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A B S T R A C T   

This paper shows the development of a tool with which to solve the most critical aspect of the porthole die design 
problem using a predictive model based on machine learning (ML). The model relies on a large amount of 
geometrical data regarding successful porthole die designs, information on which was obtained thanks to a 
collaboration with a leading extrusion company. In all cases, the dies were made of H-13 hot work steel and the 
billet material was 6063 aluminium alloy. The predictive model was chosen from a series of probes with different 
algorithms belonging to various ML families, which were applied to the analysis of geometrical data corre-
sponding to 596 ports from 88 first trial dies. Algorithms based on the generation of multiple decision trees 
together with the boosting technique obtained the most promising results, the best by far being the CatBoost 
algorithm. The explainability of this model is based on a post-hoc approach using the SHAP (SHapley Additive 
exPlanations) tool. The results obtained with this ML-based model are notably better than those of a previous 
model based on linear regression as regards both the R2 metric and the results obtained with the application 
examples. An additional practical advantage is its explainability, which is a great help when deciding the best 
way in which to adjust an initial design to the predictive model. This ML-based model is, therefore, an optimal 
means to integrate the experience and know-how accumulated through many designs over time in order to apply 
it to new designs. It will also provide an aid in generating the starting point for the design of high-difficulty dies, 
in order to minimise the number of FEM (finite element method) simulation/correction iterations required until 
an optimal solution is achieved. It is not aimed to eliminate FEM simulation from the design tasks, but rather to 
help improve and accelerate the whole process of designing porthole dies. The work presented herein addresses a 
validation model for a very common porthole die typology: four cavity and four port per cavity dies for 6xxx 
series aluminium alloys. However, a wide range of research regarding the generalisation of this model or its 
extension to other porthole die typologies must still be carried out.   

1. Introduction 

The use of lightweight materials and the improving of their forming 
processes lead to energy savings and reduced emissions. Aluminium 
alloys, whose favourable properties such as their low density, high 
corrosion resistance, easy formability… are superior to those of other 
materials, are widely used in a variety of industries. The need to reduce 
the weight of parts has also led to an increasing demand for the pro-
duction of porthole extrusion dies with which to manufacture profiles 
with hollow cross-sections characterised by complex thin-walled ge-
ometries (Xue et al., 2018). 

Furthermore, 6xxx series aluminium alloys make up more than half 
of all extrusion products. These aluminium alloys have a good combi-
nation as regards their high corrosion resistance, good formability, 
medium strength, good machinability and good weldability, and are, 
therefore, widely used in all kinds of applications (Zhu et al., 2011). 

The direct extrusion of aluminium involves shape deformation, heat 
transfer and a highly complex state of friction, all of which makes this 
process of metal deformation complicated (He et al., 2012). 

The main commercial factors as regards extruded profiles are pro-
ductivity, cost effectiveness and quality grade, which are directly related 
to the die performance. There are also other factors, such as the quality 
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of the billet material, the characteristics of the extrusion press, the ca-
pabilities of the auxiliary equipment and the final operations, including 
age hardening, anodising and painting. Perhaps the most critical 
extrusion component is the die, owing to its high cost, the fact that it 
requires special materials and processes, its fine tolerances and its high 
thermo-mechanical fatigue requirements (Arif et al., 2003). 

The extrusion of hollow sections is a standard industrial process that 
is conducted using what are denominated as porthole dies. These consist 
of two different components: the die plate and the mandrel. The ge-
ometry of the die that forms the profile is called bearing and is divided 
into these two components. In the case of hollow profiles, the die plate 
shapes the external profile contour (Fig. 1). The internal profile contour 
is similarly shaped by the outer mandrel contour. In order to allow the 
aluminium to flow from the front end of the die to the bearing area, a 
series of holes called ports or portholes are milled into the mandrel. The 
mandrel areas between the ports or portholes are typically called 
bridges. The function of the ports is to enable the aluminium to flow into 
the die, while the function of the bridges is to fix the mandrel core po-
sition during the extrusion process. On its way through the die, the 
aluminium flux is divided by the bridges and forced to flow through the 
ports. After this, the aluminium flow has to be welded back into the zone 
of the die plate called welding chamber. Welding takes place in a solid 
state under suitable temperature and pressure conditions (Ceretti et al., 
2009). 

The most popular means employed to design extrusion dies is the 
empirical design approach. Many formulas and design rules have 
already been introduced and developed. Several authors present 
empirical solutions for specific topics such as: Bearing length and re-
quirements for automated bearing definition (Miles et al., 1997), or 
bearing length and die layout design (Lin & Ransing, 2009)…. 

Another widespread methodology with which to design extrusion 
dies is based mainly on engineering analogies and on previous similar 
designs. The finite element method (FEM) can be applied for numerical 
simulation of the aluminium extrusion process, but the extensive use of 
such calculations in the extrusion industry is limited owing to the high 
cost and complexity involved (He et al., 2012). 

In the last two decades, many papers have addressed the problem of 
die design by using FEM simulation as a testing and optimisation tool. 
Numerical simulation makes it possible to predict the deformations of 
the parts forming the die and the flow of the aluminium during the 
process. 

The recent review on the use of FEM simulation as a means of 
assisting the design of extrusion dies by Giarmas and Tzetzis is very 
noteworthy (Giarmas & Tzetzis, 2022). It contains a large number of 
studies in which simulation has been applied as a means to solve 
different design problems in the extrusion die. 

Scientific literature contains few recent examples of papers dealing 
with the fundamentals of porthole die design. There are several publi-
cations related to the practical application of FEM simulation in order to 
improve die design, but they do not usually address the problem of the 

need to develop an initial design starting point in the optimisation 
process. It is this shortcoming that the newly developed tool aims to fill. 

Some specific papers provide some guidelines on different design 
points for porthole dies, but these are only basic and general guidelines. 
Most of these contributions have originated from the biannual Interna-
tional Conference on Extrusion and Benchmark (ICEB). This meeting 
brings together experts in the aluminium extrusion field with the aim of 
testing the increased accuracy of numerical simulations for process 
optimisation and also to discuss the advances as regards knowledge in 
the field. A different specific die is, therefore, developed for each 
benchmark: The 2007 edition focused on the design of pockets (Schi-
korra et al., 2008), and the 2009 edition on the design factors influ-
encing the process of tongue bending in U-shaped profiles (Pietzka et al., 
2009). In the 2011 edition, different strategies were used to achieve a 
balanced flow of aluminium for hollow section extrusion (Selvaggio 
et al., 2011), in the 2013 edition experimental research was focused on 
the prediction of the mandrel deflection effects (Selvaggio et al., 2013) 
and in the 2015 edition the effect of bearing length and bearing shape 
was investigated (Gamberoni et al., 2015). 

Other authors have studied the suitability of using certain special 
solutions to improve the aluminium flow in multi-cavity porthole dies 
(Xue et al., 2018). However, none of the available research appears to 
address the fundamental problem when designing multi-cavity porthole 
dies: the proper sizing of the feed ports in order to attain a balanced 
flow. Many studies analyse the flow by employing the FEM in order to 
propose changes based on the results, but leave aside the need to 
generate an initial design that is as close as possible to the ideal solution. 

The FEM simulation is increasingly being used as a means of aiding 
the design of extrusion dies, and is a tool for extruders and toolmakers. 
Commercial software packages have interfaces that make it extremely 
easy to use, and provide a wide diversity of results: tool stress, tool 
deflection, profile temperature and differences in extruded profile 
speed. The possibility of correcting the die design without the need for 
press trials that is offered by FEM simulation allows reductions in costs. 
The most notable disadvantage of using numerical simulation is the 
requirement that simulation experts must carry out model preparation 
and further analysis. Moreover, the time required for preparation and 
analysis can be considerable according to the difficulty involved in 
designing the die. The attractiveness of finite element simulation for 
extrusion consequently decreases in some cases owing to the extended 
design times, additional personnel costs and additional software costs 
(Engelhardt et al., 2019). 

Bearing the aforementioned costs and the drawbacks of FEM simu-
lation in mind, the objective of this work is to provide the designer with 
a machine learning (ML) based tool in order to assist in the sizing of the 
ports of porthole dies. The purpose is to assist in the definition of an 
optimal initial design of highly complex porthole dies with the aim of 
minimising the modifications required after FEM simulation. This avoids 
having to design the dies depending only on the designer’s experience 
and, in the best case, on the final adjustments introduced thanks to the 

Fig. 1. The components of a typical disassembled porthole die: mandrel and die plate.  
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process simulation. 
The main source of severe flow troubles during extrusion in porthole 

dies is the wrong dimensioning of the ports (area, position…), which can 
lead to a large deviation of the profile or large lateral mandrel de-
flections and modifications to the profile thicknesses. 

As mentioned previously, many documents provide recommenda-
tions and guidelines for die design or specific formulas with which to 
define some specific detail in porthole dies. But none of them offers an 
accurate and structured formulation to assist in the sizing and design of 
porthole dies. 

It is possible to state that, in order to reach an effective design of 
porthole die, it is essential to guarantee:  

• The mechanical strength of all its components.  

• A uniform outlet velocity in the extruded profile section during the 
whole forming process. 

On the one hand, resistance calculations allow optimum mechanical 
properties to be ensured. 

On the other, the main design variables required in order to attain a 
uniform outlet velocity in the extruded profile are: the balanced defi-
nition of the geometry of the ports so as to ensure a uniform velocity of 
the aluminium in the die welding chamber, the optimal definition of the 
welding chamber (Donati & Tomesani, 2004) and the optimised sizing of 
the bearings according to the profile thickness and its position in the die. 

These are the main factors but it should be noted that there are some 
other secondary factors and decisions to be made during the design 
process that also influence the flow balance: profile layout, shape of the 
bridges…. 

For the vast majority of these design factors, there are references that 
provide guidelines to facilitate the optimal choice. Among all of them, 
the balanced dimensioning of ports is the critical aspect that is least 
supported by clear guidelines. 

Defining balanced ports in a porthole die is not so easy because 
during the extrusion process the velocity of the aluminium inside the 
billet is not uniform. The velocity and pressure distribution of the 
aluminium at the inlet face of the extrusion die are both concentric 
owing to the friction between the container wall and the billet (Mori 
et al., 2002). This results in the maximum velocity being in the centre of 
the die and the minimum velocity in the outer area. 

Furthermore, it should be noted that ML is an area of Artificial In-
telligence and a discipline that is being used to an increasing extent in 
more and more areas, including industry and engineering. The basic 
reason why ML models have barely been applied in data analysis to date 
is because their interpretation is complex, and they are often colloqui-
ally called black boxes (Koh & Liang, 2017). 

Nevertheless, recent advances in what is known as eXplainable 
Artificial Intelligence (XAI) allow useful and understandable 

Fig. 2. Design methodology diagram.  

Fig. 3. Example of a four-cavity porthole die with four ports per cavity (port geometries shown hatched in the upper right cavity).  
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information to be extracted from predictive models (Barredo Arrieta 
et al., 2020). More specifically, techniques based on post-hoc analysis 
enable a unified approach to explain the prediction performed by any 
ML model. SHAP (SHapley Additive exPlanations) is an example of a 
tool of this nature, which is based on game theory and is able to extract 
information concerning the importance of variables at both global and 
local levels (S. Lundberg, 2019). 

ML is currently being applied in different areas. Some examples are 
its application to: industry in general in order to deal with new chal-
lenges (Dalzochio et al., 2020), logistics (Liu, 2021), finance (Chen & 
Chang, 2021), and specifically the impact of FinTech patents and energy 
(Narciso & Martins, 2020). There are even different examples of the 
application of Artificial Intelligence in the extrusion industry. These 
applications focus on the development of models for the appropriate 
choice of the optimal process parameters (Lucignano et al., 2010) and 
for the choice of the optimal layout for a die (Yan & Xia, 2006). 

With regard to the application of ML to tool engineering, the 
objective of the new ML-based model is to facilitate the development of 
an initial design that is as close as possible to the optimal design in a way 

that eliminates or minimises the need for FEM simulation in order to 
ensure a perfectly balanced aluminium flow in the die during extrusion. 

There is a recent precedent: a similar tool based on linear regression 
(Llorca-Schenk et al., 2021). This is a design tool grounded in engi-
neering by analogy. But it does not follow the traditional methodology 
in which the analogy focuses on a single design. In this case, the model 
collects the experience and know-how accumulated in many optimal 
designs and can, therefore, help to create a new design by analogy on the 
basis of this whole group of reference designs. 

One of the drawbacks of the aforementioned model is that it is based 
exclusively on linear predictions, when most real problems usually 
contain variables with non-linear relationships. In the present paper, a 
step further will be taken and this tool will be improved by means of a 
new proposal based on ML algorithms that extract both linear and non- 
linear relationships, thus making more accurate predictions and gener-
ating die designs that are closer to the designs of the reference set. 

2. Materials and methods 

2.1. Method overview 

The overall purpose of this research is to provide a tool with which to 
assist die designers to obtain port geometries for porthole dies that 
achieve a balanced flow of aluminium during extrusion. 

It is first necessary to decide which criterion to use in order to 
consider that the ports of a porthole die are “balanced”. 

The most widespread design criterion is that of equalising the 
concentric velocity differences in the aluminium billet by means of the 
proper positioning and sizing of the porthole die ports (Mori et al., 
2002). The aluminium flow must, therefore, be able to equalise its ve-
locities and pressures in all the ports, from its entry at the front end of 
the die through the ports to its arrival in the welding chamber of the die. 
After achieving a balanced design of all ports using this criterion, the 
definition of the bearings in the profile geometry is simple because it 
depends mainly on the thickness of the profile. 

The trouble of the port sizing of porthole dies mainly appears in 
multi-cavity dies, since several ports are located at very different dis-
tances from the centre of the die. The concentric velocity distribution at 
the front end of the die means that the die ports must be sized in order 
for their area to perimeter ratio to depend on their distance to the centre 
of the die. 

Fig. 4. Portions of the extruded profile owing to material distribution in the 
ports. Source: (Yu et al., 2019). 

Fig. 5. Variables that geometrically define the port of a porthole die.  
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Experienced designers consider that it is intuitively plausible to find 
some kind of balancing function linking correctly some important 
geometrical variables of the ports (area, perimeter and distance to the 
centre of the die) and the geometrical variables of the profile zones 
influenced by the related port. 

It would, however, appear to be very complex to create an automatic 
application that automatically generates balanced port geometries from 
scratch. The port geometry depends on many limiting factors and has to 
be adjusted to the profile geometry. The alternative solution chosen 
could be the definition of a tool with which to validate new port 

geometries, thus guaranteeing a balanced port design. 
In order to achieve this objective, an advanced analysis based on 

machine learning and explainability techniques (ML-XAI) has been 
chosen that allows a better approximation (it is not necessary for the 
data to follow a normal distribution, in addition to which non-linear 
relationships between them are estimated). This will make it possible 
to identify the impact of the predictor variables on the prediction, the 
dependencies between them and the prediction of samples to act 
accordingly. The different analyses have been applied to the same 
dataset in order to determine which is the most appropriate as regards 

Fig. 6. Variables employed in order to account for the influence of the portion of the extruded profile affected by each port.  

Fig. 7. Average results of 10-CV of R2 and RMSE sorted in ascending order by the R2. The higher R2 value is better, while in the case of RMSE, the lower value 
is better. 
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fitting the data to the new model. 
A question now arises: How can a model relating the variables, 

defining the geometry of balanced ports in a die, assist designers to 
attain an optimal design? 

In order to use the new model, after developing an initial port design, 
the designer must check whether the ports designed fit the ML-based 
model. If the ports created do not fit the model according to a previ-
ously defined acceptance criterion, the port design must be amended in 
the correct direction in order to reach an equilibrium situation. These 
amendments must be performed repeatedly until a port configuration 
that fits the ML-based model according to the defined acceptance cri-
terion is achieved (Fig. 2). 

Owing to the huge variety of existing die designs, following some 
experiments with the previous model based on linear regressions, it was 
concluded that the best way in which to attain suitable results is to group 
the designs of dies by several typologies. Since the aim is obtaining a 
balanced port design, the typologies have been defined according to the 
number of die cavities and the number of ports per cavity (Llorca-Schenk 
et al., 2021). 

This research focuses on the most common and widespread four- 
cavity porthole die designs for mid-sized profiles in all applications: 
four-cavity porthole dies with four independent ports per cavity (Fig. 3). 

It is now necessary to ask the following: what methodology has been 
used to develop this predictive model relating the geometric variables 
involved in a balanced port design? 

The approach is based on obtaining a predictive model chosen from a 
series of probes with different algorithms belonging to several machine 
learning (ML) families. Moreover, the application of explainability 
techniques provides an insight into different aspects of the model, such 
as the importance of the predictors, linearity or non-linearity relation-
ships, or interactions and variations in the prediction according to the 
characteristics of the sample. 

The geometric variables associated with 596 different ports have 
been analysed on the basis of 88 proven efficacy four-cavity, four-port- 
per-cavity porthole die designs. These are dies that have been used in 
presses with a container diameter of 178 mm and 16000MN force or 
with a container diameter of 203 mm and 22000MN force, all of which 
use 6063 aluminium alloy as a billet material and are made of H-13 hot 

Fig. 8. Comparison of significance with the Wilcoxon test between pairs of algorithms based on the results obtained in the 10-CV with the R2 and RMSE metrics. Each 
green circle indicates that the row algorithm is significantly better than the column algorithm at 95%. A higher number of green circles in a row indicates a better 
algorithm. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 9. General diagram of machine learning models’ post-hoc explainability.  
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work steel. These two typologies of extrusion presses have extremely 
close flow behaviour because their maximum pressure is practically the 
same. Numerous extruders have one press of each of these typologies 
simultaneously, and often use dies initially designed for the 7′′ press on 
the 8′′ press with equivalent flow balance results. 

The proven efficiency of all these dies is based on the fact that they 
are all first-trial dies designed and produced by HAEP, S.A. (Hydro 
Aluminium Extrusion Portugal). After the first extrusion test, the 
behaviour of the die was optimal and the profile samples were approved 
according to the criteria and tolerances established by EN-12020-2 
standard (according to the feedback after the extrusion test). 

Given the methodology and the material data used for the develop-
ment conducted, the model will be suitable for the working temperature 
range of the 6xxx series aluminium alloys during extrusion: 400–550 ◦C. 

3. Dataset 

The initial stage when defining the model for this new design assis-
tance tool was to determine which variables would be fundamental for 
the geometrical definition of the ports in a porthole die. This large 
number of defining geometrical properties was first compiled for each 
port:  

1. Port area.  
2. Port perimeter.  
3. Distance from die centre to port centre (distance from die centre to 

areas’ centre of areas of port).  
4. Area of the extruded profile portion affected by the related port (see 

Fig. 4 and Note 1).  
5. Perimeter of the extruded profile portion affected by the related port 

(see Fig. 4 and Note 1).  
6. Distance from the centre of areas of port to centre of areas of the 

extruded profile zone affected by the related port (see Fig. 4 and Note 
1).  

7. Total perimeter of the full port set of the die  
8. Total area of the full port set of the die 

Note 1: The extruded profile can be divided into several portions, 
and each of these portions is formed by the aluminium flowing through 
each port. These profile portions are bounded by the welding lines of the 
bridges (Yu et al., 2019). 

Each of these variables is briefly explained below with the support of 
several figures. The variables that geometrically define the port design 
of a porthole die are (Fig. 5):  

• The Port Area variable, which determines the amount of aluminium 
entering into that area of the die.  

• The Port Perimeter variable, which determines the friction that the die 
presents to the flux of aluminium through the port.  

• The Distance from die centre to port centre variable, which determines 
the velocity of the aluminium in the inlet face of the port. The precise 
location of the port is not important owing to the concentric distri-
bution of velocities in the billet, but its distance to the centre is. Ports 
of identical area and whose position is symmetrical with respect to 
the centre of the die therefore behave in the same way during the 
extrusion process. 

The following variables have been considered to account for the 
influence of the portion of the extruded profile affected by each port 
(Fig. 6):  

• The area of the extruded profile portion affected by the corresponding 
port determines how easily the aluminium can flow through that 
zone of the die. Therefore, it also conditions the amount of 
aluminium that should feed the port in order to ensure a well- 
balanced flow. 

• The perimeter of the extruded profile portion affected by the corre-
sponding port determines the profile restraining capacity for the free 
aluminium flow in that zone of the die. Therefore, it also conditions 
the amount of aluminium that will feed the port in order to achieve a 
well-balanced flow.  

• The distance between the port centre and the centre of the areas of the 
extruded profile zone affected by the port quantifies how directly the 
profile is exposed to the flux of the aluminium in the port. 

Two additional geometric variables corresponding to the full port set 
are also included because, based on experience, the same die may be 
balanced with larger or smaller ports. These global variables, therefore, 
make it possible to integrate the issue of whether the design will use 
major or minor ports into the model. These aggregate variables are:  

• The total area of the full port set, which determines the overall amount 
of aluminium that will flow into the die.  

• The total perimeter of the full port set, which determines the overall 
friction that the die presents to the flow of the aluminium. 

In order to facilitate data collection, a C# application of our own 
development was used to capture the data of the 2D CAD designs of the 
dies. This application greatly speeds up the task by facilitating the se-
lection of geometries and orderly writing the geometry data for all 
variables. The units used in all data collection were millimetres and 
square millimetres. 

Port Area was chosen as the dependent variable because it is 
commonly used as the characteristic identifying variable for each port 

Fig. 10. Importance of predictors and their impact on the outcome variable (Port Area). Left: general importance. Right: positive or negative impact broken down by 
sample. Magenta indicates higher values and blue lower values. (For interpretation of the references to colour in this figure legend, the reader is referred to the web 
version of this article.) 
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Fig. 11. Scatter plot per predictor. Each plot shows the individual impact of each sample value on the outcome, and red/blue show the relation with a close predictor 
interaction. The histogram of the sample values is shown in grey at the bottom of each graph. (For interpretation of the references to colour in this figure legend, the 
reader is referred to the web version of this article.) 
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during the design process (changes and adjustments for flow balancing 
in ports are usually based on port area modifications). 

As occurred with the previous linear regression-based tool, the Port 
Perimeter and Total perimeter have been discarded as independent vari-
ables. In the case of the linear regression-based tool, this discard was 
justified on the grounds that there was a high partial correlation be-
tween the area and these variables. And this correlation was not owing 
to phenomena inherent to the extrusion process but rather to a simple 
geometric linkage (Llorca-Schenk et al., 2021). 

Bearing these considerations and the aforementioned discards in 
mind, the set of independent variables used in the analysis is formed of 
the following group:  

1. Distance: distance between the die centre and the port centre.  
2. Profile Area: area of the extruded profile portion affected by related 

port.  
3. Profile Perimeter: perimeter of the extruded profile portion affected 

by related port.  
4. Distance Port Profile: distance between the centre of areas of port and 

the centre of areas of the extruded profile zone affected by related 
port.  

5. Total Port Area: total area of the full port set of the die. 

3.1. Explainable machine learning 

Several families of algorithms have been tested to obtain the best of 
the models to make good predictions, and thus explain more precisely 
the relationship between independent and dependent variables. To 
explore different ML-based approaches, algorithms belonging to 
different families have been chosen such as those based on neighbour-
hood, support vector machines, linear regression, decision trees and 
neural networks, in order to find that which obtains the best results for 
the studied dataset. 

The chosen algorithms are presented below together with a brief 
description of them:  

• Baseline: As a starting model, the average value of the outcome 
variable is defined as a prediction.  

• Linear Regression: This regressor is based on the calculation of 
multiple linear coefficients of the predictor variables and an inter-
cept value with a least squares approach. In addition, other variants 
have been used such as Ridge (Hoerl & Kennard, 1970), LASSO 

(Tibshirani, 1996) and SGD (Sharma, 2018) in which the term to be 
optimised varies. 

• Decision tree (Breiman et al., 1984): This model is based on pre-
dicting values by applying hierarchically structured rules. The rule 
tree itself is constructed from the training set, and uses a single 
feature in each rule.  

• Random Forest (Breiman, 2001): Several decision trees are built to 
combine all the predictions into one. This combination leads to a 
more robust behaviour. 

• AdaBoost (Adaptive Boosting) (Freund & Schapire, 1997): This al-
gorithm uses several linear regressors. The final decision for a new 
sample is made based on the confidence learned for each regressor 
set in the training phase.  

• XGBoost (Chen & Guestrin, 2016), LightGBM (Ke et al., 2017) and 
CatBoost (Dorogush et al., 2018): These algorithms are based on the 
application of booting to decision trees, in which optimisation is 
conducted by means of derived cost functions and the lowering of 
gradients as in neural networks. Each algorithm applies these types 
of optimisations in different ways and has performed well in open 
challenges.  

• Support vector machines (Cortes & Vapnik, 1995): These algorithms 
are based on two phases. In the first phase, the original data space is 
mapped onto another space, usually of a higher dimension. While the 
second phase tries to locate a linear hyperplane of separation in the 
resulting space.  

• Neural Network (Multilayer Perceptron) (Hinton, 1989): This type of 
neural network is well established and all its layers are completely 
connected to each other.  

• Nearest Neighbours (Cover & Hart, 1967): The prediction value is 
calculated on the basis of the closest k (parameter) samples of the 
training set. The concluding prediction is an interpolation based on 
the proximity of those neighbours using the Euclidean distance. In 
this study, the k parameter was set at 1, 3, 5, 7, 9 and 11. 

4. Results 

4.1. Experimentation 

The validation strategy used for comparing the predictive ability of 
the models when applied to new observations was on the basis of the 
comparison of K-Fold Cross-Validation estimators, with the value k =
10. The metrics employed for the evaluation of the models are those 
commonly used for this purpose. They are on the basis of measuring of 
the explanatory degree of the model, the R2 score (1), and the prediction 

Table 1 
Example of a correctly constructed die.  

Distance 
(mm) 

Profile 
Area 
(mm2) 

Profile 
Perimeter 
(mm) 

Total Port 
Area (mm2) 

Distance Port 
Profile (mm)  

84.2  74.4  116.2  11184.6  10.3 

Port Area: True value 813.7 Predicted: 817.9 RMSE: 4.2. 

Fig. 12. Contributions of each variable to the predicted Port Area value, for a port case with a low RMSE.  

Table 2 
Example of die with recommendations for revision.  

Distance 
(mm) 

Profile 
Area 
(mm2) 

Profile 
Perimeter 
(mm) 

Total Port 
Area (mm2) 

Distance Port 
Profile (mm)  

42.2  32.4  56.0  9577.4  12.9 

Port Area: True value 603.1 Predicted: 562.4 RMSE: 40.7. 
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errors as the root mean squared error (RMSE) (2). In these equations, the 
variables y and ŷ are the true and predicted values, respectively. 

R2(y, ŷ) = 1 −
∑n

i (yi − ŷi)
2

∑n
i (yi − yi)

2 (1)  

RMSE(y, ŷ) =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n
∑n

i
(yi − ŷi)

2

√

(2) 

Besides considering the previous results (Fig. 7), which are averages 
of the cross validation (CV), it is convenient to contrast them in order to 
discover whether or not the difference between the algorithms is sig-
nificant. The Wilcoxon paired test (Wilcoxon, 1945) with the most 
commonly used confidence value of 95% is employed for this purpose. 

A comparison between the statistical significance of algorithm pairs 
according to the R2 and RMSE metrics is shown in Fig. 8. The following 
conclusions can be drawn:  

1. Baseline, linear regressions, SVM and neural networks attain the 
worst results  

2. Nearest neighbours and tree algorithms obtain average results.  
3. The algorithms based on the generation of multiple decision trees 

together with the boosting technique achieve the best results, with 
CatBoost being significantly better than the rest. 

4.2. Machine learning explainability model 

The best results are generally achieved with complex models 
commonly referred to as ‘black boxes’. And there are two approaches 
with which to attempt to provide consistent explanations for their pre-
dictions in a coherent manner once trained with data (post-hoc): 

The first post-hoc explainability approach is on the basis of carrying 
out permutations on the values of each predictor (individual input 
variable) and directly comparing the variability as regards its pre-
dictions (Breiman, 2001). This makes it possible to estimate the 
importance of the predictors of an already trained model. 

The second approach, which is more accurate than the first, is based 
on the construction of a new linear model with which to explain the 
complex model already trained. The calculation of Shapley values pro-
vides a solution that equitably distributes an interaction between inde-
pendent and dependent variables (Roth, 1988). This approach is often 
used in situations in which features contribute unevenly. In essence, a 
Shapley value reflects the average marginal contribution expected from 
one variable after considering all possible combinations with other 
variables. This method also ensures local accuracy, missingness and 
consistency. This approach uses a local linear approximation to explain 
the behaviour of the ML model (Fig. 9), although most of models use 
internally non-linear mechanisms to relate the input variables to the 
output variable (target). 

Recent advances related to this approach are explained by Lundberg 
and Lee (Lundberg & Lee, 2017). This approach allows a unified 
approach to explain the predictions made by any self-learning model 
already trained. An example of such a post-hoc approach is the SHapley 
Additive exPlanations (SHAP) tool, which is based on game theory and 
allows the extraction of both local and global explanations (Lundberg, 
2019). 

This explainability of the machine learning model can be of great 
interest when attempting to approximate the values of a design that is 
outside the range defined as correct. In these cases, the procedure would 
be to define a new design with new geometric characteristics. These 
characteristics can be defined properly and as quickly as possible by 
studying the individual contributions of each of the variables, particu-
larly those variables that are most easily modifiable in the port design: 
centre distances and areas. 

4.3. Importance of the model’s features 

The features of the model and their importance depend directly on 
the data used and the model itself. In this case, the Catboost algorithm is 
used, owing to the results given in Section 3.1. 

The Shapley values are calculated separately in the trained model 
and their accumulated absolute values determine their importance. 
Fig. 10 shows the model’s predictors in order of importance. 

As might be expected, given the results obtained by predecessor 
models based on linear regression (Llorca-Schenk et al., 2021), the 
predictors Distance and Total Port Area clearly have the greatest impact 
on the output variable. 

The Distance directly conditions the output variable, Port Area, 
because in order to achieve a design with a balanced flow of aluminium, 
it is observed that:  

• Owing to the concentric distribution of velocities and pressures 
(Mori et al., 2002), the greater the distance between a point and the 

Fig. 13. Contributions of each variable to the predicted Port Area value, for a port case with a high RMSE, thus suggesting a revision of the design.  

Fig. 14. Profile of the application example.  
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die centre, the lower the velocity and pressure at that point of the 
aluminium billet before it enters the die.  

• In order to achieve aluminium-flow balance, therefore: the greater 
the distance from die centre, the greater the port area required. 

Furthermore, the Total Port Area is also fundamental because it 
conditions the overall size of the ports in a die. A balanced die can have a 
design of ports of a larger or smaller area, but all of them must have an 
adequate ratio between their sizes. This variable, therefore, in some 
respects serves to introduce the condition of the global size of all the 
ports of the die. 

The three variables with the lowest impact reflect different aspects of 
the influence of the profile on the port. As shown in Section 2.2, each of 
the variables provides different nuances of the influence of profile ge-
ometry as regards achieving a port with a balanced flow of aluminium. 

Fig. 11 shows the individual impact of each sample value on the 
outcome (Port Area). Moreover, red/blue show the relation with close 
predictor interaction. 

By analysing the point distributions of these scatter plots, it is 
possible to draw some conclusions regarding the different relationships 
between the output variable and each of the predictors. Moreover, in 
some cases the colour coding also makes it possible to conclude some 
relationships between the predictors. 

The relationships and conclusions to be drawn are the following:  

1. The behaviour of the Distance predictor is, in general terms, quite 
close to being linear. In this case, if the colour code is analysed, it 
shows different behaviour for the smaller Total Port Area values and 
the larger ones: the smaller values appear to have a steeper slope on 
the line they describe, while the larger Total Port Area values describe 
a line whose slope is clearly less steep.  

2. The subfigures Total Port Area and Profile Perimeter show that the 
behaviour of these predictors is practically linear.  

3. The subfigure Profile Area indicates a certain non-linearity of this 
variable. However, it should be noted that only large area values 
(above 60 mm2) have a considerable impact, and that the impact is 
close to zero for the rest of the values.  

4. Finally, the subfigure Distance Port Profile shows clearly a non-linear 
relationship with the outcome. 

As expected, given the R2 results of the different algorithms discussed 
in Section 3.1, the behaviour of some of the predictors is somewhat more 
complex than linearity. This is why the more complex algorithms clearly 
achieve a better coverage of the variability of the data than Linear 
Regression. 

4.4. Methodology used in order to apply the model as a design aid tool 

The process shown below is employed in order to use this model as a 
design aid: 

Fig. 15. Initial four-cavity design developed for example die.  

Table 3 
Value of the variables for the initial design of the example die.  

Port Port Area 
(mm2) 

Distance (mm) Profile Area (mm2) Profile Perimeter (mm) Total Port Area (mm2) Distance Port Profile (mm) 

1  599.59  43.17  40.84  55.49  12031.63  12.68 
2  599.59  43.17  40.90  55.88  12031.63  12.72 
3  953.12  81.46  99.06  121.75  12031.63  11.93 
4  855.61  80.32  40.90  55.88  12031.63  15.94  

J. Llorca-Schenk et al.                                                                                                                                                                                                                         



Expert Systems With Applications 222 (2023) 119808

12

1. A first set of port design is made for a die based on the designer’s 
previous knowledge and experience.  

2. The values of the variables for each port are entered into the created 
Catboost model. The model is available for testing at the following 
link: 

https://colab.research.google.com/drive/1lM2-ZGC6tB4Mx 
nT6AuxMzxyb1PX4AkYa?usp=sharing  

3. The Port Area value of the design is compared with the Port Area 
value predicted by the model as correct. According to this 
comparison: 
• If the RMSE (root-mean-square error) value is between the quan-

tiles Q1 and Q2, the Port Area designed is considered to be 
perfectly adjusted to the predicted model and the design is, 
therefore, considered to be completely correct.  

• If the RMSE value is in quantile Q3, the Port Area is considered to 
be moderately well fitted to the model. A possible modification 
with which to improve the design could be considered.  

• If the RMSE value is higher than Q3, it is clearly necessary to revise 
the design in order to improve it.  

• The RSME quantile cut-off values obtained by the Castboost model 
are: Q1 ≤ 2.75, Q2 ≤ 5.66, Q3 ≤ 9.95, Q4 ≤ 47.64  

4. Any revisions of these initial designs must rely on the help provided 
by the explainability of the model. The value recommended by the 
model can be better approximated by studying the variables that 
explain the value obtained. 

Below are 2 example sets of port design values. One of them fits the 
model correctly (Table 1) (Fig. 12), while the other should be revised 
(Table 2) (Fig. 13). It is important to note that the explainability of the 
graphs provides information about the contribution of each of the 

variables from a mean or base value (according to the length of the 
segment) and the direction, positive or negative, of the contribution of 
each of the variables from a base value (according to the colour of the 
segment). As indicated previously, observing the weight and direction of 
the contributions of the different variables that explain the value ob-
tained shown in the graphs makes it possible to choose the best way in 
which to approximate the value recommended by the model. 

5. Application example 

5.1. ML-based model application 

The different steps of the process of applying the new ML-based 
model to an example case are detailed below: 

1. First, starting from the geometry of the profile for which a die pro-
duction is desired, a design of the set of ports is created according to 
the design criteria imposed by the geometry of the profile and the 
designer’s experience (the ML-based model is not involved in this 
stage of the process).  

2. The geometric data of the newly designed set of ports is collected and 
entered into the ML-based model.  

3. The port area value that the ML-based model indicates as correct is 
compared to the initial design area value, for each of the designed 
ports.  

4. Depending on the quantile in which the RMSE is found, a decision is 
made regarding the suitability of the port design following the cri-
terion provided in section 3.4.  

5. If the RMSE is within the Q3 quantile, a revision of the design is 
appropriate, and if it is above the Q3 quantile, a revision of the 
design is essential.  

6. In order to make these modifications, it is advisable to rely on the 
explainability of the model to help identify the most appropriate 
direction and way in which to make the changes that will allow us to 
approach the value of the variables that best fit the model.  

7. After making the appropriate changes, the ML-based model is re- 
evaluated for all ports (the model value changes for the remaining 
ports if any port changes, because the Total Area variable partici-
pates in the model). If any port still has RMSE values outside the 
desired range, steps 5 to 7 must be repeated until all ports are within 
the required range (Fig. 2). 

Table 4 
Analysis and recommendations provided by the ML-based model for the initial 
design ports.  

Port Port 
Area 
(mm2) 

Expected 
Port Area 
(mm2) 

RMSE 
(mm2) 

RMSE 
quantile 

Model 
recommendation 

1  599.59  637.01  37.4 Q4 Upward revision 
2  599.59  633.25  33.7 Q4 Upward revision 
3  953.12  911.03  42.1 Q4 Downward revision 
4  855.61  826.13  29.5 Q4 Downward revision  

Fig. 16. Predictions obtained by the ML-based model for the ports of the initial design, with the contributions from each of the variables.  
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Fig. 17. Improved four-cavity design for the example based on the ML-based model indications.  

Table 5 
Value of the variables for the improved design of the example die.  

Port Port Area 
(mm2) 

Distance (mm) Profile Area (mm2) Profile Perimeter (mm) Total Port Area (mm2) Distance Port Profile (mm) 

1 610.16  43.2  40.84  55.49  11585.76  12.83 
2 610.16  43.2  40.90  55.88  11585.76  12.87 
3 879  80.59  99.06  121.75  11585.76  10.98 
4 797.12  79.63  40.90  55.88  11585.76  15.44  

Fig. 18. Predictions obtained by the ML-based model for the ports in the improved design, with contributions from each of the variables.  
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When adjustments to the geometry are necessary in order to 
correctly fit the values to the ML-based model, one of the 2 most easily 
controlled geometric variables is usually used: Port Area or Distance. A 
modification to the area of the port is, in general, usually easier because 
it is difficult to modify the position of the profile due to other design 
conditions. It is, therefore, possible to state that the most effective 
method by which to modify the geometrical characteristics of a port is 
by changing the port zone furthest from the profile in order to modify its 
area. 

Fig. 14 shows the profile for which a four-cavity, four-port-per-cavity 
design is desired for a press with a 203 mm container and a force of 
22000MN. 

The designer must start by using this profile data to start the design 
of the die. The example focuses on the design of the mandrel ports, for 
which the ML-based model has been developed, although the die design 
includes other steps. 

The designer must initially place the cavities of the profile with 
respect to the die centre with the constraint of the bolster support. For 
the layout, the most common choice for this type of profile is the 

symmetrical arrangement and orientation of the profile with support on 
the face, which provides greater stability (Saha, 2000). 

A first attempt is then made to design the ports, considering the 
location established for the profile and the need to leave a minimum 
bridge width of 10–13 mm (minimal distance between ports). 

With these design criteria, the designer performs the first design 
attempt. It is a vertically and horizontally symmetric design, with 12 
mm bridges and central walls of 10 mm (Fig. 15). 

For these initial geometries, the value of the variables involved in the 
ML-based model are given in Table 3. These values have been fed into 
the model in order to obtain the results shown in Fig. 16 and Table 4. 
These show the predictions obtained by the ML-based model, the RMSE 
between the value of the initial design and that predicted by the model, 
and the quantile to which this RMSE corresponds. 

The ports numbered 1 and 2, therefore, have to be increased in area 
in an attempt to fit the model properly. Furthermore, the ports 
numbered 3 and 4 have to be reduced in area in an attempt to fit the 
model adequately. Since some other variables are linked to changes in 
the Port Area, it is extremely difficult to estimate the exact extent to 
which the area of the ports should be adjusted, and an iterative 
approximation must, therefore, be made in the direction indicated by 
the model. 

At this point, model explainability comes into play, as it helps the 
designer to make the best possible decisions as regards minimising the 
number of iterations needed to achieve the objective of fitting the Port 
Area values to the ML model. 

In order to increase the area of Ports 1 and 2, it is necessary to change 
their geometry. The most common and simplest approach is, if possible, 
that of attempting to perform all port modifications without changing 
the position of the bridges. If the geometry of the ports is modified in this 

Table 6 
Analysis and recommendations provided by the ML-based model for the 
improved design of ports.  

Port Port 
Area 
(mm2) 

Expected 
Port Area 
(mm2) 

RMSE 
(mm2) 

RMSE 
quantile 

Model 
recommendation 

1  610.16  610.90  0.7 Q1 Properly fitted 
2  610.16  608.00  2.2 Q1 Properly fitted 
3  879.00  878.14  0.9 Q1 Properly fitted 
4  797.12  795.86  1.3 Q1 Properly fitted  

Fig. 19. Complete final die design.  
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way, only the values of the variables Total Port Area, Distance and Dis-
tance Port Profile are altered. 

Fig. 16 shows that Total Port Area contributes positively to the Port 
Area value of Ports 1 and 2, while Distance and Distance Port Profile 
contribute negatively. 

Increasing the area of Ports 1 and 2 will always tend to increase Total 
Port Area, which in turn makes a positive contribution to the Port Area, 
regardless of the geometrical modification made in order to achieve such 
an increase. 

This is not, however, the case of the variables Distance and Distance 
Port Profile. The change made to these variables may make it easier or 
less easy to achieve the final objective depending on how the Port Area is 
increased. If the decision is made to increase the Port Area by reducing 
the central wall of 10 mm, the value of Distance and Distance Port Profile 
will increase (especially the second one), and with it their negative 
contribution that reduces the Port Area value to which the model points 
(which is the exact opposite of the purpose of increasing the Port Area). 

In the case of Ports 1 and 2, the decision was, therefore, made to 
increase the Port Area by reducing only the fillet radius, signifying that 
an increase in Port Area is achieved with practically no change in Dis-
tance and Distance Port Profile. 

However, Ports 3 and 4 must be reduced in area. Fig. 16 shows that 
for these ports, the contributions of Distance and Total Port Area are 
positive while the contribution of Distance Port Profile is negative (and 
much smaller than the previous ones). 

In this case, the decision was, therefore, made to modify the areas by 
stretching the geometry and reducing the Port Area, Total Port Area and 

Distance. The contribution of Total Port Area and Distance is in the same 
direction as the modification made. In this case, the Distance Port Profile 
is also reduced and contributes slightly in the opposite direction to the 
intended modification. 

The model’s explainability and a simple two-step iterative process 
have helped make it possible to define new geometries for the ports in 
the example die that fit the ML-based model perfectly (Fig. 17). 

For these improved geometries, the value of the variables involved in 
the ML-based model are given in Table 5. These values have been fed 
into the model in order to obtain the results shown in Fig. 18 and 
Table 6. These show the predictions obtained by the ML-based model, 
the RMSE value and the RMSE quantile. 

This new design, therefore, allows all ports to fit into the ML-based 
model in an appropriate manner, and this port design can conse-
quently be considered adequate. 

Once the optimal port design has been reached, the remaining ele-
ments have to be defined to complete the design (Fig. 19). It is important 
that the choice during their definition follows standard criteria to ensure 
that the calculation of balanced ports is reflected in a balanced flow of 
aluminium during extrusion. The design factors defined and the criteria 
used are listed below:  

1. The bridges are defined with the following geometrical 
characteristics: 

Fig. 20. Finite elements of the workpiece of final die design.  

Table 7 
Values for the definition of the property functions of the aluminium alloy.  

Temperature 
[◦C] 

Density [kg/m3] Specific Heat 
[J/(kg⋅K)] 

Thermal 
Expansion [1/◦C)] 

20 2699 904 2.26⋅E-5 
500 2586 1026 2.78⋅e-5  

Temperature 
[◦C] 

Thermal Conductivity 
[W/(m⋅K)] 

Young Module 
[MPa] 

Poisson Ratio 

20 205 70,600 0.33 
500 247 46,000 0.36  

Table 8 
Coefficients used by Qform UK for the H-S model for 6063 aluminium alloy in ◦C.  

Coefficient Value Coefficient Value Coefficient Value 

A [MPa] 265 m1 − 0.00458 m2 − 0.12712 
m3 0.12 m4 − 0.0161 m5 0.00026 
m7 0 m8 0 m9 0  

Table 9 
Mechanical properties of AISI H-13 steel depending on 
temperature.  

Temperature [◦C] Density [kg/m3] 

20 7716 
100 7692 
200 7660 
800 7459  

Temperature [◦C] Yield Stress [MPa] 

20 1500 
300 1300 
500 1100 
570 1020  

Temperature [◦C] Young Module [MPa] 

20 210,000 
300 187,000 
600 160,000  

Table 10 
Temperature and dimensions of tooling and billet.   

Temp (◦C) Diameter (mm) Length (mm) 

Container 420 in = 210 
out = 900 

1055 

Billet 480 203 500 
Ram 370 209 1254 
Die ring 450 out = 530 

in = 282 
154 

Backer 450 out = 280 50.5 
Bolster 430 out = 530 250 
Mandrel 450 out = 280 50 
Die 450 out = 280 54  
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• Width 12 mm. For this size of profile, the bridge widths are usually 
between 12 and 14 mm, a value was chosen that would allow the 
creation of fairly wide ports (which are more sensitive to flow 
imbalances).  

• Welding angle 25 degrees. The welding angle values are usually 
between 20 and 30 degrees. An intermediate value is chosen, 
which favours welding and does not lengthen the welding distance 
too much (Valberg, 2002).  

2. The welding chamber is defined with a depth of 14.5 mm and a 
4x5mm feeder is also provided (usually to facilitate adjustment work 
during the life of the die). This welding height is a high value, given 
the width chosen for the bridges (Donati & Tomesani, 2005). This 
allows welding to be carried out without restrictions (Selvaggio 
et al., 2011) (Ceretti et al., 2009).  

3. The bearing lengths are defined depending only on the thickness (in 
this case constant) and are reduced at the tips (Miles et al., 1997) and 
under the bridges (Xue et al., 2018).  

4. Finally, the heights of the parts are defined on the basis of strength 
calculations to ensure adequate longevity under the cyclical condi-
tions of pressure and temperature that they must withstand. 

5.2. Verification of the example with FEM simulation 

In order to validate the predictions of the ML-based model, they are 
compared with the predictions of the numerical simulation using the 
Qform UK software from Micas Simulations Ltd. This is specific-purpose 
software for simulation of metal deformation processes based on the 

finite element method and the Lagrange-Euler approach. This software 
allows an analysis of the material flow coupled to the mechanical de-
formations and stresses supported by the tool set, which helps to achieve 
a high accuracy of the numerical results (Biba et al., 2012). The nu-
merical calculation considers the important influence that the die 
deformation has on the material flow through the die. 

The FEM model of the workpiece flow domain is shown in Fig. 20. A 
quarter model is created owing to the symmetry of the design geometry. 
This domain represents the volume of extruded metal filling the interior 
space of the die set and the container. 

All meshes are created with tetrahedral elements. A highly adaptive 
meshing is applied in order to optimise mesh quality and minimise the 
resources required to achieve accurate calculation results. The size of the 
elements in each zone is determined according to the extent of local 
deformation undergone during the process. 

The billet material is EN AW-6063-O aluminium alloy and the die 
material is AISI H-13 steel. All the properties of these materials are 
temperature-dependent functions. 

With regard to 6063 aluminium alloy, density, specific heat, thermal 
expansion, thermal conductivity, Young’s modulus and Poisson’s ratio 
are defined by employing a linear temperature-dependent function. 
Qform UK uses the values shown in Table 7 for the definition of the 
property functions of the aluminium alloy. 

There are different models that can be used with the aim of model-
ling the flow stress of aluminium during the extrusion process. Of all the 
possible models, the International Conference on Extrusion and Com-
parison (ICEB) advocates the utilisation of the Hansel-Spittel (H-S) 

Fig. 21. Graphical representation of the Z-velocity (extrusion direction) for the initial unbalanced design.  
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model (3). The H-S model is used to represent the flow stress, and its 
dependence on strain is also considered. The H-S model function is 
derived by regressing the experimental data obtained from hot torsion 
tests (Gamberoni et al., 2015). 

σ = A • em1T • Tm9 • εm2 • em4/ε • (1 + ε)m5T
• em7ε • εm3 • εm8T (3) 

The H-S model can be performed with a maximum number of 9 
regression coefficients (A and m1 to m9). ICEB recommends regression 
with at least 6 coefficients so as to avoid a low correlation R2 index. The 
coefficients are obtained from experimental torque test values. In order 
to cover all possible conditions, tests should be performed at different 
temperatures and strain velocities. The coefficients used by Qform UK 
for the flow stress model of 6063 aluminium alloy are shown in Table 8. 

The AISI H-13 steel in the die is considered to be an elastic–plastic 
continuum subjected to small deformations. Table 9 shows the values 
used by Qform UK to generate the mechanical property functions of the 
material. 

Poisson’s ratio for steel is 0.3 for this alloy and is independent of 
temperature. In the contact areas between aluminium and steel the heat 
exchange coefficient is 30000 W/(m2⋅K). 

The friction of aluminium on steel in the extrusion temperature 
range is usually modelled as complete sticking. Only in the bearing 
zones is some sliding considered. ICEB suggests using a simple shear 
friction model (4) with m = 1 (Donati et al., 2019): 

τ = m⋅τs (4)  

where τ - shear friction stress 

m - friction factor 
τs - material shear stress 

Qform UK models the friction between the aluminium and the die 
surface using the friction model proposed by Levanov (1997): 

fτ = m • σ
/ ̅̅̅

3
√

[1 − exp( − 1.25 • σn/ σ)] (5)  

where σn - normal contact pressure 

m - friction factor 

The Levanov model (5) can be considered as a combination of the 
Coulomb friction model and the constant friction model. For low contact 
pressure, it provides a frictional traction that depends linearly on the 
normal contact stress. However, for a high contact pressure value, it 
provides a similar level of frictional traction as the constant friction 
model. 

Table 10 shows the main boundary conditions, dimensions and 
temperature parameters of the extrusion process used in the Qform UK 
FEM simulation. 

Moreover, it is important to note that a profile speed similar to those 
commonly used in real extrusion tests in the press has been used as a 
velocity condition for the simulation of the process (Engelhardt et al., 
2019).The most common practice for non-special profiles is that of 

Fig. 22. Graphical representation of the velocity deviation for the initial unbalanced design.  
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employing velocities between 100 and 180 mm/s at the press output. An 
exit velocity value of 133 mm/s has been used for the FEM simulations 
in this study. 

Bearing all of the above-mentioned boundary conditions and criteria 
in mind, two FEM simulations of the extrusion were performed using the 
Qform UK: a first simulation of the initial unbalanced design and a 
second simulation of the design obtained after the application of the ML- 
based model. 

The simulation results for the velocity in the extrusion direction for 
the initial unbalanced design are shown in Fig. 21. An unbalance of the 
Z-velocity will be noted which causes a profile deviation from that 
direction. 

The results of the velocity deviation for the initial unbalanced design 
with respect to its average velocity are shown in Fig. 22. The chromatic 
scale in the figure reveals that the range of the velocity deviation at the 
exit of the press is around 18% between the fastest and the slowest 
zones. 

A speed difference of this magnitude at the exit from the press always 
results in a deformation of the profile and, in most cases, in the deflec-
tion of the mandrel. In the vast majority of cases, mandrel deflections 
also produce differences in thickness in the hollow portions of the 
profile. 

Determining the maximum admissible velocity deviation at the exit 
of the press for each specific profile can be very difficult. In order to 
extrude a profile according to the manufacturing tolerances, the 
maximum range for the velocity deviation depends on several factors. 
These factors include: the stiffness of the profile as a result of its shape, 

the general thickness of the profile, specific tolerances for the profile, 
etc… But it is widely recognised that minimising the velocity range al-
ways helps to guarantee a profile that is geometrically closer to that 
desired. 

Fig. 23 shows the Z-velocity results, while Fig. 24 shows the velocity 
deviation for the final balanced design using the ML-based model. The 
chromatic scale in the figure reveals that the range of the velocity de-
viation at the exit of the press is around 1.9% between the fastest and the 
slowest zones. 

Nodal results and animations of the different simulations carried out 
using Qform UK can be found in the dataset associated with this paper 
(Llorca-Schenk, 2022). 

A comparative analysis of the velocity deviation values of the design 
obtained with the help of the ML-based model and the previous linear 
regression-based model reveals that the results of the new model are 
considerably better than those of the previous model (Fig. 25) 
(Table 11). It achieves a substantial reduction of 15% in the velocity 
deviation range that was observed in the design obtained from the linear 
regression-based model (Llorca-Schenk et al., 2021). 

Despite being an example profile for which the linear regression- 
based model achieves a very acceptable modelling, the new ML-based 
model achieves an important improvement, probably owing to the fact 
that it manages to extract the existing non-linear relationships between 
the variables that were ignored by the linear model. 

The other common and complementary means employed to evaluate 
the goodness of the extrusion simulation results is to employ the sum of 
squares of the nodal values of the velocity deviation from its mean value 

Fig. 23. Graphical representation of the Z-velocity (extrusion direction) for the final balanced design.  
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or RMSD (root mean square deviation). Evaluating the square deviation 
makes it possible to assess the goodness of the results in the entire profile 
section, and not by simply focusing on the extremes of the velocity de-
viation range. 

This analysis is always carried out by starting from the bearing zone, 
as the profile has not yet been formed in the aluminium zone before the 
bearing. In the specific case of this evaluation of the square deviation, 
the nodal values of the first 100 mm of the shaped profile from the 
bearing are considered (which corresponds to more than 100,000 
nodes). 

According to the goodness analysis shown throughout this section, 
the new ML-based model obtains comparatively much better results 
than the linear regression-based model. This indicates that, beyond a 
substantial improvement to the reduction in the extreme values of ve-
locity deviation, there is a noticeable improvement in the prediction of 
the flow of the aluminium through the whole profile section (Table 12). 

This considerable improvement has even been shown through an 
example which, given its characteristics, had already achieved very 
good results when compared to the previous linear regression-based 
model. This suggests that, in the case of profiles that are more difficult 
for the regression-based model to deal with, it is very plausible that the 
enhancement obtained by considering its non-linearities could be even 
greater. 

6. Conclusions and future research 

The procedure developed in order to obtain the ML-based model 

with which to design the ports of porthole aluminium extrusion die has, 
in general terms, attained successful results. The new ML-based model 
can significantly facilitate the design process of such die ports, partic-
ularly because it can provide the designer with essential support at the 
beginning of the creation process. 

The ML-based model is a means to summarise the experience and 
know-how developed through a large number of optimal designs over 
time. In addition, given the characteristics of the model, it makes it easy 
to add new experiences to the model, and it can, therefore, easily learn 
from new designs. 

It is suitable for a specific type of very common dies: four-cavity dies 
with four ports per cavity. In the case of other dies with other geomet-
rical configurations, it will be necessary to obtain new models or a 
general model in the future. 

When compared to the previous linear regression-based model, the 
new ML-based model achieves a substantial reduction in the velocity 
deviation in the profile section when the design obtained by the model is 
analysed by employing FEM simulation. 

Moreover, the explainability of the ML-based model makes it 
possible to discover the magnitude and direction of the relative influ-
ence of each of the variables in a given case. This greatly facilitates 
decision-making regarding the modifications to be made in order to 
adjust an initial design to the ML-based model. The improvement in the 
results and the facilities for design correction provided by explainability 
suggest that the level of requirement in the reduction of velocity devi-
ation in the final design may achieve values that it has been difficult to 
imagine until now. 

Fig. 24. Graphical representation of the velocity deviation for the final balanced design.  
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Given the geometric linkage between the different variables involved 
in the model, it is currently not possible to use it for the creation of a new 
design from scratch. One possible means of future development is also 
open in the sense of overcoming the limitation of using it only for design 

checking. An attempt could be made to define a tool that would make it 
possible to automate the calculation and iterative modification of the 
initial design until a new final port design adjusted to the model is ob-
tained. This new tool could probably be articulated around a parametric 
CAD (Computer Aided Design) tool that iteratively and incrementally 
modifies the design until an optimal result is achieved for the calculation 
of the ML-based model. 

Data availability 
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has been shared in Mendeley Data (Llorca-Schenk, 2022): https://doi. 
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Fig. 25. Velocity deviation for the balanced design obtained with the previous linear regression-based model.  

Table 11 
Comparison of the most important variables obtained in the optimal design 
achieved with the help of the new ML-based model and the previous linear 
regression-based model (Llorca-Schenk et al., 2021).  

Port ML 
Port 
Area 
(mm2) 

Linear 
Port 
Area 
(mm2) 

ML 
Distance 
(mm) 

Linear 
Distance 
(mm) 

ML Total 
Port Area 
(mm2) 

Linear 
Total 
Port Area 
(mm2) 

1 610.16  599.59  43.2  43.17  11585.76  11454.58 
2 610.16  599.59  43.2  43.17  11585.76  11454.58 
3 879  867.32  80.59  80.46  11585.76  11454.58 
4 797.12  797.12  79.63  79.63  11585.76  11454.58  

Table 12 
Values of the root mean square deviation from bearing zone onwards.   

Unbalanced 
design 

Balanced design 
bylinear regression- 
based model  
(Llorca-Schenk et al., 
2021) 

Balanced 
design by 
ML-based 
model 

Mean nodal velocity 
deviation (m/s)  

0.00618  0.00115 0,000745 

Sum of squares of 
nodal velocity 
deviation (m2/s2)  

274.57  5.53 1,95 

Root main square 
deviation – RMSD 
(m/s)  

16.57  2.35 1,39  
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the work reported in this paper. 
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