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A B S T R A C T   

The presence of internal voids in watermelons has an impact on the costs of producers and on consumer con-
fidence. Various studies have shown that the vibrational parameters of the fruit are related to maturity, quality 
and the existence of internal defects. A method for the detection of internal voids in seedless watermelons based 
on vibrational parameters obtained in impact hammer tests and machine learning is presented. After a statistical 
study of the test results, the frequency of the first peak of the vibrational response and the density of the 
watermelon are selected as predictors to be used in the classification algorithms. The accuracy of detecting 
hollow watermelons increases if firmness estimator is introduced as a predictor. Probabilities of success above 
89% in the detection of internal voids have been achieved using different classification algorithm.   

1. Introduction 

The presence of voids in watermelons affects internal texture and 
taste. These defective watermelons are returned and not charged for, 
resulting in costs to the producer, complaints and loss of customer 
confidence. The voids inside the watermelon, a defect known as hollow 
heart, in some cases reach 50% of the internal volume of the watermelon 
and can be caused by irregular growth between the centre and the 
outside. This can occur when atmospheric conditions during growth 
alternate from wet to dry or when there are large temperature changes 
[1]. Overwatering or excessive nitrogen fertilisation can also cause this 
type of defect [2,3]. 

The marketing of hollow watermelons entails an additional cost for 
producers. Watermelons cannot be inspected invasively so multiple 
research projects have been carried out in order to find a non-destructive 
inspection method [4,5]. Some of these methods are based on vibra-
tional and/or acoustic techniques. On the packing line, or even in the 
field, there tend to be trained experts responsible for the initial screening 
of watermelons with internal defects. This method consists of manually 
tapping each watermelon so that an expert operator can classify it based 
on the sound produced. Although deeper sounds are associated with the 
existence of voids, the method is still subjective and imprecise, as well as 
involving a high cost in terms of time and personnel. 

Automating a method for detecting internal defects based on vibra-
tional techniques presents certain difficulties. Firstly, the frequency and 

magnitude with which an object responds to vibrational excitation de-
pends on its elasticity, density, size and shape. These properties are 
highly variable within the same batch of watermelons and depend on 
factors such as maturation time, water level, rind thickness, etc. Sec-
ondly, watermelons of the same variety grown in the same area and 
season may present internal voids of very different geometries and sizes 
[1]. Fig. 1 shows various watermelons used in this study with different 
types and degrees of internal voids. How these voids affect the vibra-
tional characteristics of the watermelons as a function of their shape and 
size is a field that has yet to be fully studied. 

The correlation between the natural frequencies of watermelons 
obtained by acoustic impulse and their firmness level was studied for 
first time by Yamamoto et al. [6]. Yamamoto found that firmness can be 
estimated with indices based on frequency of resonance and watermelon 
mass. These expressions are modifications of those used previously by 
other authors to determine the state of other types of fruit [7,8]. In 
Yamamoto study, watermelons were excited by tapping them with a 
wooden pendulum and recorded the sound produced. They found no 
appreciable differences when the angle of the pendulum was varied. 
Yamamoto also found that the storage time of the watermelons affected 
their natural frequencies, phenomenon that has been studied later by 
other authors [9]. Other authors have carried out similar studies to 
determine the firmness and maturity of watermelons using 
non-destructive acoustic methods [10–13]. Some of these studies use the 
relationship between the mass properties and natural frequencies of 
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watermelons to predict the ripeness level [3,14,15], corroborating 
Yamamoto’s findings in the 1980s. He et al. [16] conducted a vibra-
tional study hitting watermelons with a pendulum and they found cor-
relation between natural frequencies and the soluble solids content 
(SSC). 

Other studies have attempted to determine the maturity level of 
watermelons based on vibrational parameters other than natural fre-
quencies, for example, sound transmission velocity [17], or on the 
attenuation coefficient of an acoustic wave [18]. Mizrach et al. [18] also 
found a correlation between the attenuation coefficient and the soluble 
solids content (SSC) of watermelons. 

Various papers have studied the relationship between the vibrational 
parameters of watermelons and the presence of internal voids [3,15,19]. 
In the study carried out for Stone et al. [3] subjected the fruit, placed on 
the floor, to an acoustic pulse and measured the magnitude of the 
response of the fruit. They found a correlation between the magnitude of 
the proposed frequency bands and the Melon Hollow Heart Index. They 
obtained better results when the test was performed on the floor than 
when the melon was placed on a solid base. These authors found a 
correlation between acoustic impedance and the level of firmness and 
sugar content. They also found a correlation between the energy con-
tained in the 80–130 Hz range and the existence of voids. Stone et al. [3] 
found that the results of internal void prediction improve if firmness 
values measured with experimental techniques are introduced as a 
parameter. 

Iglesias et al. [20] attempted to detect the existence of internal voids 
in watermelons by recording the response of a melon subjected to a light 
impact with a microphone. In 2006, a method was developed by Noh 
and Choi that allowed for the detection of internal voids with an accu-
racy of 90% in laboratory. The method utilizes an acoustic impulse and 
measures vibration using an optical sensor [21]. 

Apart from methods based on vibro-acoustic techniques, there are 
other non-destructive methods for detecting internal defects in 

watermelons and other fruits for which other types of technologies are 
used. These techniques include X-ray, tomography or spectroscopy [4,5, 
22]. An automatic system to classify watermelons based on their density 
was developed by Kato [23]. Kato successfully determined the absence 
of voids in a sample of 59 defect-free and 16 hollow watermelons. He 
found that density in defect-free watermelons is also related to soluble 
solids content. 

Vibrational methods have also been used to determine the state of 
maturation in other types of fruit than watermelons and other papers 
study alternative parameters such as the magnitude of the frequency 
band, damping coefficient or the pulse propagation velocity [24,25]. 

Increasingly, classification techniques based on machine learning are 
being developed, which include k-Nearest Neighbour (KNN), neural 
network, neural network, Support Vector Machine (SVM), and the de-
cision tree [26]. Multiple techniques can be used to classify watermelons 
according to their ripeness level based on vibro-acoustic test data. 
Abbaszadeh et al. [27] use a KNN classifier and vibrational test data to 
detect watermelon ripeness level with a 95% success rate. Chawgien and 
Kiattisin [28] test a large number of classifier algorithms to determine 
the maturity level. Alipasandi et al. [29] combine vibro-acoustic testing 
with KNN and SVM algorithms. Machine learning technology has also 
been used with other types of watermelon tests, for example, Liu et al. 
[30] use several algorithms (random forest, neural network, SVM, 
principal components) to measure and classify watermelons according 
to their quality by multispectral imaging, and Arboleda et al. [31] use 
infrared spectroscopy and SVM classifier to determine the ripeness of 
watermelons. However, the use of classifier algorithms for internal voids 
detection has not been studied in previous works. 

In the study described in this document, an analysis of the relation-
ship between the existence or not of voids and the physical properties of 
watermelons and the vibrational parameters obtained by vibratory tests 
with an impact hammer, was performed. The objective was to determine 
the best parameters to be used as predictors of the existence of voids by 

Fig. 1. Examples of watermelons with internal defects used in this study.  
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means of statistical analysis. Subsequently, classification algorithms 
were used to evaluate the effectiveness of these parameters for classi-
fying watermelons as a function of the presence of internal defects. The 
combined application of vibrational techniques and machine learning 
for the detection of voids in watermelons represents a novelty that can 
help enhance accuracy in the detection these internal defects. 

2. Materials and methods 

2.1. Vibrational tests 

For the statistical study, 120 seedless watermelons harvested be-
tween May and June 2022 were used. These watermelons were used to 
train the classifier algorithms. The company that supplied the water-
melons screens the watermelons when they arrive at the warehouse by 
means of operators specialised in detecting internal voids manually. Part 
of the sample for this study was taken from the group of watermelons 
that had previously been classified as potentially hollow. Another part of 
the sample was taken from the group of watermelons classified as good 
quality by the agricultural company AGRICOLA NAVARRO DE HARO S. 
L [32]. For this reason, the sample used contains a higher proportion of 
hollow watermelons than usually detected during the harvest. This was 
done in order to have a sufficiently large number of watermelons with 
internal defects for the statistical analysis, see section 2.3, without the 
need to test thousands of watermelons. Of the 120 watermelons used for 
classifier training, 25 were from the hollow watermelons discarded by 
the experts. 

Prior to testing, the watermelons were stored in a conditioned room 
at 25ᵒC for a minimum of 24 h. Before the vibrational test, each 
watermelon was weighed with a dynamometer AMETEK CHATILLON 
DFX-050 and its volume was estimated. To determine watermelon vol-
ume, perimeters were measured with a tape measure in the equatorial 

plane and in a plane perpendicular to it, passing through the pedicle. For 
volume estimation, the watermelon shape was approximated to the 
ellipsoid of revolution. 

The configuration for Fig. 2 was used for the frequency test. Each 
watermelon was placed with the pedicle in a horizontal position on a 25 
mm polyurethane base with a density of 30 kg m− 3. A uniaxial accel-
erometer, model PCB 601A01, connected to the first channel of the NI 
9233 data acquisition card was attached to the top of the watermelon, 
which is previously cleaned with alcohol. The watermelon was tapped at 
the equator, at the height of the pedicle, with a PCB 086C03 impact 
hammer connected to the second channel of the acquisition card. The 
impact hammer was fitted with a soft rubber tip in order not to damage 
the watermelon skin during the test. The acquisition card was connected 
to a laptop computer for data recording, pre-processing and storage 
using LabVIEW software. 

The acquisition card recorded signals of 1 s duration from the impact 
of the hammer with a sampling frequency of 2 kHz. The accelerometer 
signal y(t) was subjected to Fast Fourier Transform (FFT) to obtain its 
frequency content Y(ω). The impact hammer has a load cell at its tip 
which records the applied force signal x(t). In order to perform a modal 
analysis, all frequencies of the test specimen must be excited equally, 
which is not the case with the method used as an infinitely small impact 
duration would be required. The effect of the actual impact duration can 
be corrected by transforming the input signal X(ω) and thus calculating 
the frequency response function H(ω) according to equation (1) [33]. 

H(ω)= Y(ω)
X(ω) (1) 

The data recorded by both the hammer and the accelerometer as well 
as the frequency response were exported to Matlab for subsequent 
analysis. Each watermelon was tested 5 times using the same procedure 

Fig. 2. Configuration of the frequency test on watermelons. Left: schematic. Right: image of the test.  

Fig. 3. Watermelon vibrational test signal processing.  
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in order to detect any experimental errors. Finally, the real state of each 
watermelon pulp was checked by opening it, and all of them were 
classified into watermelons with internal defects or watermelons 
without internal defects. 

2.2. Data processing 

Subsequently, the accelerometer and hammer signals were processed 
in the frequency domain using Matlab software in order to obtain the 
vibrational parameters that best predict the internal state of the water-
melons. Fig. 3 shows the typical curve of the force signal captured by the 
impact hammer in the frequency domain. According to expression (1), 
the acceleration pulse values for high frequencies are over-magnified 
due to the fact that the convolution is performed with excitation 
values that are too low. Therefore, only the data up to the frequency at 
which the hammer signal falls below 20% of its maximum value, which 
is called flim, have been used in the analysis. 

Fig. 3 also shows the spectral response function curve for a water-
melon tested as described in the previous section. The peaks in the ac-
celeration signal at frequencies close to zero can be discarded, as they 
are associated with free solid movements and not with the transmission 
of vibrations inside the fruit. This assumption is valid if the frequencies 
of the discarded peaks are one order of magnitude lower than the fre-
quencies studied, which is true for the acceleration signals in this study. 
Therefore, the signal range used for the analysis was between 50 Hz and 
the limiting frequency flim. In this frequency range, the frequencies at 
which the first three peaks in the transfer function occur had been ob-
tained, named f1, f2 and f3 respectively. In some cases, watermelons only 
exhibited two peaks in the frequency range studied so only these first 
two frequencies were used. It had been found that the frequencies at 
which the peaks occur are not influenced by the point of impact, pro-
vided that it was made on the equator of the watermelon in the direction 
approximately perpendicular to the direction of measurement of the 
uniaxial accelerometer. Of these 3 frequencies, the frequency at which 
the highest amplitude peak in the transfer function has been named fmax. 

The results of all samples were analysed, discarding those water-
melons for which anomalous data were obtained in the accelerometer or 
hammer signals. The most common error was due to the accelerometer 
lift-off. In those cases, the shape of some signals didn’t correspond to the 
typical curve of an acceleration spectrum shown in Fig. 3. Anomalous 
curves had a huge ripple or no peaks at any frequency within the ana-
lysed range. If after discarding the questionable signals there were not at 
least three acceleration curves, the watermelon was discarded for the 
analysis. Finally, the characteristic frequency values for each water-
melon were calculated as the median of those obtained from the 
repeated watermelon tests. 

After screening out watermelons that showed dubious data, results 
were available for 117 watermelons, 22 of which were found to be 
hollow and 95 without internal defects. 

The maturation level of fruit has been demonstrated to affect their 
natural frequencies by several authors. Abbot et al. [8] used vibrational 
analysis to estimate the level of maturation in both fruits and vegetables. 
This author proposed the stiffness coefficient of equation (2) to estimate 
the firmness level of the fruit. 

firmnessa = f 2
1 m (2)  

Where f1 is the first resonance frequency of the fruit and its mass m. 
Later, Cooke [7] proposed to estimate the firmness with the stiffness 
coefficient for spheroidal objects of equation (3). 

firmnessc = f 2
1 m2/3 (3) 

These expressions have been extensively used by other researchers to 
estimate the maturity of fruit using vibrational methods. This parameter, 
with its two formulations (2) and (3), have been studied together with 
the rest of the vibrational parameters to try to predict the presence of 
internal voids. 

The density was estimated from the mass and volume of the water-
melon by approximating its shape to that of an ellipsoid according to 
equation (4). 

volume= 4
π
3

a2b (4)  

Where a and b are the semi-axes of the ellipsoid which are calculated 
from the equatorial perimeter p1 and the measured perimeter passing 
through the pedicle p2 according to equations (5) and (6). 

a=
p1

2π (5)  

b=
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(p2

2π

)2
⋅2 − a2

√

(6)  

2.3. Statistical analysis 

Firstly, a correlation analysis of the values of mass, density, first peak 
frequency, estimated firmness according to Abbott and firmness ac-
cording to Cook was performed. The objective was to find correlations 
and significant differences between the different parameters, to enable 
redundant parameters to be discarded and to select the best predictors 
for the classification algorithms. 

After the correlation analysis, the statistical differences between the 
different physical and vibrational parameters were analysed according 
to the group of watermelons: without internal defects or with voids. The 
variance analysis was performed by means of an ANOVA for cases in 
which the conditions of normality or homoscedasticity were met. For 
cases where the normality condition was not met, a Kruskal-Wallis test 
was performed. Normality was tested by means of an Anderson-Darling 
test and homoscedasticity by means of Bartlett’s test. For cases in which 
correlation was found between different factors, a covariance analysis, 
ANCOVA, was also performed to thus consider the combined effect of 
both variables. 

After the statistical analysis, the variables with the greatest differ-
ences between the two groups of watermelons were selected to be used 
as predictors in the classification algorithms. To assess the performance 
of the classifier algorithms, two types of validation were performed: a 
cross-validation using the same training data and a validation by 
introducing data from 19 new watermelons into the trained algorithms. 
The accuracy of different types of classifier algorithms were compared. 
For this study, the Classification Learner software from Matlab [34] was 

Table 1 
Correlation coefficients between the variables studied.   

Mass Apparent density Radius (a) fmax f1 f irmnessa f irmnessc 

Mass 1.00 − 0.10 0.95 − 0.43 − 0.49 0.45 0.14 
Apparent density – 1.00 − 0.27 0.45 0.46 0.37 0.44 
Radius (a) – – 1.00 − 0.50 − 0.57 0.32 0.02 
fmax – – – 1.00 0.69 0.30 0.48 
f1 – – – – 1.00 0.55 0.79 
f irmnessa – – – – – 1.00 0.95 
f irmnessc – – – – – – 1.00  
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used. 

3. Results 

3.1. Statistical analysis results 

The linear dependence between two parameters was measured using 
Pearson’s correlation coefficient as shown in Table 1. Not surprisingly, 
mass shows a strong positive correlation with radius. There is also a 
strong correlation between the two estimators of firmness since they 
depend on the same properties. The frequency of the first peak and the 
frequency at which the maximum peak occurs have a weak correlation 
(Pearson coeff. 0.69) since these two peaks coincide in some water-
melons. The weak correlation between f1 and the calculated Cook 
firmness estimator is explained by the fact that this frequency is the one 
used to calculate firmness. Weak correlation between mass and firmness 
estimators were also found. No correlation was found between mass and 
density, nor between watermelon mass and the f1 and fmax frequencies. 

The results of the analysis of variance are shown in Table 2. The mass 
and size of the watermelons studied do not display a normal distribution 
(see Fig. 4) due to the fact that the smallest watermelons are not har-
vested although the largest ones are. 

Both groups of watermelons show statistically significant differences 
for the parameters considered, with mass showing the smallest differ-
ences. On average, watermelons with internal voids show a lower den-
sity than watermelons without defects, 0.87 g cm− 3 and 0.93 g cm− 3 

respectively. However, hollow watermelons are, on average, larger, 
5.04 kg and 11.14 cm radius, than watermelon without defects, 4.48 kg 
and 10.42 cm radius. This reinforces the idea that the presence of in-
ternal voids in watermelons is caused by excessively rapid growth. 

Taking the covariance into account and using a linear regression 
model to correct possible differences as a function of the mass variable, 
by means of an ANCOVA, it was found that, with a 95% significance 
level, that the mass-adjusted volume values are different for both groups 
(p < 0.001). Fig. 4 shows the regression lines for each group. 

Fig. 5 shows the peak frequency values of the transfer function and of 
the firmness estimators with respect to the mass of each watermelon. 

Table 2 
Results of the variance analysis.   

Normality 
test (p- 
value) 

Homoscedasticity 
test (p-value) 

Variance 
test type 

Analysis of 
Variance test 
(p-value) 

Mass 0.001 0.911 Kruskal- 
Wallis 

0.043 

Radius (a) 0.005 0.593 Kruskal- 
Wallis 

<0.001 

Volume 0.001 0.548 Kruskal- 
Wallis 

0.002 

Apparent 
density 

0.438 0.417 ANOVA <0.001 

f1 0.064 0.650 ANOVA <0.001 
fmax 0.497 0.028 ANOVA <0.001 
f irmnessa 0.590 0.071 ANOVA <0.001 
f irmnessc 0.863 0.229 ANOVA <0.001  

Fig. 4. Masses and volumes for the watermelons tested.  

Fig. 5. Mass, firmness estimation and characteristics frequencies f1 and fmax for the watermelons tested.  
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Watermelons with internal defects have a lower f1 value than water-
melons without void defects. fmax values are more scattered, and the 
cluster of data points overlap more than in the case of f1. In view of the 
results, the frequency at which the first peak occurs in the transfer 
function seems to be a better predictor of the existence of defects than 
the frequency at which the maximum occurs in the transfer function. For 
the firmness values, when using mass and f1 in both cases, no preference 
was seen in the use of firmnessa or firmnessc. 

3.2. Classification algorithms 

In the first instance, a logistic regression was tested as a classification 
algorithm due to its simplicity. Density and frequency f1 were used as 
predictors since, in view of previous results, they are those that show the 
most significant differences. Used with the aforementioned predictors, 
this algorithm had a 92.2% of accuracy using training data in a five-fold 
cross-validation. The accuracy of the trained Logistic Regression algo-
rithm classifying the new 19 watermelons test data was 73.68%. Fig. 6 
shows the classification boundary of the logistic regression, the training 
data and validation test data. Only one watermelon with internal defects 
was classified incorrectly as a “without defects”. When this watermelon 
was opened, the size of the internal defect was found to be very low (see 
Fig. 7a). There were two other watermelons classified as having internal 
defects, but upon inspection no holes were found, however, they were 
found to be overripe. Even with a level of ripeness that makes them unfit 

for sale, as shown in Fig. 7b (two watermelons with a density of 0.87 kg/ 
m3). There were another two watermelons without internal voids that 
were classified as “with internal defects”. These watermelons are close 
to the decision boundary of the logistic regression, see Fig. 6. 

Other classification algorithms were also employed using the Clas-
sification Learner software from Matlab, obtaining the success probabil-
ities shown in Table 3. This table shows the accuracy in a five-fold cross- 
validation using the training data and the accuracy of the trained al-
gorithms classifying the validation test data. 

In view of the results obtained with the logistic regression using two 
predictors (apparent density and frequency f1), the validation tests of the 
classifiers have been carried out using, in addition, Cook’s estimation of 
firmness as a predictor (firmnessc). The aim is to evaluate whether the 
accuracy of the algorithms improves when a third predictor parameter is 
introduced. 

The accuracy of the cross-validation remains between 91 and 94% 
for all the classifier algorithms shown, remaining the same or slightly 
higher when introducing the estimated firmness as a third predictor 
parameter. 

The classifier based on neural networks (trilayered) obtained the 
lowest accuracy (68.42%), followed by logistic regression (73.68%), 
using only two predictors. These algorithms were also the least accurate 
when using three predictors (78.95%). Fig. 8a shows the result of the 
validation of the classifier based on neural networks and using 2 pre-
dictors. This algorithm failed in 6 of the 19 watermelons used for the 
test. 

Fig. 6. Classification using logistic regression. Grey: training data; blue and 
red: validation test data. 

Fig. 7. Watermelons incorrectly classified of Fig. 6 a) watermelon classified as “without defects” with a small hollow; b) watermelons without hollows but very ripe 
classified as “with internal defects". 

Table 3 
Probability of success for most relevant classification algorithm.  

Model Type 3 predictors 2 predictors 

Accuracy 
(Cross- 
validation) % 

Accuracy 
(Test) % 

Accuracy 
(Cross- 
validation) % 

Accuracy 
(Test) % 

Discriminant 
(Quadratic) 

94.83 84.21 93.10 78.95 

Ensemble 
(Subspace 
Discriminant) 

93.10 89.47 93.10 84.21 

KNN (Cubic) 93.97 89.47 94.83 78.95 
Logistic 

Regression 
94.83 78.95 92.24 73.68 

Neural Network 
(Trilayered) 

93.10 78.95 91.38 68.42 

SVM (Coarse 
Gaussian) 

93.10 89.47 93.10 84.21  
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The best accuracy was obtained when using three predictors with 
classifiers based on KNN, SVM and multiple-classifier techniques 
(Ensemble) based on discriminant algorithms (89.47%). The use of the 
single quadratic discriminant classifier achieved an accuracy of 84.21%. 
The result of the classifiers with the highest accuracy is shown in Fig. 8b. 
This graph is similar for KNN, Ensemble classifier, and SVM. The algo-
rithms only failed on two of the watermelons mentioned in Fig. 7. 

The results shown in Table 3 correspond to the results of the highest 
accuracy algorithms of each type. A table with the results for other types 
of classifiers can be found in the appendix. The appendix also includes 
the results when introducing mass as fourth predictor parameter. But in 
that case, the classification accuracy did not improve for any of the al-
gorithms with accuracies higher than 78% in the validation test. In fact, 
the classifier accuracy worsened in many cases when introducing mass 
as a predictor. 

4. Discussion 

The analysis of the correlation between watermelon size and peak 
frequencies showed a similar result to that of studies conducted using 
vibro-acoustic techniques by other authors: the greater the mass, the 
lower the resonance frequencies [6,35]. Weak correlation between 
firmness coefficients and the parameter used to calculate them was 
found, which agrees with what was found by Taniwaki [36]. When 
differentiating between watermelons with and without voids, it was 
found that the frequencies of the first peak and the peak with the 
greatest amplitude are lower in watermelons with voids, which co-
incides with other studies [2], and indicates that this vibrational 
parameter can be used as a predictor of the existence of internal voids. 

The presence of voids implies a decrease in watermelon apparent 
density. No watermelons with internal defects were found with densities 
higher than 0.92 kg cm− 3, which is in line with the studies by Kato [23], 
which established a density limit of 0.94 kg cm− 3 for watermelons with 
voids. However, in our study, watermelons without internal defects 
were found with densities equal or minor to other watermelons with 
defects, so it is not possible to classify the watermelons used by exclu-
sively using their density. 

Apparent density has proven to be a decisive parameter in the 
detection of internal voids. For this, the volume of the watermelon must 
be measured, which, in this study, has been estimated by approximating 
its shape to that of an ellipsoid of revolution, obtaining good results. 
There are more accurate methodologies that can be used to determine 
the volume of the fruit on an industrial scale [37]. 

The probability of success of the classification algorithms, assessed 
by cross-validation, was higher than 91% for all types used if the 
apparent density of the watermelon and the frequency of the first peak of 
the transfer function are used as predictors. If a watermelon firmness 
estimator is added as a predictor, the accuracy assessed by cross- 
validation remains above 93%, improving or remaining the same 
depending on the type of classifier algorithm used. 

The validation test introducing the densities and the first peak fre-
quency of new watermelons shows an accuracy between 68.42%, for a 
classifier based on Neural Networks, and 84.21% for classifiers based on 
SVM and Ensemble (Subspace Discriminant). When introducing firm-
ness as a predictor, the accuracy determined by the validation tests in-
creases to 78.95% for the neural network-based classifier and 89.49% 
for the Ensemble, KNN and SVM classifiers. The success rate is similar to 
that achieved in other studies using vibro-acoustic techniques (89% 
achieved by Iglesias et al. [20] and 90% achieved by Noh et al. [21] and 
Lee et al. [38], and significantly higher than that achieved by experi-
enced humans (71–82%) [39]. Validation has shown that watermelons 
with thin cracks can be detected as “defect-free”, which has already been 
noticed by some authors using acoustic methods [38]. 

Different studies have found that natural frequencies depend on 
maturity level [7,8,35] and storage time [6]. The maturity level can be 
estimated by values that depend on the resonance frequencies and mass 
of the watermelon. Due to their dependence, no reason has been found 
to use the estimated firmness values instead of frequencies when only 2 
predictors parameters are used. When a firmness estimator are intro-
duced into the classification algorithms together with the apparent 
density and the f1, the improvement in the success rate is slight. By using 
a larger number of predictors in the classification algorithms, the results 
do not improve for those algorithms with success rates above 78%. This 
suggests that the previous statistical study to discard correlated and 

Fig. 8. Classification test results using: a) Neural Network classifier with 2 predictors; b) KNN, Ensemble, and SVM classifier with 3 predictors.  
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redundant parameters is adequate and that the more accurate rating 
algorithms in Table 3 should be used. 

5. Conclusions 

Classifiers based on machine learning can be used for the detection of 
internal voids in watermelons with a high success rate. The apparent 
density of the watermelon and the first resonance frequency in a slight- 
impact test are suitable for use as predictors. If a watermelon firmness 
estimator is also introduced, the probability of the classifier’s success 
rate increases slightly. 

The most successful classifiers in validation are those based on SVM, 
KNN and Ensemble and using three predictors. Success rates of more 
than 89% have been achieved. Due to the wide variety of size and dis-
tribution of internal defects, and ripeness levels, it is difficult to have a 
totally reliable method and the method presented here should be vali-
dated with more samples from future harvests. As several studied have 
shown the firmness and the extend of internal hollowness are correlated 
[1], future work should study whether the probability of successful 
classification is improved by using experimentally measured firmness 
values, such as by measuring the rigidity of the rind [17,40], or by 
means of rind colour [5]. 

In view of the results, it is expected that the methodology applied in 

this study can be adapted to an industrial environment and can be 
automated to detect watermelons with voids in a warehouse. It is also 
expected that this vibration-based technique applied in an automated 
way will be less costly and more accurate than manual classification and 
able to compete on cost with other classification techniques [5]. 
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Appendix  

Table A1Probability of success for each classification algorithm (extended table).  

Model Type 4 predictors 3 predictors 2 predictors 

Accuracy (Cross- 
validation) % 

Accuracy (Test) 
% 

Accuracy (Cross- 
validation) % 

Accuracy (Test) 
% 

Accuracy (Cross- 
validation) % 

Accuracy (Test) 
% 

Discriminant (Linear) 94,83 78,95 93,97 84,21 93,97 78,95 
Discriminant (Quadratic) 93,10 84,21 94,83 84,21 93,10 78,95 
Ensemble (Boosted Trees) 81,03 52,63 81,03 52,63 81,03 52,63 
Ensemble (Bagged Trees) 93,10 78,95 91,38 73,68 91,38 73,68 
Ensemble (Subspace 

Discriminant) 
93,97 89,47 93,10 89,47 93,10 84,21 

Ensemble (Subspace KNN) 89,66 63,16 87,07 63,16 89,66 73,68 
Ensemble (RUSBoosted Trees) 92,24 63,16 91,38 73,68 88,79 68,42 
Kernel (SVM) 85,34 63,16 87,93 52,63 81,03 52,63 
Kernel (Logistic Regresion) 81,03 52,63 81,90 52,63 81,03 52,63 
KNN (Fine) 95,69 78,95 91,38 78,95 88,79 68,42 
KNN (Medium) 94,83 89,47 94,83 84,21 93,97 78,95 
KNN (Fine) 81,03 52,63 81,03 52,63 81,03 52,63 
KNN (Cosine) 93,97 73,68 93,10 73,68 90,52 68,42 
KNN (Cubic) 93,10 84,21 93,97 89,47 94,83 78,95 
KNN (Weighted) 95,69 84,21 93,97 78,95 90,52 68,42 
Logistic Regression 92,24 57,89 94,83 78,95 92,24 73,68 
Naive Bayes (Gaussian) 95,69 78,95 96,55 78,95 93,10 78,95 
Naive Bayes (Kernel) 94,83 78,95 96,55 78,95 93,97 78,95 
Neural Network (Narrow) 93,97 73,68 92,24 73,68 86,21 73,68 
Neural Network (Medium) 93,97 73,68 90,52 73,68 90,52 78,95 
Neural Network (Wide) 93,97 68,42 91,38 78,95 90,52 73,68 
Neural Network (Bilayered) 93,10 73,68 91,38 73,68 88,79 78,95 
Neural Network (Trilayered) 93,10 68,42 93,10 78,95 91,38 68,42 
SVM (Quadratic) 93,97 73,68 91,38 78,95 90,52 73,68 
SVM (Cubic) 93,97 73,68 91,38 68,42 91,38 68,42 
SVM (Fine Gaussian) 81,03 63,16 87,07 52,63 85,34 52,63 
SVM (Medium Gaussian) 96,55 73,68 94,83 73,68 92,24 73,68 
SVM (Coarse Gaussian) 93,10 89,47 93,10 89,47 93,10 84,21 
SVM (Linear) 93,10 84,21 93,10 73,68 92,24 78,95 
Tree (Fine) 90,52 73,68 89,66 73,68 90,52 73,68 
Tree (Medium) 90,52 73,68 89,66 73,68 90,52 73,68 
Tree (Coarse) 90,52 73,68 89,66 73,68 90,52 73,68 

4 predictors: Apparent density, f1, fi rmnessc, mass. 
3 predictors: Apparent density, f1, fi rmnessc. 
2 predictors: Apparent density, f1.  
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Fig. A1Validation test results for the most relevant classifier algorithms in. Table 3  
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