminary experiments, we verified
that the genetic algorithm converged very quickly.

The mutation operator starts by randomly selecting an indi-
vidual from the population and a center in the selected individual.
That center is replaced with a different one not in the individual.
The mutated individual replaces the worst individual in the popu-
lation except if the mutated individual is already in the population.
Mutating individuals in the population further improves the level
of diversification.

The local search operator seeks to confer intensification to the
genetic algorithm. It randomly selects an individual of the popula-
tion as well as a center in this individual, and a set of centers not
in the individual (and different from the selected one). The fitness
values of the individuals obtained by exchanging the selected cen-
ter with any of the centers in the generated set are computed. The
best of these new individuals in terms of fitness value replaces the
worst individual in the population except if the individual is al-
ready in the population.

Each iteration of Algorithm 2 applies the three above operators
(crossover, mutation and local search) to the current population,

10
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P. Furthermore, an intensified local search is performed in some
iterations, which is ruled by some given probability. This additional
local search operator is similar to the one above described but, as
its name indicates, more intense. It checks the fitness value when
exchanging all the centers in the individual with others centers
that are not in it. A relevant difference is that the intensified lo-
cal search is applied not to a randomly chosen individual of the
population but to all the individuals in the population with the
smallest fitness values. Again, the best individual obtained by per-
forming the intensive local search replaces the worst individual of
the population except if it is already part of it.

6. Empirical analysis

In this section, we report on the computational tests performed
to assess the contributions proposed in the previous sections. We
start by describing the data used and also by detailing the exper-
imental setting. Next, we present some preliminary computations
that indicate the direction we should follow in terms of more in-
tensive testing. The latter is reported in the fourth subsection.

6.1. Data and experimental setting

We use the uncapacitated p-median instances from the OR-
Library which consists of 40 instances where the number of nodes,
n, ranges from 100 to 900 and p ranges from 5 to n/3. Like usually
done in literature, the all-pair shortest path Floyd’s algorithm was
considered for obtaining the cost matrix from the original data re-
trieved from the OR-Library. For all the mathematical models dis-
cussed in this work we used IBM ILOG CPLEX 20.1.0.0 as the off-
the-shelf solver. The computational tests were performed in an In-
tel(R) Xeon(R) CPU E5-2650 v3 @ 2.30 GHz. The default parameter
values of the solver were considered although a time limit of 6h
was imposed when tackling each instance.

In the case of upgrading a maximum number of connections—
models (M1), (M2), and (M3), we set t equal to 5%, 10%, and 25%
of the total number of nodes in an instance. For the problem con-
sisting of upgrading a maximum number of centers—models (Q1),
(Q2) and (Q3), we set t equal to 5%, 10% and 25% of the value
of p in each instance. In addition, for the last three models, we
also include in the analysis the case t = 1 to see how the solution
changes if only one center can be upgraded. In all cases, for each
value of t we consider a discount factor f equal to 0.2, 0.4, 0.6, and
0.8.

In the budget-constrained upgrading models we analyze differ-
ent values of B between BS . and B, in model (M4) and between
Bf . and Bf,, in model (Q4). For these models we set Ry, = 0.2
and Rpax = 0.8.

Instances pmed1 to pmed5 from the OR-library (n = 100) were
considered when using each of the models presented in this work
for all the described combinations of parameters. Furthermore,
models (M2), (M3), (Q2) and (Q3) were handled considering two
restricted sets K, according to the lower and upper bounds dis-
cussed: Ky ={keK | Iby <, <uby} and Ky ={keK | Ib < <
ub,}. We look into how the pre-processing procedures described
in Sections 3.1.1, 3.2.1, 4.1.1, and 4.2.1 behave in the proposed mod-
els. In the results reported in this section, a more exhaustive study
of models (M2) and (Q2) is also carried out for the 40 available
p-median instances, analyzing in detail the use of the proposed
bounds.

To make this paper self-contained and also to allow the read-
ers to fully reproduce our results, the results presented in this
section are complemented with an electronic appendix where we
present for all instances tested, their optimal value as well as the
new lower and upper bounds b, and ub,. Finally, we note that all
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Table 4
Connection-upgrading problem: average computing time (seconds) required
to solve the six tested models for instances pmed1-pmed5.

M1 M1/ M2 +R,  M2+RK, M3+K  M3+K,
pmed1 5409 277.6  149.2 180.1 224.1 176.1
pmed2 3653  139.7 136.7 118.7 204.5 197.9
pmed3 3623 1106 176.6 165.4 252.6 265.0
pmed4 2358  41.0 59.5 66.5 133.3 131.0
pmed5 73.9 27.5 27.8 21.6 101.3 55.7
Average  315.7 1193 110.0 110.4 183.1 165.1

the instances as well as the source codes will be made available to
any interested reader upon a request to the authors.

6.2. Preliminary results—connection upgrading

We start with the connection-upgrading problem when up to
a certain number t of connections can be upgraded. Models (M2)
and (M3) were solved considering two restricted sets K, using dif-
ferent bounds. Regarding model (M1), it was solved as presented
in Section 3.1 and, in addition, it was also solved using the pre-
processing procedure described in Section 3.1.1. Specifically, we in-
corporated equalities (27) and (28) using ub2 and [b2 as upper and
lower bounds, respectively. Moreover, the cost matrix was modi-
fied with these bounds following Remark 2 and setting M = 500, a
value greater than any of the costs involved in the instances con-
sidered. We call this model (M1’). Recall that we ended up with
six different models: model (M1), model (M1’), and models (M2)
and (M3) restricting K according to K; and K,. In what follows we
denote these models as M1, M1/, M2 + K;, M2 + K,, M3+K; and
M3+K5.

In this section, we present some preliminary results using the
instances based upon pmedl-pmed5 (n = 100). The first aspect
of interest to analyze concerns the performance of the models
namely in comparison with each other. Table 4 presents the av-
erage computing time (in seconds) required by each model. Each
row in the table averages 12 values (3 values of t and 4 values
of f). The detailed results for each instance can be found in the
Appendix (Tables A1-A5), where the results are presented accord-
ing to the cost compression factor (f) and the maximum number
of connections that can be upgraded (t). We conclude directly that
models (M1’) and (M2) outperform the other models although it is
not clear whether model (M2) is easier to tackle when K; is used
or else when the choice goes to K,. We can also conclude that
the pre-processing procedure carried out in model (M1’), drasti-
cally reduces the computing time. In the Appendix (Table AG), we
present the percentage of variables that are fixed to zero during
the pre-processing procedure for each instance, where we can see
that, in some cases, it exceeds 80%.

The results observed in Tables A1-A5 also do not reveal any
dominance in terms of a specific combination of f and t. Neverthe-
less, we see that the computing time is clearly dependent on the
instance even when the same dimension is considered. In fact, re-
call that instances pmed1-pmed5 all consider 100 nodes whereas
p takes values 5, 10, 10, 20, and 33, respectively.

Another relevant information concerns the gap provided by the
linear relaxation of the different models in use. Such gap is com-
puted according to 100 x (z* — LR)/z* where z* denotes the opti-
mal value of the problem and LR the optimal value of the linear re-
laxation. The information is summarized in Fig. 4. The values used
in this figure are detailed in the Appendix (Tables A7-A11). Con-
cerning the LP gap, we conclude that model (M3) outperforms by
far the other models, followed by model (M1’). Interestingly, we
see that (M1) is often better than (M2) although this does not im-
pact the computing time required to solve the model to proven op-
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Table 5

Connection-upgrading problem: average LP
gap (%) achieved by the models for the in-
stances based upon pmedl1-pmed5.

M1 M1 M2 M3
pmed1 305 269 482 179
pmed2 354 258 445 153
pmed3 344 272 505 174
pmed4 442 318 525 186
pmed5 573 327 442 197
Average 403 289 480 178

timality. This is an indication that although (M1) seems to lead to
a better polyhedral description of the problem feasibility set, this is
still not good enough to boost the solver. In Table 5 we can see the
average LP gap achieved with each model. In this table, the above
conclusions become clearer. Regarding the pre-processing proce-
dure carried out in model (M1’), not only is it effective in greatly
improving the computing time (Table 4), but also it improves con-
siderably the linear relaxation of the model, going from an average
LP gap of 40.3% in the model (M1) to 28.9% in the model (M1’).

An important aspect of our problem concerns the decrease in
the optimal covering cost by upgrading connections. Fig. 5 depicts
this information for the 12 instances based upon pmed1-pmed5.
The detailed values are presented in the Appendix (Table A12). In
this figure, we observe quite significant improvements in the so-
lution. Furthermore, as expected, this improvement increases both
with the cost reduction factor and with the maximum number of
connections that can be upgraded. In all 60 instances built from
pmed1-pmed5 apart from four, the number of connections up-
graded in the optimal solution leading to the decreased optimal
values reported in the Appendix is the maximum possible. The
four exceptions are observed for instances in which the maxi-
mum number of connections that can be upgraded is equal to
25. In particular, we observe 92%, 96%, 96%, and 96% of the max-
imum number being upgraded in instances pmedl (t =25, f=
0.2), pmed2 (t =25, f=0.2; t =25, f =0.6), and pmed5 (t = 25,
f=0.4). These percentages depend on the optimal solution and
thus we should be careful in analyzing them since these instances
might have alternative optimal solutions.

6.3. Preliminary results—center upgrading

We perform now a similar analysis as above but for center up-
grading. Models (Q2) and (Q3) were solved considering two re-
stricted sets K, using different bounds for center upgrading. Re-
garding model (Q1), it was solved as shown in Section 4.1 and,
in addition, it was also solved using the pre-processing proce-
dure described in Section 4.1.1. Specifically, as in the case of con-
nection upgrading, we incorporated equalities (27) and (28) using
ub2 and [b2 for center upgrading as upper and lower bounds, re-
spectively. Again, the cost matrix was modified with these bounds
following Remark 2 and setting M = 500. Note that to apply
this pre-processing procedure it is necessary to remove constraints
(39) from model (Q1). We call this model (Q1’). As pointed out in
Remark 9, it is possible to relax the integrality constraints for vari-
ables y; and v; in the model (Q1). We run some experiments to
test the performance of this relaxed model and, in most cases, the
computing times were similar or even worse in the relaxed model.
For this reason, we decided not to include it in the analysis.

With all of the above, in the case of center upgrading we have
the following six models: Q1, Q1/, Q2+K;, Q2+K,, Q3+K; and Q3+K,.
Again, we start by assessing the performance of those models
namely, in comparison with each other, using instances pmed1-
pmed>5.
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Table 6
Center upgrading: average computing time (seconds) required by the six
tested models for instances pmed1-pmed5.

Q1 Qv Q2+K;  Q2+K,  Q3+K;,  Q3+K,
pmed1 1306.6 249.4 76.4 62.3 283.5 179.5
pmed2 674.6 354.8 34.0 40.9 152.2 211.9
pmed3 1453.4 508.0 47.0 51.1 153.5 222.1
pmed4 390.7 184.0 305 16.8 100.1 116.1
pmed5 205.9 93.8 16.3 9.4 53.6 68.7
Average 806.2 278.0 40.8 36.1 148.6 159.6
Table 7
Center upgrading: average LP gap (%)
achieved by the models for instances
pmed1-pmed5.
Q1 Q1 Q2 Q3
pmed1 28.3 18.9 30.0 135
pmed2 359 204 30.8 14.1
pmed3 36.7 24.8 41.0 17.9
pmed4 45.1 28.1 43.7 19.1
pmed5 57.1 27.2 355 19.7
Average 40.6 239 36.2 16.8

Table 6 presents the average computing time (in seconds) re-
quired by each model for the first five pmed instances. Each row
averages the values for the different values of t and f. The detailed
results can be found in the Appendix (Tables B1-B5), where the
results are detailed according to the cost compression factor (f)
and the maximum number of centers that can be upgraded (t). We
conclude that model (Q2) outperforms the other models although,
again, it is not clear whether the model is easier to tackle when K;
is used or else when the choice goes to K,. We can also observe
that, although the pre-processing procedure carried out in model
(Q1”) greatly improves the computing time, it is still far from the
computing time provided by other models such as (Q2). Table B6 in
the Appendix shows the percentage of variables that are fixed to
zero during the pre-processing procedure of the model (Q1’) for
each instance.

The results observed in Tables B1-B5 also do not reveal any
dominance in terms of a specific combination of f and t. Never-
theless, as for connection upgrading, the computing time seems to
be dependent on the instance even when the same dimension is
considered. In fact, recall that instances pmed1-pmed5 all consider
100 nodes whereas p takes values 5, 10, 10, 20, and 33, respec-
tively.

Another relevant information concerns the gap provided by the
linear relaxation of the different models used computed as above
explained. This information is summarized in Fig. 6. The values
used in this figure are detailed in the Appendix (Tables B7-B11).
Observing the figure, we see that model (Q3) outperforms the
other models by far. Furthermore, model (Q1’) is always better
than model (Q2) although this does not reflect in terms of the
computing time required to solve the model to proven optimal-
ity. In Table 7 we can see the average LP gap achieved with each
model.

An important aspect of our problem concerns the decrease in
the maximum cost due to upgrading centers, i.e., upgrading all
connections made to them. Fig. 7 depicts this information for the
instances built from pmed1-pmed5. Recall that we have set t equal
to 1 and equal to 5%, 10%, and 25% of the value of p. Particu-
larly, for pmed1 (p =5) t € {1, 2}, for pmed2 and pmed3 (p = 10)
t €{1,3}, for pmed4 (p=20) te{1,2,5}, and for pmed5 (p=
33) t €{1,2,3,8}. The detailed values are presented in the Ap-
pendix (Table B12). In Fig. 7 we observe quite significant improve-
ments in the solution. Furthermore, as expected, this improvement
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Table 8

Average computing time (seconds) required to
solve models (M1’) and (M2) for instances
pmed6-pmed10.

M1/ M2+K  M2+K,
pmed6 7475.0 1703.3 1280.1
pmed7 4576.2 623.1 584.4
pmed8 44141 625.2 502.0
pmed9 1360.3 298.8 187.2
pmed10 581.2 96.7 78.4
Average 36814  669.4 526.4

increases both with the cost reduction factor and with the maxi-
mum number of centers that can be upgraded. For t = 3 the de-
picted lines for pmed2 and pmed 3 slightly differ while those de-
picted for pmed3 and pmed5 overlap. In all cases, the number of
upgraded centers in the optimal solution is the maximum possible.

6.4. Additional results

As seen in the previous section, model (Q2) clearly outperforms
in terms of computing time the other models for center upgrad-
ing. In the case of connection upgrading, models (M1’) and (M2)
outperform the other models, providing, in many cases, similar
computing times. However, after some previous experiments, we
decided not to include model (M1’) in the analysis of larger in-
stances, since its computing time skyrockets as the size of the in-
stances grows. As an example, Table 8 shows the average comput-
ing time of models (M1’) and (M2) to solve the instances based
upon pmed6-pmed10 (n = 200).

For all the above reasons, we select models (M2) and (Q2) for
connection upgrading and center upgrading, respectively, to per-
form a more exhaustive analysis with larger instances. Further-
more, in neither case, it is clear whether these models are easier
to tackle when K; or K, are used. Hence, we analyze now the com-
puting time required to solve the 40 p-median instances from the
OR-Library using models (M2) and (Q2) with both bounds.

Fig. 8 depicts the relative deviation in terms of the computing
time when using K, instead of K; with models (M2) (connection-
upgrading problem) and (Q2) (center-upgrading problem). The pre-
sented results correspond to average results for all instances as-
sociated with each pmed instance (the corresponding value of p
and n is specified). As we can observe in this figure, most of
the dots are negative. This indicates that in general, it is faster
to solve the models when bounds [b, and ub, are used. Never-
theless, we see some cases in which this was not the case. In
connection-upgrading problems, an overall average improvement
in computing time of 9.4% is achieved when using K, instead of
;. In some instances with a high number of nodes (n > 500), we
see that bounds Ib, and ub, do not seem to work well. In the case
of center-upgrading problems, an overall average improvement of
14.7% is achieved when bounds Ib, and ub, are used. For these
problems, we see that very few instances fail to improve their
computing time when using the new proposed bounds. Interest-
ingly, looking into detail when this happens, it is mainly for small
values of p.

Fig. 9 depicts the computing time (in seconds) required to solve
all the instances that are considered in this work. Average results
are presented for the tested combinations of ¢t and f. The fig-
ure shows that the computing time increases considerably with the
size of the problem. We also observe that for the same number
of nodes the models tend to become more tractable by the solver
when p increases. In the Appendix, Table C1 details the values used
to draw the figures.
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6.5. Results for budget-constrained upgrading

The preliminary experiments that we executed revealed that
the budget-constrained upgrading models are quite difficult to
solve to proven optimality. In particular, we cannot expect to solve
large-scale models using an off-the-shelf solver as done in the pre-
vious section. Additionally, given the existence of a budget con-
straint, it is worth performing a sensitivity analysis considering dif-
ferent values of the budget. For the above reasons, we now focus
our analysis again on the 100-node instances namely, those built
from pmed1-pmed5.
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For these instances, we started by computing the minimum and
maximum thresholds that are meaningful in terms of the budget
(see the discussion presented at the end of Sections 3 and 4). Re-
call that values are denoted by BS, and B, (for connection up-

grading) and Bﬁm and B ,, (for center upgrading). Let us define
Ag = Brcnax - Bfnin’

for the first case and

F _ pF F
AB - Bmax - Bmin’
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Table 9
Reference values for the budget-constrained problems.
B;in
Instance  BS;,  BSax +3AS  +IAS +1A§
pmed1 0.2 3762.6  2822.0 18814 9408
pmed2 0.2 3065.6 2299.3 15329  766.6
pmed3 0.2 3337.2  2503.0 1668.7 8345
pmed4 0.6 23114 17337 11560 5783
pmed5 0.2 897.0 672.8 448.6 224.4
Banin
Instance  Bf. Bl +3AL +IAL +1AL
pmed1 0.2 4699.4 35246 23498 1175.0
pmed2 0.2 3740.1 28052 1870.2  935.2
pmed3 0.2 3903.1 29274 19516 9759
pmed4 0.6 26689 2001.8 13347 667.7
pmed5 0.2 1103.3 8275 551.7 276.0

for the second one. For each instance, four values are investigated
for the budget:

1 1 3
Brcnin + ZAC’ Bg‘nin + EAC’ Bsnin + ZAC’ and Brcnin + AC = Bg‘la}u
for connection upgrading, and

1 1 3
Bfnin + ZAF’ Banin + iAF’ Bﬁﬂn + ZAF' and Bﬁﬂn + A = Banax’

for center upgrading. In Table 9 we present the values consid-
ered. Note that, for each instance, the highest value considered for
the budget corresponds to BS,,, and Bf ., for connection and cen-
ter upgrading, respectively. Note also that BS. = Bf . for each in-
stance.

For connection upgrading, model (M4) was solved as presented
in Section 3.2 and, in addition, it was also solved using the pre-
processing procedure described in Section 3.2.1. Specifically, we
considered b2 with f = Rpax as the lower bound and we obtained
upper bounds for this problem using the procedure described in
Algorithm 1. In step 4 of Algorithm 1 we used model (M2) because
it is the fastest. As described in previous models, the cost matrix
was modified using these bounds and setting M = 500 (Remark 2).
We call this model (M4/).

Table 10 details the results for budget-constrained connection
problems. In the first column, z* denotes the optimal value of
the instances without upgrading and the third column shows the
optimal value with upgrading. The improvement that it repre-
sents over the initial optimal value is shown in the fourth col-
umn. Table 10 also shows the computing time of model (M4) and
other elements necessary to apply the pre-processing procedure
described in Section 3.2.1, that is, values of T and lower and up-
per bounds. As has been commented, we considered model (M2)
to obtain the upper bounds ub shown in the table and, later, we
solved model (M4’) using those bounds. Therefore, the total com-
puting time to obtain the optimal solution with upgrading is the
sum of the computing time needed to solve model (M2), plus the
computing time needed to solve model (M4’), which is shown in
the last column of Table 10. If we compare this last column with
the computing times of model (M4), we can observe that they
are, in most cases, much smaller, being on average more than 3
times faster using the pre-processing procedure. This happens de-
spite the fact that the percentage of variables set to zero is rather
small (Table 11) and, therefore, so is the number of values in the
cost matrix that are modified. Note that the value of Rpax di-
rectly influences the number of variables that are fixed to zero (see
Section 3.2.1). We have considered a high value of this parameter
(Rmax = 0.8) which means that there are few costs ¢;; such that
1- Rmax)cij > ub. For smaller values of Rmax, the number of vari-
ables that would be fixed to zero could be much larger.
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Similarly, for center upgrading, model (Q4) was solved as pre-
sented in Section 4.2 and, in addition, it was also solved using
the pre-processing procedure described in Section 4.2.1. In this
case, we obtained upper bounds using the model (U) described in
Remark 12, starting from an optimal solution to the problem with-
out upgrading. As before, the cost matrix was modified using the
upper bounds and setting M = 500. Note that, in this case, we can-
not use lower bounds either to fix variables to zero or to modify
the cost matrix, because some connections, despite having a small
cost, will be upgraded as they are incident to an upgraded center.
We call this model (Q4’).

Table 12 details the results for budget-constrained center up-
grading. Again, in the first column, z* denotes the optimal value
of the instances without upgrading. The third and fourth columns
show the solution with upgrading and the improvement that it
implies over the initial optimal value, respectively. Table 12 also
shows the computing time of the model (Q4). Note that most prob-
lems exhaust the time limit of 6h, so the final gap (%) is also
shown.

To obtain the upper bound ub that is used for the pre-
processing procedure of the model (Q4'), it is necessary to have a
solution to the original problem without upgrading. For instances
pmed1-pmed5 we can obtain an optimal solution to work within
4 seconds (see, e.g. Calik and Tansel [6]). Regarding the comput-
ing time required by the model (U) from Remark 12, it was less
than 0.2s in all cases. Given the negligible above values, we do
not include in Table 12 the computing time necessary to obtain
the upper bound. That same table shows the solutions, comput-
ing time, and final gap (%) of the model (Q4’). Although the pre-
processing procedure is not as effective in the model (Q4’) as in
other cases (there are still many instances that exhaust the time
limit of 6h), we can see really important improvements. For ex-
ample, for pmed3 and B =3903.1, we can obtain the optimal so-
lution with both model (Q4) and model (Q4’) but their computing
times are 7054.6s and 15.5s, respectively. We also see four other
instances for which model (Q4’) was tackled reaching a final gap
below 0.01%. Table 13 shows the number of variables set to zero
in the pre-processing procedure of the model (Q4’).

Given that the number of instances that can be solved to
proven optimality, both with models (Q4) and (Q4’) is small, we
also address the budget-constrained center-upgrading model with
the math-heuristic approach introduced in Section 5. After some
preliminary experiments, we run the genetic algorithm for each in-
stance in Table 12 for one hour (stopping condition in Algorithm 2)
and we set N = 25, probability = 0.1, and the number of centers to
exchange each selected center in the local searches equal to 10. In
Table 12 we present the execution time in seconds required by our
math-heuristic to find the best solution for each instance. Those
best solutions and the improvement over the initial optimal value
without upgrading are also shown.

As can be observed in the last three columns of Table 12, for
the instances based upon pmedl the math-heuristic manages to
improve the best solution found by models (Q4) and (Q4’) for
the four considered budgets. Moreover, this is accomplished in
less than one minute. The same occurs with the instances based
upon pmed2, pmed3, and pmed4, with average times of 5.6, 4.0,
and 14.6 minutes, respectively. In particular, the math-heuristic is
able to find the three optimal values that are known in instances
pmed3 and pmed4.

Regarding pmed5, this is more demanding for the math-
heuristic since each individual of the population is a combination
of p =33 centers, which makes the search much more difficult.
However, in one of the instances it manages to improve the best
solution found by models (Q4) and (Q4’) (B = 276.0). In another
one, it equals the known optimal value (B = 827.5). Finally, in the
other two instances, it obtains values very close to those provided
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Table 10
Results for the budget-constrained connection upgrading. All computing times are displayed in seconds.
Base Upgraded  Improvement  Time Time Time Time
instance Budget z* (%) M4 T Ib ub M2 M4/ M2+M4’
pmed1 940.8 71.5 43.7 3831.5 3 202  113.0 201.7 4277.0 44788
z+ =127 18814 50.0 60.6 1195.2 8 202 1050 1005 6234 723.8
2822.0 35.1 72.3 541.1 12 202 95.0 1113 2396 350.9
3762.6 254 80.0 588.9 16 202  90.0 1035 3441 447.6
pmed2 766.6 52.1 46.8 1624.9 3 16.6  88.0 107.3 2749 382.2
7t =98 15329 355 63.8 981.8 6 16.6  82.0 93.0 390.6 483.6
22993  23.6 75.9 970.5 9 16.6  79.0 119.2 4109 530.1
3065.6  19.6 80.0 1458.9 13 16.6  73.0 105.1  456.7 561.9
pmed3 834.5 52.7 433 197955 3 146  89.0 161.2 29482  3109.4
z¢ =93 1668.0 34.7 62.7 969.5 7 146 770 1952 533.1 728.3
2503.0 21.8 76.6 47323 10 146 720 1126  31.0 143.6
33372  18.6 80.0 804.6 14 146 68.0 149.5  505.7 655.2
pmed4 578.3 42.7 423 4820.6 2 11.2  73.0 106.4  281.5 388.0
=74 1156.0 28.0 62.2 11304 4 11.2  70.0 103.8 1549 258.7
1733.7 18.0 75.6 1016.9 7 112  66.0 88.9 31.9 120.8
23114 148 80.0 3735 10 112 61.0 94.6 108.2 202.8
pmed5 2244 28.4 40.8 6213.0 0 7.6 48.0 8.1 1466.8  1474.9
z¢ =48 448.6 19.3 59.8 300.1 1 7.6 46.0 59.8 101.6 161.4
672.8 13.0 72.8 130.1 2 7.6 44.0 69.6 28.6 98.1
897.0 9.6 80.0 180.2 3 7.6 40.0 63.7 52.0 115.7
Avg. 2583.0 Avg. 770.8

Table 11
Percentage of variables x;;, rj; that are set to zero in model (M4') for instances pmel-pmed5.

pmed1 pmed2 pmed3 pmed4 pmed5

Budget  x;; Tij Budget  x;; rij Budget  x;; rij Budget  x;; Tij Budget  x;; rij

940.8 00 18 766.6 00 18 8345 00 16 5783 00 1.3 2244 0.7 22
18814 0.0 1.8 15329 00 1.8 16687 00 1.7 11560 0.0 1.3 4486 1.3 27
28220 00 1.8 22993 00 18 25030 00 1.7 17337 00 13 6728 20 35
37626 00 18 30656 0.0 1.8 33372 0.1 1.7 23114 0.1 14 8970 47 6.1

Table 12
Results for the budget-constrained center upgrading. The computing times that do not exhaust the time limit of 6h are displayed in seconds.
Model Q4 Model Q4’ Math-heuristic

Base Upgraded Improvement Gap (%) at Upgraded Improvement Gap (%) at Upgraded Improvement

instance  Budget z* (%) Time termination ub z* (%) Time termination z* (%) Time

pmed1 1175.0 102.2 19.5 >6h 434 110.0 102.2 19.5 >6h 434 91.0 28.4 57.9

z¢ =127 2349.8 71.0 441 >6h 444 751  71.0 441 >6h 44.4 64.7 49.0 46.5
3524.6 46.2 63.6 >6h 445 52.1  46.1 63.7 >6h 46.5 43.8 65.5 48.6
4699.4 26.6 79.1 >6h 273 29.1  29.0 771 >6h 33.7 254 80.0 32.1

pmed2 9352 732 253 >6h  44.6 78.0 724 26.2 >6h 44.0 66.7 32.0 264.1

z¢=98 1870.2 50.2 48.8 >6h 455 56.5 49.1 49.9 >6h 442 45.1 54.0 678.5
2805.2 29.0 70.5 >6h 422 38.7 285 70.9 >6h 40.7 27.3 72.2 294.8
3740.2 208 78.8 >6h 125 211 199 79.7 >6h 2.5 19.6 80.0 104.2

pmed3 975.9 68.6 26.2 >6h 402 85.0 68.6 26.2 >6h 40.2 65.7 29.4 137.2

z#=93 1951.6 48.0 48.4 >6h 449 548 48.0 48.4 >6h 43.1 44.7 51.9 639.9
29274 269 711 >6h 384 36.8 269 711 >6h 38.4 26.7 71.3 184.1
3903.1 18.6 80.0 7054.6 0.0 188 18.6 80.0 15.5 0.0 18.6 80.0 0.0

pmed4 667.7 53.0 28.4 >6h 436 57.0 58.0 21.6 >6h 48.1 52.0 29.7 496.3

z¢ =74 13347 36.0 51.4 >6h 417 417 370 50.0 >6h 43.2 35.0 52.7 1287.3
2001.8 214 711 >6h 389 284 208 71.8 20772.1 0.0 20.8 71.8 1368.9
26689 15.8 78.6 >6h 207 154 148 80.0 12.1 0.0 14.8 80.0 359.1

pmed5 276.0 35.0 27.1 >6h 56.9 370 346 27.8 >6h 56.4 33.0 313 407.2

z¢ =48 551.7 23.0 52.1 >6h 529 272 226 52.9 >6h 50.5 22.7 52.8 2663.7
8275 14.2 70.4 >6h  49.1 19.7 142 70.5 2346.5 0.0 14.2 70.5 1448.6
11033 9.6 79.9 >6h 45 127 96 80.0 246.8 0.0 9.8 79.6 1381.9
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Table 13
Percentage of variables x;;, rj; that are set to zero in model (Q4’) for instances pmel-pmed5.
pmed1 pmed2 pmed3 pmed4 pmed5
Budget  x;; rij Budget  x;; rij Budget  x;; rij Budget  x;; rij Budget  x;; rij
1175.0 0.0 0.0 935.2 0.0 0.0 975.9 0.0 0.0 667.7 0.4 0.4 276.0 8.7 8.7
23498 0.0 0.0 18702 0.2 0.2 19516 14 1.4 13347 159 159 551.7 384 384
35246 0.9 0.9 28052 147 147 29274 201 201 2001.8 608 60.8 827.5 69.1  69.1
46994 476 476 37401 728 728 3903.1 822 822 26689 91.1 911 1103.3 892 89.2
Table 14
Average computing time (minutes) of the math-heuristic, according to the value of n, for p =5, 10.
p n=100 n=200 n=300 n=400 n=500 n=600 n=700 n=800 n=0900
5 0.8 9.8 11.0 92.1 51.8 62.5 58.3 189.8 136.7
10 5.6 16.0 71.1 75.0 143.3 149.5 212.0 301.3 2253

by models (Q4) and (Q4’), on an average computing time of 24.6
minutes.

The promising results achieved by the math-heuristic for the in-
stances based upon pmed1-pmed5 (n = 100), encouraged testing it
using the larger instances. For the latter we keep using four differ-
ent values for the available budget in each instance. Note, however,
that for instances with n > 100 the values of Bf ., cannot be ob-
tained in a reasonable computing time using the auxiliary model
based on model (Q4) and explained at the end of Section 4.2. For
this reason, we decided for the use of an auxiliary model based
on the linear optimization model (U) presented in Remark 12. In
particular, for each instance, we obtain an upper bound of Bf ., by
solving the following linear program:

minimize > 0
iel
subject to (1 —=Rmax)z* = Bi(1 — &) Viel,
8i € {0} U [Rimin, Rmax] Vie f,

where z* is the optimal value without upgrading and [={iel:
y; = 1} is the subset of p open centers also in that case.

All the math-heuristic parameters are maintained as previously
described for instances based upon pmed1-pmed5, except for the
stopping condition. In fact, the large-scale instances are more chal-
lenging. Accordingly, we set the stopping criterion (time limit) de-
pendent on the value of n. After some preliminary experiments,
we set a time limit of two hours for instances with n = 200, three
hours for n =300, procedding likewise and ending with a time
limit of nine hours for n = 900.

Table 14 shows the average computing time required by the
math-heuristic to find the best solution for all problem sizes con-
sidering p=5 and p = 10—the values of p used in all values of

n. As can be observed, the computing time increases considerably
both with the value of p and n. Detailed results of all instances
with n > 100 can be found in the Appendix, Tables D1 and D2. In
these tables we conclude that, in most cases, the math-heuristic
did not exhaust the time limit to find the provided solution. Specif-
ically, in only 16% of the instances the time exceeds 95% of the
time limit given as a stopping criterion. Additionally, most of these
cases occur for intermediate budget values, where it is more diffi-
cult for the algorithm to reach a good solution. In Tables D1 and
D2, the execution time to find the best solution is zero in most
cases when the budget allows an improvement of 80% because the
algorithm does not improve the upgraded solution associated to
the non-upgrading problem that we include at the initial popula-
tion. For all instances, the results provided by the math-heuristic,
even if they are not optimal solutions, provide hopefully good up-
per bounds for the problems.

Fig. 10 shows the average computing time of the math-heuristic
for solving all the instances based upon pmed1-pmed40. Again, it
can be observed how the time increases with the value of n, as
well as that, when the value of p increases, the computing time
stabilizes for a given n.

In Fig. 11 we summarize the results obtained for the budget-
constrained problems for the instances based upon pmed1-pmed5.
Both the connection-upgrading problems and the center-upgrading
problems are represented in each sub-figure. For center upgrading,
since the optimal value is unknown in some cases, the best solu-
tion found (Table 12) is used in Fig. 11. We mark with a dot each
combination “budget” vs. “percentage improvement in the optimal
value”. Since four values are considered for the budget in each case
we observe four dots in each sub-figure. We decided to connect
the dots with lines to see if some stabilization trend could be ob-
served. This is in fact the case: in every sub-figure, we can ob-

350
3
2 %00 © ——n=100
%250 ——n=200
£ 200 n=300
2 ; n=400
é150 n=500
g 100 - —%—n=600
% 50 ﬁ =0—-n=700
g o M ——n=800
0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 ——n=900

p

Fig. 10. Average computing time (minutes) of the math-heuristic for solving the instances based upon pmed1-pmed40.
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Fig. 11. Improvement observed in the optimal value for different budget values.

serve a stabilization in the improvement of the optimal cost when
the budget grows large. This is very insightful information for a
decision-maker who can decide on a maximum budget of interest.

7. Conclusions

In this paper, we investigated different upgrading strategies
for the discrete p-center problem. In particular, we looked into
whether a better solution can be achieved by reducing in some
way the allocation costs, thus obtaining the so-called upgraded so-
lutions. We considered the possibility of upgrading a set of con-
nections to different centers as well as the possibility of upgrading
entire centers, that is, upgrading all connections to an open cen-
ter. Two variants of these problems were considered: (i) a limit is
imposed on the number of connections or centers that can be up-
graded; (ii) a budget exists that limits the upgrades that can be
made. MILP models were introduced for the problems and their
variants. Furthermore, lower and upper bounds and optimal solu-
tion properties were discussed. The models and the new bounds
were tested using benchmark instances. Due to the difficulty in
tackling the budget-constrained center-upgrading model investi-
gated in this paper, we also proposed a math-heuristic approach
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to this problem. Specifically, we developed a genetic algorithm for
finding good feasible solutions in a short time.

The major conclusion drawn from all the work done is that a
significant decrease in the optimal cost can be attained by upgrad-
ing connections or centers. Therefore, the information provided by
the new models proposed in this work can be extremely useful to
a decision-maker because together with the location decision, the
models directly seek to find underlying structures of the problem
that can be “upgraded” in such a way that a better after-upgrading
solution is obtained.

The research done in this work indicates different directions for
future work in the topic. First, despite the instances that could be
solved to proven optimality using the models proposed, it is im-
portant to deepen the polyhedral analysis of these models by de-
riving new valid inequalities that can strengthen them. This is cru-
cial for later deriving more comprehensive models that can capture
features of practical relevance (e.g. time-dependent decisions). Sec-
ond, results reported in the paper show that there is room for im-
proving both the lower and upper bounds for this type of problem.
Finally, a close look into the budget-constrained models reveals a
bi-criteria flavor: in fact, the models proposed seek to minimize
the maximum cost for satisfying the demand nodes by imposing a
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limit on the cost compression. Thus, a relevant direction for further
research involves studying specifically a bi-objective setting for the
problem when a budget constraint exists.
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Appendix A. Detailed results for connection upgrading

In this Appendix we detail the results of the experiments per-
formed using models M1, M1/, M2 + K;, M2 + K;, M3+K; and
M3+K; for the instances generated from pmed1 to pmed5.

Table A1
Optimal objective function value (z*) and computing time (seconds) for the in-
stances generated from pmed1. The optimal value without upgrading is 127.0.

Omega 119 (2023) 102894

Table A2
Optimal objective function value (z*) and computing time (seconds) for the in-
stances generated from pmed2. The optimal value without upgrading is 98.0.

t f z* M1 M1 M2+K,  M2+K, M3+K M3+K,
5 02 880 8561 1249 228 95.0 1753 2135
04 830 3675 2230 1640 1421 193.0 2762
06 830 4605 3200 1368 152.1 2182 2435
08 830 4095 1158 179.2 203.0 2320  243.0
10 02 81.6 2402 128 738 48.1 126.1 1024
04 780 2633 1121 605 75.1 2751 2732
06 780 4587 2307 1752 161.4 2626 2688
0.8 780 4651 2124 564.0 234.1 2131 1902
25 02 784 890 118 185 34.6 1484 732
04 612 849 1029 580 59.8 1720  89.8
06 540 3751 1352 619 75.7 2343 2138
08 540 3141 749 1251 144.2 2034 1877
Ave. 3653 1397 136.7 118.7 2045  197.9
Table A3

Optimal objective function value (z*) and computing time (seconds) for the in-
stances generated from pmed3. The optimal value without upgrading is 93.0.

t f z* M1 M1 M2+K  M2+K, M3+K M3+K,
5 02 860 568 920 1014 50.1 83.0 114.9
04 850 4631 954 1723 124.2 155.6 1523
06 850 3214 2516 1409 353.5 2572 4407
08 850 4306 1143 1722 380.5 2994 2569
10 02 776 2716 947 657 413 1196 1376
04 750 6228 289 2114 128.6 1969  203.4
06 730 4411 415 1517 2137 3445 3439
08 720 3292 2451 380.1 189.2 347.3 3333
25 02 744 1749 236 362 14.6 93.4 74.2
04 61.0 409.0 1092 60.4 83.3 2792 1603
06 59.0 4105 1063 2229 171.1 4493 5874
0.8 57.0 417.0 1247 404.1 234.0 4058 3747
Ave. 3623 1106 176.6 165.4 2526  265.0
Table A4

Optimal objective function value (z*) and computing time (seconds) for the in-
stances generated from pmed4. The optimal value without upgrading is 74.0.

t f z* M1 M1 M2+K, M2+K, M3+K M3+K,
5 02 670 785 117 89 6.2 27.2 36.6
04 670 2206 334 186 10.6 54.2 77.0
06 670 698 237 653 75.3 1563  176.6
08 67.0 4907 1772 1566 1224 2762 2584
10 02 630 802 20 5.6 7.4 27.9 16.1
04 610 3624 337 174 24.7 45.1 353
06 610 4476 576 706 78.1 1358 1357
08 610 4193 816 1392 205.3 2219 2935
25 02 592 752 49 3.8 26 24.4 10.5
04 490 1301 10.1 16.1 8.5 55.4 30.5
06 450 1574 115 1038 50.2 157.4 829
0.8 450 2983 445  108.4 206.1 4176 4187
Avg. 2358 410 595 66.5 1333 131.0
Table A5

Optimal objective function value (z*) and computing time (seconds) for the in-
stances generated from pmed5. The optimal value without upgrading is 48.0.

t f oz M1 M1 M2+R M2+R, M3+R, M3+, t f z M1 MU M2+R M2+K, M3+K  M3+K,
5 02 1080 7485 2322 366 30.2 1769  139.7 5 02 400 1060 5.7 35 2.0 22.1 12.0
04 1080 5230 6318 93.1 1899 2117 2703 04 400 588 3.6 8.6 45 417 258
06 1080 367.4 1453 2964 183.0 1520  164.9 06 400 572 152 344 17.4 1004 526
08 1080 3238 2003 2797 334.0 1854 2106 08 400 812 1317 823 829 2912 1615
10 02 1024 4150 1027 754 93.3 1467 1368 10 02 384 548 24 23 14 244 66
04 1000 4880 2373 1064 151.0 1854  202.6 04 360 658 144 96 41 61.2 134
06 1000 6383 3235 2353 2116 2124 1835 06 360 798 66 31.0 13.6 887 426
08 1000 1087.7 2614 25638 3774 2651 1347 08 360 850 1157 89.1 79.7 1995  177.1
25 02 1016 1920 1421 477 1036 4150 1474 25 02 384 594 12 35 14 216 10.6
04 810 5061 4176 705 140.1 2485 1721 04 288 626 19 49 23 459 155
06 790 6960 2422 692 1490 2933 2107 06 210 694 65 14.0 53 78.1 26.1
08 790 5046 3943 2237 197.6 1964  139.6 08 190 1072 249 507 445 2412 1251
Avg. 5409 2776 1492 180.1 2241 1761 Avg. 739 275 278 216 101.3 557
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Table A6 Table A10
Percentage of variables x;;, m;; that are set to zero in model (M1’) for instances Optimal objective function value (z*) and LP gap (%) for
pmel-pmed5, using bounds [b2 and ub2 for connection upgrading. the instances generated from pmed4.
pmed1 pmed2 pmed3 pmed4 pmed5 t f z* M1 M1 M2 M3
t f Xij mi; Xij mij Xij mi; Xij mi; Xij mi; 5 0.2 67.0 40.5 19.7 33.0 11.1
0.4 67.0 42.8 29.2 49.6 15.8
5 02 121 245 181 278 325 395 803 837 831 864 0.6 67.0 45.0 36.7 66.1 18.4
04 04 7.5 1.4 7.0 6.8 11,5 594 619 635 66.2 08 67.0 47.3 435 82.9 20.7
06 0.0 34 0.0 3.2 0.1 3.0 13.0 147 22.0 24.1 10 0.2 63.0 38.8 175 28.8 13.2
08 00 18 00 18 00 16 00 13 00 15 04 610 414 274 447 170
10 0.2 129 253 227 324 394 464 819 853 847 88.1 0.6 61.0 45.9 376 62.9 201
04 0.6 7.6 2.5 8.1 9.9 145 628 653 69.1 718 08 61.0 50.3 46.7 81.3 231
06 0.0 34 0.0 3.2 0.4 33 164 18.1 294 315 25 0.2 59.2 401 16.6 243 202
0.8 0.0 1.8 0.0 1.8 0.0 1.6 0.0 13 0.0 1.5 04 490 38.7 215 31.3 17.0
25 02 17.0 293 375 472 494 564 86.7 90.1 847 88.1 0.6 450 44.6 349 499 19.3
04 40 11.0 160 21.6 206 252 759 784 813 840 08 45.0 55.1 50.9 74.9 273
0.6 0.0 34 0.1 33 1.4 43 356 373 493 514
0.8 0.0 1.8 0.0 1.8 0.0 1.6 0.0 1.3 0.4 19 Avg. 44.2 31.8 52.5 18.6
Table A7 Table A11

Optimal objective function value (z*) and LP gap (%) for

Optimal objective function value (z*) and LP gap (%) for .
the instances generated from pmed5.

the instances generated from pmed1.

[ =z ML MU M2 M3 t  f oz M1 MU M2 M3
5 02 1080 214 141 251 122 5 02 400 543 170 237 89
04 1080 262 229 436 158 04 400 564 303 429 174
06 1080 301 289 621 168 06 400 584 427 616 209
08 1080 335 331 808 17.4 08 400 603 531 807 243
10 02 1024 210 139 210 133 10 02 384 544 162 207 140
04 1000 273 241 392 173 04 360 557 277 366 199
06 1000 336 324 592 201 06 360 598 430 574 244
08 1000 385 379 794 213 08 360 634 558 786 291
25 02 101.6 268 168 204 189 25 02 384 583 182 208 208
04 810 255 202 250 145 04 288 547 184 208 208
06 790 366 342 486 216 06 210 518 230 274 146
08 790 455 447 742 257 08 190 600 466 597 213
Avg. 305 269 482 17.9 Avg. 573 327 442 197
Table A12
Tab!e A8 o . Percentage decrease in the optimal cost by upgrading connections.
Optimal objective function value (z*) and LP gap (%) for
the instances generated from pmed?2. t f pmed1 pmed2 pmed3 pmed4 pmed5
¢ f oz M1 MU’ M2 M3 5 02 -150 -102 -75 95 ~16.7
04 -150 -153 86 95 ~16.7
5 02 880 320 153 243 127 06 150 153  _s6 Py 167
04 830 317 215 398 127 08 150  _153  _86 95 167
06 830 352 295 595 155 10 02 -194 -167 -166 —149  —200
08 830 383 361 796 17. 04 213 204 194 176 250
10 02 816 296 120 184 116 06 213 204 215 176  —250
04 780 332 229 360 156 08 213 -204 226 —17.6 -250
06 780 391 339 571 200 25 02 -200 200 200 200 —200
08 780 441 421 784 221 04 -362 -376 -344 -338  —400
25 02 784 328 123 153 151 06 —378 _449 —366 —392  _563
04 612 287 148 186 96 08 -37.8 -449 387 392  —604
06 540 341 263 383 119
08 540 456 427 691 195
Avg. 354 258 445 153 Appendix B. Detailed results for center upgrading
Table A9 In this Appendix we detail the results of the experiments per-
Optimal objective function value (z*) and LP gap (%) for formed using models Q1, Q1/, Q2+K;, Q2+K;, Q3+K; and Q3+K; for

the instances generated from pmed3. the instances generated from pmed1 to pmed5.

t f z* M1 M1 M2 M3

Table B1
Optimal objective function value (z*) and computing time (seconds) for the in-
stances generated from pmed1. The optimal value without upgrading is 127.0.

5 02 860 309 190 318 15.0
04 850 335 256 482 17.6
06 850 366 320 650 188

08 850 393 373 824 197 t f z* Q1 QU Q2+R;  Q2+R,  Q3+K;  Q3+K,
10 02 776 265 138 245 122
04 750 303 223 415 153 1 02 1100 21868 4600 358 1172 2065 847
06 730 341 295 595 161 04 924 11069 3923 2056 423 3802 12241
08 720 384 365 794 168 06 644 520.6 2179 1487 620 2031 1143
25 02 744 295 144 214 172 08 322 237.3 112.8 379 37.8 106.6  90.6
04 610 277 185 281 141 2 02 1064 6820 507.6 743 67.4 977.8  466.4
06 590 385 329 502 219 04 828 2217.9 872 476 33.7 156.1  175.7
08 570 473 452 742 242 06 564 32280 1057 236 92.9 139.6  209.8

08 284 273.5 111.7 378 45.5 98.2 1721

Avg. 344 272 505 17.4
Avg. 13066 2494 764 62.3 283.5 179.5
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Table B2
Optimal objective function value (z*) and computing time (seconds) for the in-
stances generated from pmed2. The optimal value without upgrading is 98.0.

t f z* Q1 Q1 Q2+K;  Q2+K,  Q3+K;  Q3+K,

1 02 90.0 7028 44.8 13.3 20.6 58.9 104.1
04 76.8 13726 5939 254 274 68.7 115.7
06 552 6347 1573 342 49.9 83.1 130.8
0.8 29.0 220.0 1189 353 58.6 71.6 163.8
3 02 830 4106 1235 582 49.0 534.9 626.8
04 654 1484 720.2 233 23.6 122.0 206.5
06 480 1765 8429  29.0 49.5 130.5 157.0
08 240 17312 236.7 535 483 147.8 190.2

Avg. 674.6 354.8 34.0 40.9 152.2 211.9

Table B3
Optimal objective function value (z*) and computing time (seconds) for the in-
stances generated from pmed3. The optimal value without upgrading is 93.0.

t f z* Q1 Qv Q2+ Q2+K,  Q3+K;  Q3+K,
1 02 910 9340 195.9 343 245 57.1 114.7
04 820 10181  600.0 102.7  86.6 1142  166.7

06 604 13264 3044 51.9 43.7 165.1 205.7
08 33.0 3877 145.0 66.7 60.3 192.9 339.2
3 02 792 8656 16.6 343 24.7 162.7 199.0

04 69.6 1262.6 988.8 17.0 771 1323 302.6

0.6 48.0 11487 642.7 29.4 39.9 180.9 232.5

08 242 4683.8 11706 394 52.2 222.8 216.4

Avg. 14534  508.0 47.0 51.1 153.5 222.1
Table B4

Optimal objective function value (z*) and computing time (seconds) for the in-
stances generated from pmed4. The optimal value without upgrading is 74.0.

t f z* Q1 Q1 Q2+K;  Q2+K,  Q3+K;  Q3+K,
1 02 700 99.1 49.2 4.1 3.2 104 11.7
04 670 6539 3303 12.8 8.9 23.9 20.2
06 540 12134 2248 618 34.2 1059  76.1
08 302 2484 156.2  50.5 40.9 1354 1929
2 02 670 2176 61.5 5.7 3.1 116 10.6
04 610 3904 2332 232 8.1 35.0 38.2

06 456 1257 326.2  25.1 17.2 103.6 129.3
08 248 4352 362.7 3538 30.7 172.3 3135
5 02 632 4184 2.8 4.2 3.7 88.7 78.3
04 486 919 12.0 9.3 7.8 63.1 723
06 348 3718 48.9 84.1 14.4 310.4 229.7
08 194 4230 400.2 491 29.1 1411 219.9

Avg. 390.7 184.0 305 16.8 100.1 116.1

Table B5
Optimal objective function value (z*) and computing time (seconds) for the in-
stances generated from pmed5. The optimal value without upgrading is 48.0.

t f z Q1 Q1 Q2+K;  Q2+K, Q3+, Q3+K,
1 02 430 884 36.6 4.1 2.6 123 11.1
04 400 5301 935 9.5 5.2 22.4 27.8

06 332 160.7 1113 12.4 17.7 73.4 66.5
08 1838 1764 150.6 3438 20.7 106.2 126.5
2 02 400 596 13.8 33 2.5 9.9 9.6
04 366 216.0 200 7.6 4.8 22.4 373
06 28.0 3621 116.6 279 14.0 56.6 66.2
0.8 154 2038 2853 384 25.1 109.1 193.7

3 02 400 744 129 34 2.1 9.3 12.1
04 36.0 339.1 36.4 8.8 5.2 43.3 44.3
06 244 1300 552 20.6 8.4 49.8 45.9
08 132 3294 376.1 35.0 19.2 106.9 192.1

8 02 384 914 2.1 3.0 1.6 329 335
04 288 952 9.3 4.6 2.8 41.5 235
06 196 1466 87.8 11.1 5.0 59.3 69.6

08 100 290.7 93.7 35.8 135 102.1 139.8

Avg. 2059 938 16.3 9.4 53.6 68.7
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Table B6
Percentage of variables x;;, m;; that are set to zero in model (Q1’) for instances
pmel-pmed5, using bounds [b2 and ub2 for center upgrading.

pmed1 pmed2 pmed3 pmed4 pmed5
fot Xy my ot ox; o omy tox; o omy; tox; o omy; tox; o m
02 199 223 1 175 272 1 253 323 1 80.6 84.1 1 773 80.7
0.4 02 73 12 68 43 89 60.8 63.4 544 57.1
0.6 00 34 00 3.2 00 29 143 16.0 13.0 15.1

0.8 00 1.8 00 1.8 00 1.6 00 13 00 15
02 2 109 232 3 246 343 3 378 448 3 81.0 845 2 80.7 84.0
0.4 03 73 33 89 9.0 137 614 64.0 59.4 62.1

0.6 00 34 00 3.2 03 3.2 15.1 16.8 17.8 19.9
0.8 00 1.8 00 1.8 00 1.6 00 13 00 1.5
0.2 5 822 85.6 3 80.7 84.0
0.4 63.9 66.5 59.4 62.1
0.6 17.4 19.1 17.8 19.9
0.8 00 13 00 1.5
0.2 8 84.7 88.1
0.4 67.2 69.9
0.6 27.2 293
0.8 00 1.5
Table B7

Optimal objective function value (z*) and LP gap (%) for
the instances generated from pmed1.

¢t f oz Q1 Q! @ Q3

1 02 1100 265 164 265 143
04 924 290 206 341 15.7
06 644 290 202 367 12.6
0.8 322 274 183 364 10.1
2 02 1064 286 174 240 170
04 828 289 195 265 14.0
06 564 28.8 192 279 125
0.8 284 286 196 283 117

Avg. 28.3 189 300 135

Table B8
Optimal objective function value (z*) and LP gap (%)
for the instances generated from pmed2.

t f z* Q1 Qr’ Q2 Q3

1 02 900 356 173 259 134
04 768 369 217 349 146
06 552 358 220 391 13.2
0.8 290 356 233 420 136
3 02 830 349 1438 19.8 13.9
04 654 343 171 23.7 13.0
06 480 377 232 304 163
0.8 240 367 241 304 143

Avg. 359 204 308 141

Table B9
Optimal objective function value (z*) and LP gap (%)
for the instances generated from pmed3.

t f z* Q1 Q1 Q2 Q3

1 02 91.0 36.1 221 354 169
04 820 372 262 463 18.5
06 604 362 267 509 17.0
0.8 330 387 308 550 212
3 02 792 317 156 259 139
04 696 377 242 369 194
06 480 379 254 386 183
08 242 379 270 391 18.0

Avg. 367 248 410 179
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Table B10
Optimal objective function value (z*) and LP gap (%)
for the instances generated from pmed4.

t f z* Q1 Q1 Q2 Q3

1 02 700 441 23.0 359 134
04 670 468 317 495 204
06 540 464 353 579 235
0.8 302 440 351 62.2 236

2 02 670 438 212 330 135 Table B12 _ _ ,
04 610 470 296 446 212 Percentage decrease in the optimal cost by upgrading centers.
06 456 467 32.7 503 21.9 f t pmedl t pmed2 t pmed3 t pmed4 t pmed5
0.8 24.8 46.0 33.9 54.2 223
5 02 63.2 43.8 19.3 29.0 17.0 0.2 1 -134 1 -82 1 =22 1 -54 1 -104
04 486 422 197 30.6 146 0.4 -27.2 -21.6 -11.8 -9.5 -16.7
06 348 434 237 351 169 0.6 —49.3 —43.7 -35.1 -27.0 -30.8
08 194 464 315 418 207 0.8 ~74.6 -70.4 —64.5 -59.2 —-60.8
0.2 2 -16.2 3 -153 3 -1438 3 -95 2 -16.7
Avg. 451 281 437 191 0.4 -34.8 -333 -252 -17.6 -238
0.6 -55.6 -51.0 —48.4 —-384 —-41.7
0.8 -77.6 -75.5 -74.0 —66.5 —-67.9
Table BTl ) X 5 02 5 146 3 -16.7
Optimal objective function value (z*) and LP gap (%) 04 _343 _25.0
for the instances generated from pmed5. 0'6 753'0 749'2
¢ f oz 1 QU Q@ Q3 08 -73.8 -725
0.2 8 -20.0
1 0.2 43.0 57.7 21.7 28.9 12.8 04 _40.0
0.4 40.0 58.5 31.0 42.8 215 0.6 _592
0.6 33.2 58.8 393 53.7 26.9 0.8 792

0.8 188 56.0 405 59.1 275
2 02 400 560 172 237 11.1
04 366 582 281 375 214
0.6 28.0 57.7 342 452 236
0.8 154 558 364 50.1 24.9
3 02 400 570 183 237 14.4
04 360 598 292 365 246
06 244 554 280 372 19.0
0.8 132 541 314 419 202

04 288 573 176 208 16.8
06 196 562 197 222 16.0
0.8 10.0 558 245 237 15.3

Avg. 57.1 272 355 19.7
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Appendix C. Detailed results for all instances

In this Appendix we present detailed results concerning the computing time (seconds) required by models (M2) and (Q2). Each row
in Table C1 presents average results for the instances built from the pmed instance heading the row. We remove from the average the
instances such that one of the models or both exhaust the time limit of 6h, i.e.,, we do not take into account the computing time of
these instances for any of the models when obtaining the average values. In this table we also present the percentage deviation of the
average time using the lower and upper bounds lb, and ub, compared to [b; and ub;. A positive deviation indicates that by using the

latter bounds, a smaller average computing time was obtained.

Table C1

Average computing time (seconds) using models (M2) (connection upgrading) and (Q2) (center upgrading).
Instance  n p M2 +K, M2+K, Deviation (%) Q2+K; Q2+K, Deviation (%)
pmed1 100 5 149.2 180.1 20.7 76.4 62.3 -18.4
pmed2 10 136.7 118.7 -13.1 34.0 40.9 201
pmed3 10 176.6 165.4 -6.4 47.0 51.1 8.8
pmed4 20 59.5 66.5 11.6 30.5 16.8 —44.9
pmed5 33 27.8 21.6 -22.4 16.3 9.4 —42.3
pmed6 200 5 1703.3 1280.1 -24.8 625.9 4432 -29.2
pmed7 10 623.1 584.4 -6.2 1061.1 787.3 -25.8
pmed8 20 625.2 502.0 -19.7 745.7 401.3 —46.2
pmed9 40 298.8 187.2 -37.4 651.6 517.9 -20.5
pmed10 67 96.7 78.4 -18.9 143.0 119.7 -16.3
pmed11 300 5 965.2 662.9 -31.3 893.4 1166.8 30.6
pmed12 10 2264.5 1312.7 —42.0 2107.2 1149.8 —45.4
pmed13 30 1051.4 1146.2 9.0 17721 1879.3 6.1
pmed14 60 485.2 4211 -13.2 1200.5 1179.0 -1.8
pmed15 100 2463 146.1 —40.7 434.7 405.8 -6.7
pmed16 400 5 1744.6 1124.1 -35.6 1122.3 722.0 -35.7
pmed17 10 2796 2009.4 -28.1 2515.0 1909.9 -24.1
pmed18 40 2736.1 15743 —42.5 6777.1 4344.2 -35.9
pmed19 80 1639.6 520.6 —68.2 1763.6 1761.7 -0.1
pmed20 133 576.0 311.5 -45.9 873.8 794.3 -9.1
pmed21 500 5 3259.4 1821.0 —44.1 2730.9 31233 14.4
pmed22 10 8341.4 6501.6 -221 6236.0 6624.0 6.2
pmed23 50 2217.4 2999.4 35.3 4239.2 4103.0 -3.2
pmed24 100  963.8 1057.5 9.7 2022.9 1924.5 -4.9
pmed25 167  457.7 823.3 79.9 667.7 613.7 -8.1
pmed26 600 5 6414.6 6363.0 -0.8 8811.6 4593.7 —47.9
pmed27 10 9545.0 5668.8 —40.6 6974.0 6085.4 -12.7
pmed28 60 42514 2852.0 -32.9 5840.7 5501.5 -5.8
pmed29 120 17333 2290.7 322 5137.3 41654 -18.9
pmed30 200 9327 2201.8 136.1 2586.5 1713.5 -33.8
pmed31 700 5 5297.1 4774.4 -9.9 5731.6 4291.3 -25.1
pmed32 10 9706.3 8725.7 -10.1 141121 9182.7 -34.9
pmed33 70 4419.0 5040.7 14.1 7948.8 6573.3 -17.3
pmed34 140  2538.3 1959.1 -22.8 3578.2 3497.2 -23
pmed35 800 5 7044.4 4863.3 -31.0 5180.0 4670.0 -9.8
pmed36 10 7906.5 8369.2 5.9 6224.1 109544  76.0
pmed37 80 8472.7 6439.0 -24.0 8851.2 7184.7 -18.8
pmed38 900 5 10787.5  9988.9 -74 7888.6 4523.0 —42.7
pmed39 10 11595.3  9371.0 -19.2 14939.0  8245.7 —44.8
pmed40 90 4507.8 5985.7 32.8 10029.3  7451.7 -15.7
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Appendix D. Math-heuristic results for instances with n > 100

In this Appendix we detail the results of the experiments performed using the math-heuristic proposed in Section 5. Tables D1 and D2
show the results for the instances based upon pmed6-pmed40 (n > 100). For each instance, the number of nodes, n, the number of open
centers, p, and the optimal value without upgrading, z*, are shown. Each instance was solved with four different budgets, therefore the
tables also show, for each instance, the solution with upgrading for each budget, the improvement that it implies over the initial optimal
value, and the execution time in seconds to find the best solution.

Table D1
Math-heuristic results for the instances based upon pmed6-pmed25.
Base Upgr. Impr. Base Upgr. Impr.
n p instance  Budget  z* (%) Time n p instance  Budget  z* (%) Time
200 5 pmed6 17833 613 27.0 738.7 300 5 pmed11 18954  40.0 32.2 262.7
7+ =84 3566.5 43.1 48.7 11473 z* =59 3790.6 262 55.7 1332.8
5349.6  25.7 69.4 474.5 5685.8 14.6 75.3 1033.0
7132.7 168 80.0 0.0 7581.0 11.8 80.0 0.0
10 pmed7 1278.9 47.9 251 2019.5 10 pmed12 1622.1 35.0 314 2200.4
z* =64 25575  31.6 50.6 1140.2 z* =51 32439 231 54.8 9421.6
3836.1 19.2 69.9 680.3 48658 13.2 741 5449.3
51148 128 80.0 0.0 6487.6  10.2 80.0 0.0
20 pmed8 10758  35.1 36.2 5850.1 30 pmed13  1082.8 26.0 27.8 7893.9
z* =55 21514  23.6 57.1 7056.6 z* =36 21654  17.0 52.9 9286.9
3227.0 142 741 6883.1 3248.0 9.2 74.5 10361.1
4302.6 11.0 80.0 0.0 43306 7.2 80.0 0.0
40 pmed9 691.6 25.0 324 5326.5 60 pmed14  707.9 18.0 30.8 4108.5
7+ =37 1383.0 15.6 57.8 6478.5 7+ =126 1415.7 121 53.4 9713.7
20744 88 76.2 4465.4 21234 7.0 73.1 10740.8
27658 74 80.0 0.0 2831.1 5.2 80.0 0.0
67 pmed10 2753 14.0 30.0 278.9 100 pmedl5 4248 12.6 30.2 10514.4
z¢ =20 550.4 8.8 56.1 6661.4 z¢=18 849.5 8.2 54.5 9944.9
825.5 53 73.5 7039.9 12741 49 73.0 10248.6
1100.6 4.0 80.0 0.0 1698.7 3.6 80.0 0.0
400 5 pmedl16 17472  34.0 27.7 606.4 500 5 pmed21 21053  28.1 29.8 4534.0
7t =47 3494.1 23.6 49.7 8360.3 7 =40 42104  19.0 52.6 3428.7
5241.1 15.2 67.6 13140.0 63155 113 71.7 4459.9
6988.1 9.4 80.0 0.0 8420.6 8.0 80.0 0.0
10 pmed17 16215  28.0 28.2 1372.0 10 pmed22  2041.8  26.0 315 16650.1
z+=39 32429 193 50.4 5849.1 7+ =38 40834 17.7 53.3 13394.3
4864.2 11.1 71.6 10778.8 6125.0 10.6 721 4339.5
64855 7.8 80.0 0.0 8166.6 7.6 80.0 0.0
40 pmed18  1223.0 21.0 25.1 12539.9 50 pmed23  1210.0 17.0 22.7 1006.2
7+ =28 24459 131 53.1 13405.2 z *=22 24198 104 52.7 17938.8
3668.7 8.0 714 3157.0 3629.6 6.4 70.9 9289.0
48915 5.6 80.0 0.0 48394 44 80.0 0.0
80 pmed19  709.7 13.7 23.8 13793.5 100 pmed24 7392 11.0 26.7 13484.5
z+=18 1419.2 84 53.3 14153.3 z#=15 14782 7.6 493 17399.2
2128.7 5.0 72.4 13617.8 2217.2 4.5 69.7 17038.4
28382 3.6 80.0 0.0 2956.2 3.0 80.0 0.0
133 pmed20 4014 9.5 26.8 13593.1 167 pmed25 4322 8.0 273 2602.0
z¢=13 802.7 6.7 48.7 137233 =11 864.2 5.4 51.2 17658.4
12039 43 66.9 13641.7 12962 34 69.1 16453.7
16052 2.6 80.0 0.0 1728.1 2.2 80.0 0.0

25



L. Anton-Sanchez, M. Landete and F. Saldanha-da-Gama

Omega 119 (2023) 102894

Table D2
Math-heuristic results for the instances based upon pmed26-pmed40.
Base Upgr.  Impr. Base Upgr.  Impr.
n p instance  Budget z* (%) Time n p instance  Budget z* (%) Time
600 5 pmed26 24124 259 31.7 11873.4 700 5 pmed31 2156.5 23.0 233 3023.6
z¢ =38 48247 172 54.8 1689.9 z¢ =30 4312.8 16.4 453 1784.8
72369 9.6 74.7 1436.9 6469.0 10.3 65.5 9183.8
9649.1 7.6 80.0 0.0 8625.3 6.0 80.0 0.0
10 pmed27 19252  23.0 28.1 37854 10 pmed32  2289.3 20.4 29.6 24942.1
7+ =32 38503 155 51.6 17600.4 7 =29 4578.5 13.6 53.0 19545.1
57753 9.1 71.5 14485.1 6867.6 7.4 74.4 6391.1
77003 64 80.0 0.0 9156.7 5.8 80.0 0.0
60 pmed28  1136.6 14.0 222 1064.4 70 pmed33  1148.7 11.7 21.9 20365.6
z-=18 2273.1 8.6 52.3 21354.7 z#=15 2297.3 8.0 46.8 23948.6
34095 5.2 711 13419.8 3446.0 4.7 68.5 24500.7
4546.0 3.6 80.0 0.0 4594.7 3.0 80.0 0.0
120 pmed29 738.4 10.0 23.1 1875.7 140 pmed34  755.9 8.2 25.9 24773.7
z¢=13 14766 6.8 48.0 20240.1 =1 1511.9 5.7 48.0 24729.3
22148 4.0 69.2 20923.3 2267.8 35 67.8 24203.1
2953.1 2.6 80.0 0.0 3023.8 2.2 80.0 0.0
200 pmed30 4658 7.0 222 0.0
z¢=9 931.4 4.9 45.8 19763.6
13970 3.1 65.0 20566.8
18626 1.8 80.0 0.0
800 5 pmed35 22749 213 29.0 16108.7 900 5 pmed38  2632.0 21.0 27.6 728.8
z¢ =30 4549.7 149 50.4 15148.1 7+ =29 5264.0 13.2 54.4 17760.7
6824.6 9.0 69.9 13709.7 7896.0 8.1 72.2 143224
90994 6.0 80.0 582.0 10528.0 5.8 80.0 0.0
10 pmed36 22079  20.0 25.9 19755.5 10 pmed39  2183.2 17.0 26.1 29499.1
7 =27 44158 137 49.2 22984.6 z¢ =23 4366.5 11.7 49.2 14251.3
6623.7 8.6 68.1 20554.0 6549.7 6.9 70.0 10325.3
88316 54 80.0 9010.9 8733.0 4.6 80.0 0.0
80 pmed37  1307.7 11.0 26.7 26633.0 90 pmed40  1265.8 10.0 23.1 15049.1
z¢=15 26154 7.7 48.8 25193.9 =13 2531.7 6.9 46.8 30973.5
3923.0 43 71.1 27070.3 3797.5 4.0 69.2 31594.6
5230.7 3.0 80.0 0.0 5063.3 2.6 80.0 0.0
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Supplementary material associated with this article can be
found, in the online version, at doi:10.1016/j.0mega.2023.102894.
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