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Abstract

In this work we provide a simple experimental method to measure and evaluate the pixel crosstalk in phase-only
liquid-crystal displays caused by the fringing field effect. The technique is a reverse engineering method that does
not require information about the microscopic physical parameters of the liquid-crystal material or details of the
fabrication and electronics of the display. Instead, it is based on the overall effect on the diffraction efficiency of
displayed binary phase gratings as a function of the addressed gray level. We show how the efficiency of the zero
(DC) and first diffraction orders provides valuable information enough to identify and quantify the pixel crosstalk.
The technique is demonstrated with a modern phase-only liquid-crystal on silicon (LCOS) spatial light modulator
(SLM), illustrating the limitations that this effect imposes to the spatial resolution of the device and providing
quantitative measurement of the impact on the diffraction efficiency.
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Introduction
Spatial light modulators (SLM) are opto-electronic
micro-displays capable to modulate the amplitude, the
phase, or the state of polarization of light waves in space
and in time [1]. The two well-stablished technologies
nowadays are liquid-crystal devices (LCDs) and digital
micro-mirror devices (DMDs). LCDs offer the great ad-
vantage of directly producing phase and polarization
modulation; however, their response depends on the
wavelengths and they are relatively slow devices, in the
order of a few tens of Hz for nematic liquid crystals [2]
or few kHz for ferroelectric liquid crystals [3]. On the
contrary, DMDs are capable to operate at much larger
framerates, reaching more than 30 kHz and are wave-
length insensitive; but they are binary amplitude SLMs
and therefore phase modulation requires encoding

techniques [4]. Newer devices with higher resolution,
higher speed, or extended operational spectral ranges
have led to progress in many different areas of optics &
photonics.
In this work we focus on phase-only LCDs. Ideally,

they are pixelated linear retarders where the extraordin-
ary phase can be varied controlled with the applied volt-
age. When the input beam is linearly polarized parallel
to the liquid crystal director, they produce phase-only
modulation useful for implementing phase-only diffract-
ive elements and digital holograms [5, 6].
Modern technology mostly uses the liquid-crystal on sil-

icon (LCOS) configuration [2]. The resolution and num-
ber of pixels is increasing rapidly for commercially
available LCOS-SLMs. However, these LCOS displays suf-
fer from different secondary effects that degrade their
ideal optical modulation, which cannot be ignored when
accurate response is required. These effects include flicker,
which results in a phase fluctuation [7], external and mul-
tiple internal reflections [8], the aberration caused by the
backplane deformation [9], or the pixel crosstalk caused
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by the fringing effect [10]. In all cases, the evaluation of
these effects can be done at two different levels: (a) from
the manufacturing point of view these effects should be
minimized to reduce its impact on the devices, and (2)
from the user’s point of view, these effects should be mea-
sured and evaluated and, if possible, compensated. While
most SLM commercial suppliers nowadays provide tech-
nical information about the phase fluctuation, the reflect-
ivity and the uniformity of the devices, usually there is not
information about the pixel crosstalk caused by the frin-
ging effect, despite this is an effect that has been reported
for many years [11]. The purpose of this paper it to pro-
vide a fast and simple method that could be used by users
of commercial devices, who do not have access to fabrica-
tion details, to evaluate the impact on the fringing effect
in phase-only SLMs.
Phase-only SLMs employ nematic liquid crystals in a

parallel-aligned (PAL) configuration. In these cases, an
electric field is applied to an area defined by the address-
ing electronics. The applied electric field tilts the liquid
crystal molecules causing their optical phase to decrease.
However, the electric field also affects the areas assigned
to neighboring pixels, reducing the actual resolution.
These effects are especially detrimental when the full
SLM spatial resolution must be exploited, as we recently
showed in the context of a complex amplitude encoding
technique [12] that uses Nyquist diffraction gratings, i.e.
gratings with 2 pixels per period.
As mentioned before, these fringing effects were re-

ported years ago [11] in the original liquid crystal light
valves (LCLVs) that were applied in pioneering optical
data processing systems [13, 14]. Then the industry devel-
oped electrically addressed LC-SLMs where the liquid
crystal was confined by the two-dimensional grid of ad-
dressing electronics [15]. While this reduced the fill factor
for each pixel because the transparent area of the pixel
was reduced, these transmissive devices did not indicate
severe problems caused by these fringing effects. Of note,
Nyquist two-dimensional gratings were studied using
these devices with results that agreed with theory [16].
However, the industry changed to reflective LCOS de-

vices [17] where the addressing electronics are on the
back-reflecting plane of the device. These devices allow a
higher throughput and higher resolution. However, frin-
ging effects have been reported in these newer devices,
thus limiting their application for encoding phase func-
tions with high resolution [18]. The cause is similar to that
with the original LCLV devices because there is no phys-
ical barrier between adjacent pixels. For instance, recently
we examined an approach for encoding complex-
amplitude functions using Nyquist diffraction gratings [12,
18]. The advantage of this technique is that the spatial
variation of the amplitude information can be reduced
compared with other approaches that require blazed

gratings [19, 20]. However, the fringing effect does not
allow exploiting the high resolution required for Nyquist
diffraction gratings, reducing their effectiveness.
Some works have provided models of the pixel crosstalk

caused by this effect, and how it affects the diffraction effi-
ciency [21–27]. They typically employ sophisticated
methods to calculate the spatial distribution of the electric
field provided by the device electrodes, and the corre-
sponding microscopic spatial distribution of the liquid
crystal material. This depends on the characteristics of the
material (dielectric constants, refractive indices and elastic
constants) [21–24]. Some other works study the diffrac-
tion efficiency and provides methods to partially compen-
sate the reduction caused by this effect [10, 25, 26].
Typically, these effects are not noticed when diffrac-

tion gratings with large periods are examined. In this
situation, they do not harm the diffractive efficiency of
blazed gratings where the fringing effect effectively
smooths the stepped phase pattern displayed by the de-
vice [23–25]. Thus, the diffraction efficiency of digital
holograms is not dramatically affected, especially if they
do not show very high spatial frequencies [10, 25].
On the contrary, binary phase diffraction gratings are

very sensitive to the fringing effect because it rounds out
the sharp edges of the binary phase pattern [26, 27], and
this implies notable differences in the Fourier transform
pattern. This effect can be described as a spatial low filter-
ing of the ideally addressed phase grating profile, which
can be modelled as its convolution with a given broaden-
ing kernel accounting for the fringing field effect [22, 27].
The computation or the experimental characterization of
this kernel can be used to compensate the related cross-
talk [27].
Here we discuss a very simple method to identify

when the SLM is affected by fringing and to evaluate its
impact on the device performance. Often the user of the
SLM does not have information about the LC material
physical parameters or does not have access to advanced
simulation software packages useful to calculate the LC
spatial distribution. The advantage of the proposed tech-
nique is that it is based only on simple diffraction effi-
ciency experiments performed with binary gratings
displayed on the device with different gray levels.
The phase modulation measured with a retardance

measurement (placing the SLM between crossed/parallel
polarizers) [28] is compared with the expected diffrac-
tion efficiency measured for binary phase-only gratings
[29]. We observe two kinds of mismatch with respect to
the ideal binary grating response: 1) The zero (DC) dif-
fraction order does not recover the 100% efficiency when
the phase difference is of 2π and 2) the DC vanishes at a
gray level that does not coincide the maximum efficiency
of the first diffraction orders. These effects become
much clearer when the grating has small periods,
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becoming very relevant at the Nyquist limit of two pixels
per period.
It is shown that this behavior can be modelled with a

phase grating with a smooth phase profile. We use a sim-
ple equation with two parameters (the maximum phase
depth and a roundness factor) that explains the experi-
mental diffraction patterns, ranging from that of a perfect
binary phase grating to a limiting case of a sinusoidal
phase grating [30], where the diffraction efficiency follows
the Bessel function behavior. We show that this simple ap-
proach is compatible with a convolutional approach [27],
and it can be used to derive its related kernel.
The paper is organized as follows: after this introduc-

tion, Section 2 describes two methods used to evaluate
the phase modulation of the display, one based on the
retardance measurement, and another based on the dif-
fraction efficiency of displayed gratings. Then we show
how the diffraction efficiency measurements show dis-
crepancies when approaching gratings with small pe-
riods. In Section 3 we provide a simplified model that
accounts for the roundness of the phase profile gener-
ated by the fringing effect and in Section 4 we compare
the predictions of this model with the experimental data,
in order to evaluate the impact of the fringing effect.
The final section gives our conclusions to the work.

Retardance versus phase grating measurements
The experimental system is similar to that used previ-
ously [31]. Light from a laser diode with a wavelength of
λ = 625 nm (Thorlabs CPS635R) is expanded and colli-
mated and enters a non-polarizing cube beam-splitter
and illuminates the LCOS-SLM with normal incidence.
The light reflected from the SLM is then analyzed to
calibrate the phase modulation properties of the display.
In this work we use a Hamamatsu LCOS-SLM device
(model X10468–01), with 792 × 600 pixels and a pixel
spacing of Δ = 20 μm.
The first measurement is a calibration of the retar-

dance as a function of the addressed gray level. A linear
polarizer is placed on the input beam to select linearly
polarized light oriented at 45° with respect to the LC dir-
ector. The reflected beam is analyzed with a linear
analyzer oriented parallel and crossed with respect to
the input polarizer. We use two film polarizers (Thorlabs
LPVISE200-A) useful in the visible range, with a 2″
aperture mounted on rotatable mounts. The intensity is
then measured with a detector (Newport 1818C). In this
situation, the normalized relative crossed and parallel in-
tensities are given by i⊥ = sin2(Φ/2) and i∥ = cos2(Φ/2) re-
spectively, where Φ denotes the retardance provided by
the LCOS-SLM [28].
Figure 1 shows the obtained experimental results. Here

we address the entire screen of the SLM with a uniform
gray level g, so these measurements are not affected by

fringing. The gray level g is varied in the usual range
from 0 to 255. The intensity measurements for crossed
and for parallel polarizers are normalized to the addition
of the two components. Fig. 1a presents these normal-
ized results, which reproduce the expected sinusoidal be-
havior with a variation of more than one period, thus
indicating a total retardance variation that exceeds 2π.
From these experimental data we calculated the retar-
dance versus gray level function Φ(g) that best fits them.
The corresponding curves i⊥(g) and i∥(g) are plotted as
continuous curves in Fig. 1a, achieving a quadratic rela-
tive error of less than 1.8% with respect to the experi-
mental data. The corresponding retardance function
Φ(g) is presented in Fig. 1b, showing a linear relation be-
tween retardance and gray level, with a relative retar-
dance difference of Φ = π for a gray level g = 100 and of
Φ = 2π for a gray level g = 200, for the operating wave-
length of λ = 625 nm.
A second technique extensively used to calibrate the

phase modulation is based on the efficiency of binary
phase diffraction gratings [29] or binary diffractive lenses
[32] displayed in the SLM. In this technique a one-
dimensional binary grating is displayed with two gray
levels, one that is selected fixed (typically with gray level
g = 0) and another one with variable gray level g. In the
case of pure phase-only modulators, the relative inten-
sities of the zero (DC) order and the first diffraction or-
ders are given by.

i0 ¼ cos2ðφ=2Þ; ð1aÞ
and

i1 ¼ ð4=π2Þsin2ðφ=2Þ; ð1bÞ
where now φ(g) =Φ(g) −Φ0 is the relative phase differ-
ence between the retardance Φ(g) for gray level g and
that φ0 for the reference level g = 0. We note that two di-
mensional gratings could also be used, but the one di-
mensional gratings are sufficient.
Figure 2 shows experimental captures of the diffrac-

tion patterns obtained for this kind of one-dimensional
binary phase diffraction gratings for different gray levels.
Here we add a lens with focal length of 40 cm on the
reflected beam and focus the Fourier transform plane
onto a CCD camera from Basler (model scA1390-17 fc,
with 1390 × 1038 square pixels of 4.65 μm side). The in-
put and output polarizers are now set parallel to the LC
director to obtain a phase-only modulation response of
the SLM. In these results in Fig. 2 we use gratings with a
large period of d = 16 pixels.
The images in Fig. 2 show the expected classical

diffraction pattern of a binary phase grating, which
evolve from a single DC order when g = 0, reaches
the maximum diffraction efficiency for g = 100 where
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the phase modulation is φ = π, and gets back to a sin-
gle DC order for g = 200, where the phase modulation
is φ = 2π. These diffraction patterns in Fig. 2 show a
null intensity for the even diffraction orders, as it is
expected for the binary diffraction gratings with 1/2
fill factor [33] (in this case the gratings have 8 pixels
with g = 0 and other 8 pixels with the variable gray
level g). The results in Fig. 2 correspond to gratings
displayed in vertical direction, but we did not notice

any significant difference when the grating was dis-
played horizontally.
We note that we are using an LCOS-SLM with analog

electronics, therefore free of flicker or phase fluctuation
[34]. This is why the DC order can be practically can-
celled when the phase difference φ = π is reached for g =
100. Nevertheless, some weak DC noise is still visible at
this level due to some non-negligible reflection at the
outer surface of the SLM.

Fig. 1 (a) Experimental measured data (dots) for parallel and crossed polarizers as a function of gray level (g) and best fit curves (continuous
lines). (b) Retardance versus gray level Φ(g) that best fits the experimental data

Fig. 2 Experimental diffraction patterns obtained for binary phase diffraction gratings with a period of d = 16 pixels and different gray levels
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The situation changes drastically when the period of the
grating is reduced. To illustrate the case, Fig. 3 shows the
diffraction patterns captured when the binary phase grat-
ing is displayed with a period of only d = 2 pixels, i.e. a
Nyquist grating. This grating diffracts with much larger
angles and therefore we require using a lens with much
shorter focal length to capture the diffraction pattern with
the same CCD sensor (the size of the Fourier transform
scales proportional to the focal length). We used a photo-
graphic objective with focal length of 5 cm. However, then,
the focused diffraction orders appear in the captured im-
ages as very narrow sharp peaks. Therefore, in order to
more clearly visualize the diffraction orders, we slightly
defocused the Fourier transform plane.
The results in Fig. 3 show very different patterns com-

pared to Fig. 2 and illustrate how the fringing is affecting
the profile of the phase grating provided by the SLM.
Three effects are clearly visible in the patterns in Fig. 3:
a) the ±2nd diffraction orders are now clearly visible for
gray levels greater than g = 100; b) the DC order is no
longer cancelled for the gray level g = 100 and appears
weaker for larger gray levels, and c) we never recover
the situation with a single DC order that happens for the
binary grating with φ = 2π phase modulation.
We note here that the second diffraction order gener-

ated by this Nyquist grating coincides with the first dif-
fraction order generated by the pixelated structure of
the display. However, the Hamamatsu LCOS-SLM has a
very high fill factor (F) of more than 98% and the inten-
sity of the central DC order generated by this pixelated
structure is thus given by F2 = 96%. Therefore, the con-
tribution of the four first diffraction orders generated by
the pixelated structure is less than 1% and this contribu-
tion can be ignored. As shown in Fig. 3, cases g = 0 or
g = 50 do not show any significant second diffraction

order, and therefore the second orders observed for
higher gray levels can be fully attributed to the fringing
effect.
As it is shown next, all these effects can be explained

by the roundness of the phase profile of the displayed
binary diffraction grating caused by the fringing effect
on the SLM. To quantify this effect, we conducted more
precise experiments where we measure the intensities of
the diffraction orders as a function of the addressed gray
level. Nevertheless, the experimental comparison pro-
vided by Fig. 2 and Fig. 3 represent a very simple and
fast procedure to identify when the SLM is affected by
the fringing effect.
Figure 4 presents results of the intensities of the DC

and first diffraction orders as a function of the phase dif-
ference φ(g) in the binary phase grating. We change the
period of the grating from a period of d = 10 pixels down
to the Nyquist case with a period of d = 2 pixels. The ex-
perimental data are shown by the dots. In order to see
the effects more evident, we also plot in all graphs the
expected intensity i0 = cos2(φ/2) and i1 = (4/π2)sin2(φ/2)
(Eqs. (1)), assuming the phase-shift to gray level calibra-
tion relation φ(g) =Φ(g) −Φ0 given by Fig. 1(b).
When the grating has a period of d = 10 pixels (Fig. 4a),

the intensities of the diffraction orders agree reasonably
well with the expected results. The first order reaches
the maximum intensity around φ = π and returns to zero
around φ = 2π. However, even with this large period,
there are some discrepancies which are most clearly evi-
dent in the DC order obtained for the high values of
φ(g). Here, the experimental curve does not match the
theoretical relation; instead, it appears slightly shifted to
higher values. In addition, the secondary maximum ex-
pected at φ = 2π does not reach the maximum value.
These effects are more evident as the period of the

grating decreases, as shown in Figs. 4b, c and d. The
values of the phase modulation (or equivalently the gray
levels) that provide the minimum and the secondary
maximum of the DC intensity increase as the period de-
creases; and the maximum intensity that the secondary
maximum of the DC reaches is less intense as the period
decreases.
The diffraction efficiency of the first diffraction order

is less affected than the DC order. The experimental
data follow well the expected curves when the grating
has d = 10 and d = 6 pixels per period. However, discrep-
ancies are again shown when d = 4 and most clearly for
the Nyquist grating, d = 2. Here, again the experimental
data look shifted to higher phase values. As mentioned
before, these gratings should not produce the second dif-
fraction order. However, for the Nyquist grating (d = 2)
we also include the measurement of the intensity of this
second diffraction order since it takes non-negligible
values for high gray levels (Fig. 4d).

Fig. 3 Experimental diffraction patterns captured for binary phase
diffraction gratings with a period of d = 2 pixels and different
gray levels
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Phase gratings with smooth rounded edges
As stated earlier, the fringing effect basically smooths
the binary grating phase profile, and this is the reason of
the discrepancies in the resulting diffraction efficiency.
To mathematically model the real phase profile φ(x) of
these gratings displayed by the SLM affected by fringing,
we consider a function similar that used by Gori et al
[35] to design continuous phase triplicator gratings with
optimal efficiency, with the following relation:

φðxÞ ¼ Mπ
1
C
arctan½acosðγxÞ�

� �
: ð2Þ

Here γ = 2π/d and d is the period of the grating. The
numerical constant a gives the roundness of the phase
profile, and C is a normalizing constant equal to the
maximum value of the arctan( ) function. The value of C
depends on the selected value of a and it is included in
Eq. (2) to make the function within the curly brackets

Fig. 4 Experimental intensities of the DC and first diffraction orders for displayed binary phase diffraction gratings with periods of d = 10, 6, 4 and
2 pixels, as a function of the phase modulation φ(g). The dotted lines correspond to the theoretical intensities
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range between − 1 and + 1, thus making the phase grat-
ing profile φ(x) range between −Mπ and +Mπ. There-
fore, the two parameters we use to describe the fringing
effects are the roundness constant a and the maximum
phase difference φmax =M2π. This last parameter M dif-
ferentiates the profile in Eq. (2) from the triplicator de-
sign in [35].
Figure 5 shows some phase profiles derived with Eq.

(1) for four different values of a. For large values the
phase profile approaches the perfect binary phase square
signal (Fig. 5a). As the value of a decreases, the edges of
the binary pattern get progressively smooth as shown in
Fig. 5b and c for a = 10 and a = 2 respectively. Values
below a = 0.1 makes the phase grating achieve a sinus-
oidal profile of the type φ = φmax cos(γx). The two ex-
treme situations, the binary phase profile and the
sinusoidal phase profile, they both have analytical ex-
pressions for the intensities of the diffraction orders as a
function of the maximum phase difference φmax. As
mentioned above (Eqs. (1)), the binary grating has effi-
ciencies i0 = cos2(φmax/2) and i1 = (4/π2)sin2(φmax/2) and
there is no second order [25]. For the sinusoidal phase
grating the intensities of the diffraction orders are given
by im ¼ J2mðφmaxÞ [30], where Jm is the Bessel function of
first kind and order m. In between, the phase profile
changes in a non-linear way with the parameter a.
Figure 6 shows the intensities for the DC, first and sec-

ond diffraction orders generated by the phase gratings
shown in Fig. 5 as a function of the maximum phase
variation φmax. We use the same four values a = 1000,
a = 10, a = 2 and a = 0.1 as in Fig. 5. These intensities
have been numerically calculated using standard Fourier
transform methods, as described in [36]. The first case
(a = 1000, Fig. 6a) reproduces the binary phase grating
behavior. The effects displayed in the experimental data
in Fig. 4 are clearly shown in Figs. 6b (a = 10) and 6c
(a = 2). The maximum efficiency for the DC order moves

to higher phase values and its intensity does not return
to its maximum original value. Note for instance the re-
semblances of the results in Figs. 4d and 6d.
The second diffraction order is negligible for a = 1000

and for a = 10 but starts to be relevant for a = 2. Finally,
the last case in Fig. 6d (a = 0.1) reproduces the Bessel
functions expected from a sinusoidal phase grating [30].
In order to compare the experimental data in Fig. 4

with the above-described model, we look at the max-
imum and minimum values of the diffraction orders, as
well as to the phase values where they are produced. To
this aim, Fig. 7 shows another numerical calculation of
how these values change with the parameter a. We
present the values in the range from a = 500 to a = 0.1 in
a logarithmic scale.
In Fig. 7a we plot the maximum intensity that reaches

the DC order, the first order and the second orders for
each value of a (blue, red and green curve, respectively).
In the case of the DC order, we plot the secondary max-
imum that happens for around the phase shift of 2π. For
a = 500, which approaches the binary grating, these values
are as expected, practically of 100%, 40.5% and zero re-
spectively. However, as the parameter a decreases, we see
that the fringing starts to impact these values.
The intensity of the secondary maximum of the DC

order shows the greatest variation with a (changing from
100% to about only 16%), thus being the most sensitive
experimental parameter to determine the effect in the
experimental data. On the contrary, the maximum of the
first diffraction order shows very little variation (from
40.5% to 33.9%). The second order is null for high values
of a, and reaches the maximum value of 23.6% when the
sinusoidal phase grating is reached.
Fig. 7b shows the theoretical phase modulation value

φmax that provides these maximum intensities at the
corresponding diffraction order. The phase value that
provides the minimum intensity of the zero order (black

Fig. 5 Phase profiles for different values of the parameter a in Eq. (1)
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curve in Fig. 7(b)) is provided as well. Again, the ex-
pected values for the binary grating are obtained for a =
500. The secondary maximum of the DC order is ob-
tained for 2π, and the maximum value of the first order
is obtained for π, and this coincides with the minimum
of the DC order.
However, we observe the behavior shown in the exper-

iments as the value of a increases. The maximum in the
DC order (blue curve in Fig. 7b) moves to higher phases,
shifting almost by π/2 when the sinusoidal phase grating
is reached (a = 0.1). The minimum of the DC (black
curve) is shifted with the same proportion but starting
from the value of π. On the contrary, the maximum in-
tensity of the first diffraction order (red curve) is shifted
with much smaller value, as shown in the separation

between the black and red curves in Fig. 7b. This ex-
plains the mismatch between the maximum efficiency at
the first diffraction order and the minimum efficiency of
the DC order that we observe in the experiments. Fi-
nally, the maximum intensity of the second order (green
curve) suffers a shift like that observed in the DC order.
In the next section, we compare this model with the

experimental data.

Characterization of the LCOS-SLM device
In order to characterize the fringing effect in the LCOS-
SLM device used in this work we use the experimental
data shown in Fig. 4. As described in the previous sec-
tion, the maximum efficiency value that the DC diffrac-
tion order reaches in the secondary maximum provides

Fig. 6 Theoretical diffraction efficiency of the DC, first and second diffraction orders as a function of the maximum phase φmax for a = 1000, a =
10, a = 2 and a = 0.1
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a measurement with good sensitivity to determine the
value of the parameter a. Therefore, we determined the
value of a for the four cases shown in Fig. 4 using the
blue curve in Fig. 7a, leading to the values a = 20.2 for
the period of d = 10 pixels, a = 12.2 for d = 6 pixels, a =
8.8 for d = 4 pixels and a = 3.4 for the Nyquist grating
with d = 2 pixels per period. Then, we used this value in
each case, together with the phase modulation to calcu-
late the intensity of the corresponding diffraction order
and compared the result with the experimental data.
This comparison is provided in Fig. 8.
At an initial step, we select in all cases that the max-

imum phase φmax(g) for each grating is the same value
as given by the calibration φ(g) =Φ(g) −Φ0 shown in
Fig. 1b. This results in an excellent agreement in the
whole gray level range for the gratings with d = 10 and
with d = 6 pixels per period (see Figs. 8a and b). How-
ever, for the shortest periods (d = 4 and d = 2) we added
a refinement to achieve the best results shown in Fig. 8,
consisting in multiplying the value of φmax(g) by a multi-
plicative factor that reduces the effective maximum
phase modulation to φ′max. For d = 4 this factor is of
94%, while for of d = 2 is of 89%. This multiplicative fac-
tor for the phase modulation is required to achieve the
excellent fit shown in Figs. 8c and d, especially for the
higher gray levels. This multiplicative factor is a reason-
able expected effect since the fringing-field effect has
been also probed to reduce the effective phase modula-
tion [26].

On top of each graph in Fig. 8 we draw the phase profile
for each grating represented in eleven pixels of the SLM.
These figures therefore illustrate the strength of the frin-
ging effect in the phase profile. We note that the pixel
pitch for the employed LCOS-SLM is of Δ = 20 μm.
Finally, we show that this simplified approach is com-

patible with the convolutional approach in [22, 27]. For
that purpose, we consider the ideal rectangular binary
phase profiles ϑ(x), as shown in Fig. 9a. Then, for each
profile we calculate its Fourier transform ΓðpÞ ¼ F ½ϑðxÞ�,
where p denotes the spatial frequency. Then, the Fourier
transform of each phase grating is multiplied by a function
of the following form:

HðpÞ ¼ exp −
jpj
σ

� �m� �
: ð3Þ

This function represents the Fourier transform of the
broadening kernel. If m = 2 it corresponds to a Gaussian
function. We consider the absolute value of p in Eq. (3)
since we experimentally observe a symmetric distribu-
tion of diffraction orders. However, asymmetric func-
tions can be also considered in general, like in [22, 27] if
an asymmetric distribution is observed.
To perform the calculations, each pixel of the SLM is

oversampled with an arbitrary number of 50 subpixels.
Then, ΓðpÞ ¼ F ½ϑðxÞ� is calculated for each binary phase
grating ϑ(x) in Fig. 9a and the product H(p)Γ(p) is

Fig. 7 a Maximum theoretical intensity of the DC, first and second diffraction orders as a function of the parameter a (for the DC the value
corresponds to the secondary maximum). b Phase value φmax that provides the maximum efficiency of the DC order (blue curve), first order (red)
and second order (green), and phase values that provides minimum intensity of the DC order (black), as a function of a
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Fig. 8 Comparison of the experimental intensity at the diffraction orders (dots) with the theoretical values (continuous lines) expected for the corresponding
grating with after calibrating the parameter a in each case. On top of each graph is drawn the corresponding phase profile φ(x) of each grating
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inverse Fourier transformed. Thus, a new function ζðxÞ
¼ F −1½HðpÞΓðpÞ� ¼ hðxÞ�ϑðxÞ is retrieved for each grat-
ing, where ∗ denotes the convolution operation and
where hðxÞ ¼ F −1½HðpÞ� is the broadening kernel. We
seek for the values of m and σ in Eq. (3) that minimize
the difference between the profiles ζ(x) and the corre-
sponding phase profiles φ(x) derived from the experi-
mental data and shown in Fig. 8. The best results are
obtained for values m = 1.21 and σ = 0.74 pixels. These
values provide an excellent agreement for all four phase
profiles, with an absolute error difference of less than
0.02% between ζ(x) and φ(x) in all four gratings shown
in Fig. 8. The corresponding broadening kernel h(x) is
shown in Fig. 9b, represented in the same scale as the
phase profiles, and showing a full width at half max-
imum FWHM = 0.18 pixels. The resulting phase profiles
ζ(x) are shown in Fig. 9c, illustrating a behavior equiva-
lent as that shown in Fig. 8.

Conclusions
This paper presents an approach that is important for
users of LC-SLMs to quantify fringing-field effects based
on diffraction efficiency experiments with displayed bin-
ary phase gratings with different periods. The goal of the
method is not to determine the cause of the pixel cross-
talk but to specify the overall response and its impact in
terms of diffraction efficiency and spatial resolution, pa-
rameters that are relevant for users of the devices.
Therefore, the technique does not require the computa-
tion of the spatial distribution of the director axis in the
liquid-crystal layer. Instead, it is simply described with
phase-only diffraction gratings with phase profiles hav-
ing smooth edges.
The intensities of the diffraction orders for a binary

phase grating and for a sinusoidal phase grating can be

described with analytical relationships that depend on the
phase difference φmax. For situations in between, we intro-
duced a numerical parameter a that quantifies this
smoothness, which can be determined from the relative
intensity of the diffraction orders. We showed that the
maximum intensity that the DC order reaches in the sec-
ondary maximum expected for a phase modulation of 2π
is a very sensitive measurement and provides a very good
estimation for the a parameter. The results show a very
good agreement with the experimental measurements,
thus providing an excellent mean to quantify the fringing
effect. We showed how these effects become dramatically
relevant when we approach the Nyquist limit of gratings
with two pixels per period. In this case the effect is not
only a roundness of the phase profile, but the maximum
phase shift is also reduced. We then consider a second
parameter, the effective reduced maximum phase shift φ′
max, required to achieve the excellent agreement with the
diffraction efficiency measurements shown in Fig. 8. The
results are shown to provide results comparable with the
standard convolutional approach; in fact, it can be used to
calculate the broadening kernel.
These results illustrate that one must be cautious

when using the diffraction grating techniques [29, 32] to
calibrate the phase modulation, since the fringing effects
might be affecting the diffraction efficiency and therefore
leading to non-exact values.
Despite the great advances in spatial resolution

achieved with the current dominant LCOS technology
with respect to transmissive displays, this fringing effect
is of concern because it might prevent its use when the
SLM full resolution is required. This is the case for in-
stance of our recent work [12] where we showed that
fringing degrades a technique for encoding amplitude in-
formation onto phase-only holograms using Nyquist
gratings. Because the gratings are not well reproduced

Fig. 9 Convolution of (a) the ideal binary grating profiles ζ(x) with (b) a broadening kernel h(x) leading to (c) the rounded phase profiles ϑ(x)
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due to the fringing effect, a strong DC order is origi-
nated by phase mismatch values, that overlaps on the
desired response of the hologram.
We have shown these effects with a commercial

LCOS-SLM from Hamamatsu, with a pixel pitch of
20 μm. But we expect that similar problems will affect
newer higher resolution LCOS-SLMs, even more se-
verely, as the pixel sizes decrease further. As a compari-
son, the transmissive CRL device used in Ref. [16] has a
pixel pitch of 18 μm, very similar to that of the device
used here, but it is not affected by these fringing effects.
Although the throughput of these transmissive displays
is reduced because the transparent region of the pixel is
reduced relative to the pixel spacing, the absolute effi-
ciency of the reflective LCOS devices is also reduced if
one wants to have the incident beam normal to the re-
flective surface, because a beam splitter is required.
In summary, having a simple and rapid technique to

evaluate the fringing effect and to compare different LC-
SLM devices and technologies is of interest to examine
their performance. The technique here proposed can be
very useful for this purpose and can provide quantitative
values (for instance like the maximum intensity of the
DC order at secondary maximum or the parameter a in
Eq. (2)) that could be added to the specifications of com-
mercial devices to evaluate this effect.
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