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Abstract
This work presents an evaluation of CNN models and data augmentation to carry out the hierarchical localization of a mobile 
robot by using omnidirectional images. In this sense, an ablation study of different state-of-the-art CNN models used as 
backbone is presented and a variety of data augmentation visual effects are proposed for addressing the visual localization 
of the robot. The proposed method is based on the adaption and re-training of a CNN with a dual purpose: (1) to perform a 
rough localization step in which the model is used to predict the room from which an image was captured, and (2) to address 
the fine localization step, which consists in retrieving the most similar image of the visual map among those contained in the 
previously predicted room by means of a pairwise comparison between descriptors obtained from an intermediate layer of 
the CNN. In this sense, we evaluate the impact of different state-of-the-art CNN models such as ConvNeXt for addressing the 
proposed localization. Finally, a variety of data augmentation visual effects are separately employed for training the model 
and their impact is assessed. The performance of the resulting CNNs is evaluated under real operation conditions, including 
changes in the lighting conditions. Our code is publicly available on the project website https://​github.​com/​juanjo-​cabre​ra/​
Indoo​rLoca​lizat​ionSi​ngleC​NN.​git.
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1  Introduction

In the ever-evolving landscape of Artificial Intelligence 
(AI), Convolutional Neural Networks (CNNs) have become 
a fundamental pillar of the technology, with disruptive 
problem-solving capabilities. This kind of neural networks 
were originally conceived for image recognition tasks, but 

have quickly transcended their initial boundaries, establish-
ing themselves as a versatile and powerful tool for tackling 
a wide range of challenges in a variety of domains (LeCun 
and Bengio 1995).

The increasing use of CNNs can be attributed to their 
high ability to recognise patterns from different sources 
of information. This ability has made them essential in a 
wide variety of applications, from image recognition (Kriz-
hevsky et al. 2012; Simonyan and Zisserman 2014) and 
object detection (Redmon et al. 2016; Ren et al. 2015) to 
semantic segmentation (Ronneberger et al. 2015) and even 
natural language processing (Kim 2014). The success of 
such architectures is based on their ability to extract features 
from data, which allows solving high-level problems such 
as visual localization.

In this sense, some researchers have addressed visual 
localization by means of 360° vision sensors due to its 
relatively low cost and the wide range of information they 
provide. When capturing images in real-world scenarios, 
especially in robotics applications, the environmental con-
ditions can vary significantly. Consequently, addressing the 
visual localization could be particularly challenging due to 
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different phenomena such as changes in illumination con-
ditions. For this reason, understanding and addressing the 
effects of illumination changes are crucial for developing 
robust CNN models.

Related with the above information, the main objective 
of this work is to analyze the influence of different visual 
effects applied to the training data in order to carry out the 
mapping and localization of a mobile robot, which moves in 
an indoor environment under real operation conditions. For 
this purpose, the omnidirectional images captured by a cata-
dioptric vision sensor are used to train a CNN. Both the raw 
images, and some sets of images obtained after introducing 
visual effects to the original images in a data augmentation 
process are considered during the training. In this paper, we 
have also evaluated the performance of state-of-the-art CNN 
models when addressing localization through a hierarchical 
approach. In this sense, the CNN will be adapted and re-
trained with a dual purpose: (1) to perform a rough locali-
zation step in which the model is used to predict the room 
from which a test image was captured, and (2) to address the 
fine localization step, which consists in retrieving the most 
similar image of the visual map among those contained in 
the previously predicted room by means of a pairwise com-
parison between descriptors obtained from an intermediate 
layer of the CNN. The main contributions of this paper can 
be summarized as follows.

•	 A CNN is adapted and re-trained to predict the room 
from which the robot captured an omnidirectional image 
which is transformed into panoramic. This approach 
enhances robotic localization by initially performing 
room recognition.

•	 We use the re-trained CNN to embed panoramic images 
into holistic descriptors by extracting the activation of an 
intermediate layer. These descriptors are compared to the 
visual model of the retrieved room via nearest neighbour 
search, providing an efficient method for scene recogni-
tion and position retrieval.

•	 We conduct a thorough study of the individual influence 
of different data augmentation visual effects when train-
ing a model to perform hierarchical localization. This 
analysis contributes to improve the robustness of the 
model and its generalization ability in localization tasks.

•	 We evaluate the performance of different state-of-the-
art CNN models that are used as the backbone for the 
proposed localization task. This comparative evaluation 
provides valuable insights for selecting the most suit-
able CNN architecture for real-world localization appli-
cations.

This work is an extension of the initial developments pre-
sented in Céspedes et al. (2023). In this previous work, 
we used a basic CNN model (Places, Zhou et al. 2014) to 

perform the rough localization. However, our present pro-
posal addresses both rough and fine localization steps and 
studies more exhaustively different state-of-the-art models 
such as AlexNet (Krizhevsky et al. 2012), ResNet-152 (He 
et al. 2016), ResNeXt-101 64x4d (Xie et al. 2017), Mobile-
NetV3 (Howard et al. 2019), EfficientNetV2 (Tan and Le 
2021) and ConvNeXt Large (Liu et al. 2022). Also, an abla-
tion study of a variety of data augmentation visual effects are 
carried out with the aim of analysing the performance of the 
proposed tools under real operation conditions.

The following sections are structured as follows. First, in 
Sect. 2 we present a review of the state of the art on visual 
place-recognition and localization by means of artificial 
intelligence techniques. Second, in Sect. 3 we describe the 
proposed hierarchical localization method, the different 
CNN architectures which are evaluated and the proposed 
data augmentation visual effects. After that, we present in 
Sect. 4 the dataset used and the experiments carried out to 
test and validate the proposed method. Finally, conclusions 
and future works are outlined in Sect. 5.

2 � State of the art

Artificial intelligence (AI) techniques are commonly pro-
posed to address computer vision and robotics problems. 
Recent works, such as Aguilar et al. (2017), propose a pedes-
trian detector for Unmanned Aerial Vehicles (UAVs) based 
on Haar-LBP features combined with Adaboost and cascade 
classifiers with Meanshift. Another example is Wang et al. 
(2018), which utilizes an autoencoder for the fusion and 
extraction of multiple visual features from different sensors 
with the aim of carrying out motion planning based on deep 
reinforcement learning.

CNNs have proven to be successful in many practical 
applications. Well-known architectures, such as GoogLeNet 
(Szegedy et al. 2015), AlexNet (Krizhevsky et al. 2012) and 
VGG16 (Simonyan and Zisserman 2014) have been used 
as starting points to address new computer vision tasks. 
Regarding place-recognition, CNN models were firstly pro-
posed to address this problem in Chen et al. (2014), where 
a pre-trained model called Overfeat (Sermanet et al. 2013) 
is used to extract features from images. Sünderhauf et al. 
(2015) provided a thorough investigation on the perfor-
mance of extracted features for place recognition. In fact, 
they found out that the features extracted from convolutional 
layers were more robust against different lighting conditions 
than those extracted from fully connected layers which out-
performed towards viewpoint changes. Bai et al. (2018) pro-
pose the SeqCNNSLAM method, which consists in using 
the pre-trained AlexNet (Krizhevsky et al. 2012) to extract 
features and feed the SeqSLAM algorithm (Milford and 
Wyeth 2012). Also Naseer et al. (2015) proposed a similar 
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approach, but using GoogleNet (Szegedy et al. 2015). Some 
of the works have not only used images as source of infor-
mation, but also point clouds (Uy and Lee 2018) and both 
combined (Komorowski et al. 2021).

In the context of robot localization, Kopitkov and Indel-
man (2018) propose using CNN holistic descriptors to esti-
mate the robot position by learning a generative viewpoint-
dependent model of CNN features with a spatially-varying 
Gaussian distribution. Sarlin et al. (2019) carry out a hierar-
chical modeling using a CNN, which extracts local features 
and holistic descriptors for 6-DOF localization. In that paper, 
a coarse localization is solved by using global descriptors, 
while a fine localization is solved by matching local features. 
Recent works (Cebollada et al. 2022) have proposed hierar-
chical visual models for efficient localization. This method 
involves arranging visual information hierarchically in dif-
ferent layers so that localization can be solved in two main 
steps. The first step involves coarse localization to roughly 
determine the area where the robot is located, and the second 
step involves fine localization within this pre-selected area.

Regarding the training of CNNs, a large and varied data-
set is essential. Since a lack of a large enough datasets is 
quite common, Data Augmentation (DA) can be used to 
increase the training instances to avoid overfitting. As for 
the DA for a mobile robot localization task, it is essential 
to apply visual effects that may occur in real operation 
conditions to make the model robust against those effects. 
Considering as many effects as possible would increase 
the effectiveness of the CNN, but this would imply more 
processing power and memory. Numerous researchers have 
leveraged the data augmentation technique as a valuable 
tool to enhance the efficacy of their models. For example, 
Ding et al. (2016) train a CNN with three distinct types of 
data augmentation operations. Their investigation aims to 
enhance the performance of Synthetic Aperture Radar tar-
get recognition by achieving invariance against pose varia-
tions. Similarly, Salamon and Bello (2017) present a CNN 
designed for environmental sound classification, accompa-
nied by an audio data augmentation strategy. This augmen-
tation approach is useful to mitigate the scarcity of data in 
this domain, contributing to improved model performance. 
Furthermore, Perez and Wang (2017) present a study about 
the effectiveness of data augmentation to solve the classi-
fication task. Shorten and Khoshgoftaar (2019) present a 
survey about the existing methods for data augmentation 
and related developments. Nonetheless, the previously pro-
posed data augmentation methods do not exactly analyze 
the visual phenomena that can occur when the mobile robot 
moves through the target environment under real-operation 
conditions. Therefore, the present work performs a data aug-
mentation analysis that focuses on a wide range of those 
specific visual effects.

In light of the above information, the aim of this work 
is to analyze the influence of some visual effects to carry 
out data augmentation for CNN training to address a hier-
archical localization (Cebollada et al. 2022). Hence, the 
efficiency of each visual effect will be assessed through 
the ability of the CNN model to robustly estimate the posi-
tion where the image was captured. In addition, this work 
focuses on evaluating the performance of different well-
known CNN models for both the coarse and fine localiza-
tion steps. The first one consists in estimating the room 
where the image was taken by means of a classification 
final layer. The second one is addressed by extracting a 
global descriptor from an intermediate layer of the CNN 
and used to retrieve the most similar image that conforms 
the visual map. To address the proposed evaluation, the 
unique source of information is the set of images obtained 
by an omnidirectional vision sensor installed on the mobile 
robot, which moves in an indoor environment under real 
operation conditions.

3 � Methodology

3.1 � Hierarchical localization approach

This study aims to tackle visual localization through a hier-
archical methodology by means of deep learning. The pro-
posed approach (Fig. 1) consists of two main steps: an initial 
stage for rough localization, which consist in identifying the 
room from which the test image has been captured, and a 
subsequent phase for fine localization where the position 
of the robot is obtained by a pairwise comparison between 
the test image and the visual model that conforms the pre-
selected room.

The initial step of rough localization is performed using 
the output of a CNN. The output layer of that CNN is com-
posed by R neurons, each one corresponding to a room (R is 
the number of rooms or relevant areas in the target environ-
ment). Then, a SoftMax activation function is applied and 
the room prediction is obtained. However, before training the 
CNN, a dataset of labelled images captured along the target 
environment is needed. In this case, each image is labelled 
with the corresponding room information. The CNN is then 
trained to address the room retrieval task. Once the CNN is 
appropriately trained for the room classification task, the 
coarse localization step is performed: a test image imtest is 
fed into the CNN and the output indicates the room ci in 
which the image was captured.

Simultaneously, a holistic descriptor is extracted by 
flattening the activation map from the last convolutional 
layer. This descriptor dtest is compared with the descrip-
tors Dci

= {dci,1, dci,2,… , dci,Ni
} from the visual map of 
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the predicted room ci , where Ni is the number of images in 
the room ci . Note that the visual map descriptors are also 
obtained by flattening the last activation map of the same 
CNN. Then, the distance between the test descriptor dtest and 
each descriptor dci,j � Dci

 in the room ci is calculated (Eq. 1).

where Ni is the number of descriptors in room ci and dist is 
the Euclidean distance (Eq. 2)

w h e r e  dtest = (dtest,1, dtest,2,… , dtest,m)  a n d 
dci,j = (dci,j,1, dci,j,2,… , dci,j,m) are the descriptors of size m, 
and dtest,i and dci,j,i are the i-th components of the vectors dtest 
and dci,j , respectively.

After that, a set qt = {qt1,… , qtNi
} is constructed with the 

calculated distances. The index k which minimizes the distance 
in the set qt is found in Eq. 3. Subsequently, the estimated 
position (xest, yest) corresponds to the position (xci,k, yci,k) from 
which the image imci,k

 of the visual map (i.e, the image whose 
descriptor is the retrieved one dci,k ) was captured (Eq. 4). This 
hierarchical approach ensures both a broad understanding of 
the scene and precise localization within the identified room, 
contributing to an effective visual localization strategy. Fig-
ure 1 outlines the whole localization process.

(1)qtj = dist(dtest, dci,j), j = 1,… ,Ni

(2)dist(dtest, dci,j) =

√√√
√

m∑

i=1

(dtest,i − dci,j,i)
2

(3)k = argmin(qt)

3.2 � CNN selection and adaption

Designing a Convolutional Neural Network to a address 
a specific task supposes a big challenge. In the present 
work, the CNN must be able to predict the room in which 
an image was captured and embed the input image into a 
global descriptor to retrieve the exact position within the 
predicted room. Crafting a CNN from scratch demands both 
a profound understanding of the specificities involved and 
access to a sufficiently varied dataset for effective training. 
Furthermore, as previously demonstrated in Ballesta et al. 
(2021), in general terms, re-training networks that have been 
designed for a different objective yields more precise and 
reliable outcomes in the new task than training from scratch.

In light of this information, this research work incorpo-
rates several widely recognised and tested CNN models, 
each of which serves as the backbone for our hierarchi-
cal localization task. These models cover a diverse range, 
addressing different architectural complexities and capa-
bilities. All of the architectures employed were originally 
designed for visual object recognition. In this work, the 
CNN is first used to address the room retrieval problem, 
which is a similar task:

•	 AlexNet (Krizhevsky et al. 2012): AlexNet is a pio-
neering CNN architecture known for its success in the 
ImageNet Large Scale Visual Recognition Challenge 
(ILSVRC) 2012. Comprising multiple convolutional and 

(4)xest = xci,k, yest = yci,k

Fig. 1   Diagram of the proposed 
hierarchical localization. The 
test image im

test
 is the input of 

the CNN, which predicts the 
most likely room c

i
 and embeds 

the image into a global descrip-
tor d

test
 by flattening the last 

activation map. This descriptor 
is compared with the descrip-
tors from the training dataset 
included in the retrieved room 
by means of a nearest neigh-
bour search. Consequently, the 
capture point of the image that 
corresponds to the most similar 
descriptor ( im

c
i
,k
 ) is considered 

an estimation of the position 
where im

test
 was captured
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fully connected layers, AlexNet laid the foundation for 
subsequent CNN designs. This network and the following 
ones were trained to classify the 1.2 million high-resolu-
tion images into 1000 different classes. The weights and 
biases obtained by training with this database have been 
taken as starting point for our own task.

•	 ResNet-152 (He et al. 2016): ResNet, or Residual Net-
work, introduced the concept of residual learning. This 
approach is based on skip connections and allows the 
CNN to learn an identity function. ResNet-152 is a spe-
cific variant featuring 152 layers, enabling the model 
to effectively capture intricate hierarchical features. 
Although it is computationally costly due to its depth, 
its accuracy and robustness compensate this cost.

•	 ResNeXt-101 64x4d (Xie et al. 2017): ResNeXt is an 
extension of the ResNet architecture, emphasizing a car-
dinality parameter to enhance model capacity. The car-
dinality is just the number of parallel blocks, that allows 
to learn various input representations. In this sense, 
ResNeXt-101 64x4d has a cardinality of 64. By increas-
ing the cardinality, the network can capture a greater 
diversity of features, enhancing its potential ability to 
image recognition.

•	 MobileNetV3 (Howard et al. 2019): MobileNetV3 is 
designed for efficient mobile and edge computing appli-
cations. It uses depth-wise separable convolutions to 
build light weight deep neural networks. This fact makes 
them specially suitable for scenarios with resource con-
straints, such as performing the localization in real time 
by the robot’s on-board computer.

•	 EfficientNetV2 (Tan and Le 2021): EfficientNetV2 is 
based on the EfficientNet architecture, and uses a tech-
nique called compound coefficient to scale up models in 
a simple but effective manner. It prioritizes model effi-
ciency, achieving remarkable accuracy with fewer param-
eters compared to traditional CNNs. This makes Effi-
cientNetV2 an attractive choice for applications requiring 
high accuracy with limited computational resources.

•	 ConvNeXt Large (Liu et al. 2022): ConvNeXt Large rep-
resents a recent advancement in CNN architectures. It 
leverages a combination of depth-wise separable convo-
lutions, an inverted bottleneck and spatial factorization 
(“patchify”), contributing to improved efficiency and 
effectiveness in capturing features. Thus, outperforming 
the previous models in terms of accuracy.

By evaluating these diverse CNN models, we aim to com-
prehensively understand their strengths and weaknesses 
in the context of scene recognition and localization task. 
Regarding the room recognition, the final layer of all the 
architectures needs to be adapted for classifying the images 
into N categories corresponding to N possible rooms in the 
target environment ( N = 9 in the dataset used in the present 

work, as described in Sect. 4.1). As for the fine localization, 
the global descriptor has been extracted by flattening the 
output of the Average Pooling Layer of each CNN model. 
Finally, Table 1 shows a summary with the evaluated models 
and its corresponding number of Floating Point Operations 
(FLOPs) and the number of parameters.

3.3 � Data augmentation

Training a model involves setting up its parameters to per-
form a specific task. When a model has many parameters, it 
requires a sufficiently large number of examples for effec-
tive training. However, in practice, the training dataset is 
often limited. In such cases, data augmentation is a useful 
solution as it is able to generate new instances by applying 
various visual effects. This not only helps the model avoid 
overfitting but also makes it more robust against challenging 
real-operation dynamic conditions.

In previous studies focused on training models for visual 
localization, various effects like changes in orientation, 
reflections, alterations in illumination, noise, and occlusions 
were applied (Cabrera et al. 2022). The use of data aug-
mentation has shown to improve model performance. These 
effects are applied individually or together to each image in 
the original dataset, and all the generated images are com-
bined into a new augmented training dataset. However, the 
specific impact of each type of effect on the resulting CNN’s 
performance is not well understood. This study aims to apply 
different data augmentation effects individually to evaluate 
their influence on the resulting CNN.

The focus of this work is on two categories of visual 
effects: changes in illumination conditions and changes in 
orientation. For changes in illumination conditions, the fol-
lowing effects are considered:

•	 Spotlights and shadows: Circular light sources, like 
bulbs, are common indoors. The proposed approach 
involves increasing pixel values to simulate higher light 
intensity (spotlights) and decreasing pixel values to sim-

Table 1   FLOPs and parameters of the evaluated and adapted models 
when the size of the input image is 512 × 128 × 3 pixels

Backbone model FLOPs (G) Number of 
parameters 
(M)

AlexNet 0.9 57.0
ResNet-152 15.2 58.2
ResNeXt-101 64X4d 20.4 81.4
MobileNetV3 0.3 4.2
EfficientNetV2 16.2 117.2
ConvNeXt Large 44.9 196.2
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ulate shadows (shadow spots). Spotlights and shadow 
spots are applied separately for different data augmenta-
tion options. In our experiments, these bulbs are created 
with diameters ranging from 15 to 40 pixels. Five kinds 
of intensities variations are applied. In the first type the 
intensity is degraded ± 160 and in the fifth ± 100.

•	 General brightness and darkness: Low intensity values 
of the original images are increased to create brighter 
images, simulating higher overall illumination (e.g., 
a sunny day). Conversely, high intensity values are 
decreased to create darker images, simulating lower light 
supply (e.g., capturing images at night). Brightness and 
darkness are applied separately but used for the same 
data augmentation.

•	 Contrast: Image contrast plays a vital role in distinguish-
ing objects in a scene. Images with low contrast tend 
to have a smoother appearance with fewer shadows and 
reflections. The contrast is modified following Eq. 5

 where Is is the resulting image, I the original image and 
c is the contrast factor. For c > 1 the contrast increases 
and c < 1 decreases the contrast.

•	 Saturation: Color saturation, indicating the color intensity 
given by pixels, is considered. Lower saturation results 
in less colorful images, potentially resembling grayscale 
images for very low saturation. This phenomenon may 
occur in real environments and is incorporated into data 
augmentation. The color saturation can be adjusted by 
first converting the RGB image to HSV. Then, the satura-

(5)Is = 64 + c ∗ (I − 64)

tion channel can be directly modified by multiplying it by 
a constant factor s . If the saturation is multiplied by s > 1 , 
the colors become more saturated, whereas if multiplied 
by s < 1 , the saturation decreases.

Regarding changes in orientation, these can occur during 
image capture when the robot captures images from the 
same position but with a different orientation. For this data 
augmentation option, new images are generated for each 
original image by applying rotations of n degrees, where 
n = i × 10◦, i ∈ [1, 35] . Thus, for each original image in the 
training set, 35 additional images are generated.

Figure 2 shows an example of the effects applied to a 
sample omnidirectional image converted to panoramic for-
mat. The first image corresponds to the original one and the 
rest of images include the different effects presented above 
(they have been separately applied).

4 � Results

4.1 � COLD Freiburg database

The current study utilizes images sourced from the Freiburg 
dataset, a subset of the COsy Localization Database (COLD) 
(Pronobis and Caputo 2009). This dataset contains omnidi-
rectional images captured by a robot which follows various 
paths within a building at Freiburg University. The robot 
explores diverse spaces such as kitchens, corridors, printer 
areas, bathrooms, personal offices, and more. Image cap-
ture occurs under realistic operational conditions, including 

Fig. 2   Example of data aug-
mentation where only one effect 
is applied over each image. 
a Original image, b spotlight 
effect, c shadow effect d general 
brightness, e general darkness, f 
contrast, g saturation and h rota-
tion. The images contained in 
this dataset can be downloaded 
from the web site https://​www.​
cas.​kth.​se/​COLD/

(a) (b)

(c) (d)

(e) (f)

(g) (h)

https://www.cas.kth.se/COLD/
https://www.cas.kth.se/COLD/
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changes in furniture arrangement, the dynamic presence of 
individuals in scenes, and fluctuations in illumination condi-
tions, including cloudy days, sunny days, and nights.

To assess the impact of these variations on the localiza-
tion task, we propose incorporating images taken exclusively 
on cloudy days as part of the training data. Additionally, a 
separate dataset comprising cloudy images (distinct from 
the aforementioned one) is employed as test set to evalu-
ate localization performance without illumination changes. 
Furthermore, to appraise localization under varying illumi-
nation conditions, datasets captured on sunny days and at 
night are utilized as test sets. Beyond the images, the dataset 
offers ground truth data (obtained via a laser sensor), which 
is exclusively employed in this study to quantify localization 
errors. The ground truth over the path of the robot has been 
generated using the laser sensor in a grid-based SLAM tech-
nique, in particular, the one described in Grisetti et al. (2005, 
2007). This solution, based on these two papers, can have an 
error up to 5 cm or 10 cm depending on the grid resolution.

Concerning the image capture process, the robot acquires 
images while it moves, introducing potential blur effects or 
dynamic alterations. Moreover, the chosen environment has 
the longest trajectory within the available database and is 
characterized by extensive windows and glass walls, mak-
ing visual localization a particularly challenging problem. 
Consequently, this environment provides ideal conditions 
for evaluating the proposed localization methods under real 
operation conditions and real scenarios.

The selected dataset contains images from nine distinct 
rooms: a kitchen, a bathroom, a printer area, a stairwell, a 
long corridor and four offices. The cloudy dataset is down-
sampled to achieve an average distance of 20 cm between 
consecutive image capture points, resulting in the Baseline 

Training Dataset comprising 556 images. This dataset 
serves the dual purpose of training the CNNs and provid-
ing a visual map. In addition, a Validation Dataset is used 
during training and keeps the same proportion of images 
as the Baseline Training set. The Validation Dataset is 
also sampled at 20-cm intervals, but in this case in an 
interleaved manner with respect to the Baseline Training 
Dataset in such a way that the images in the baseline and 
validation datasets are different. In this regard, the valida-
tion covers uniformly the whole environment, which is 
expected to be a robust approach for validation, consid-
ering that the retrained CNN must be able to solve the 
localization problem considering the whole environment. 
Furthermore, the Baseline Training Dataset undergoes 
a data augmentation as described in Sect. 3.3, resulting 
in six additional training datasets. These datasets will be 
individually employed to train the CNNs, allowing an 
exploration of the impact of each visual effect on network 
performance. Table 2 shows a summary with the number 
of images per room of each training and validation dataset.

In terms of the test data, various datasets are consid-
ered: Cloudy Test Dataset, comprising images captured 
in cloudy conditions along a route distinct from training 
and validation sets (2595 images); Sunny Test Dataset, 
including all images captured in sunny conditions (2114 
images); and Night Test Dataset, containing all images 
captured at night (2707 images). Table 3 shows a sum-
mary with the number of images per room of each test 
set. Consequently, network training and validation, in all 
instances, employs images captured exclusively in cloudy 
conditions, while testing occurs under three distinct light-
ing conditions: cloudy, sunny, or night. This methodology 
enables the assessment of the network’s robustness against 
variations in lighting conditions.

Table 2   Number of images in 
each training dataset (number of 
images per room)

Training dataset 1P0-A 2P01-A 2P02-A CR-A KT-A LO-A PA-A ST-A TL-A

Baseline 44 46 31 238 46 26 57 30 38
Validation 43 47 32 236 46 26 57 31 38
Augmented 1 264 276 186 1428 276 156 342 180 228
Augmented 2 264 276 186 1428 276 156 342 180 228
Augmented 3 308 322 217 1666 322 182 399 210 266
Augmented 4 264 276 186 1428 276 156 342 180 228
Augmented 5 264 276 186 1428 276 156 342 180 228
Augmented 6 1364 1426 961 7378 1426 806 1767 930 1178

Table 3   Number of images in 
each test dataset (number of 
images per room)

Test dataset 1P0-A 2P01-A 2P02-A CR-A KT-A LO-A PA-A ST-A TL-A

Cloudy 155 230 135 1040 254 177 222 133 249
Night 168 215 168 1114 270 121 241 198 212
Sunny 123 187 109 793 213 102 191 180 216
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4.2 � Implementation details

In this work, the CNNs are trained to address the coarse 
localization or room retrieval stage. As this is a classifica-
tion task, these networks have been retrained employing a 
Cross Entropy loss function (Eq. 6).

where y is the matrix of actual labels and ŷ is the matrix of 
model predictions, both matrices have size B × R , in which 
B is the number of samples (batch size) and R is the number 
of classes (rooms), yij is 1 if sample i belongs to class j and 
0 otherwise, and ŷij is the probability predicted by the model 
that sample i belongs to class j.

In addition, Stochastic Gradient Descent (SGD) with 
Momentum 0.9 and Learning Rate of 0.001 has been used 
as optimization algorithm. Furthermore, the training batch 
size (B) was 16 and the total number of epochs was 30. 
For every architecture, the network that presents the best 
validation accuracy for room retrieval during the training 
is preserved for testing. Table 4 summarizes all the values 
of the parameters that have been described above.

All experiments are carried out with a NVIDIA 
GeForce RTX 3090 GPU with 24 GB. Our code is pub-
licly available on the project website https://​github.​com/​
juanjo-​cabre​ra/​Indoo​rLoca​lizat​ionSi​ngleC​NN.​git.

4.3 � CNN backbone ablation study

In this section, we asses an experimental evaluation of 
the different CNN models used as backbone presented in 
Sect. 3.2 for both rough and fine localization. As previ-
ously stated, the hierarchical localization proposed in this 
study comprises two distinct steps. The initial stage, rough 
localization step, involves retraining a model to execute 
the room retrieval task. Subsequently, the fine localiza-
tion step utilizes the previously trained CNN to generate 
holistic descriptors, employing a nearest neighbor search 
method to estimate the precise position where an image 
was captured.

(6)L(y, ŷ) = −
1

B

B∑

i=1

R∑

j=1

yij log(ŷij)

4.3.1 � Coarse localization: room retrieval

This section presents the results derived from the use of 
different CNNs for the execution of the coarse localization 
or room retrieval stage. As described in Sect. 3.2, the CNN 
models evaluated in this article are AlexNet (Krizhevsky 
et al. 2012), ResNet-152 (He et al. 2016), ResNeXt-101 
64x4d (Xie et al. 2017), MobileNetV3 (Howard et al. 2019), 
EfficientNetV2 (Tan and Le 2021) and ConvNeXt Large (Liu 
et al. 2022). The reason why we have selected these models 
is to cover a wide range of architectures proposed for image 
classification in the last 10 years.

The results in Table 5 showcase the performance of six 
different models used as backbone in the context of room 
retrieval across varied environmental conditions. In fact, 
each model was subjected to evaluation under cloudy, night, 
and sunny conditions, providing a comprehensive under-
standing of their robustness and adaptability to changes in 
environment illumination.

AlexNet exhibits an excellent overall performance, par-
ticularly in Cloudy conditions with an accuracy of 97.61%. 
In contrast, ResNet demonstrates robust performance but 
slightly lower accuracy compared to AlexNet. Notably, its 
accuracy decreases in sunny conditions which is the most 
demanding illumination environment. The ResNext model 
excels in cloudy conditions. However, it shows a compara-
tively lower accuracy in night scenarios. On the one hand, 
MobileNet stands out for its consistency, achieving high 
accuracy across all conditions. Its notable performance in 
sunny conditions, with an accuracy of 77.29%, highlights 
its generalisation capability. On the other hand, EfficientNet 
emerges as a top-performing model, outperforming others 
in terms of accuracy in cloudy and night scenarios, which 
are the most similar to training conditions. Finally, the most 
striking result comes from ConvNext, which consistently 
achieves the highest accuracy in all scenarios, making it 
the top-performing model. Particularly noteworthy is its 

Table 4   Training parameters for 
room retrieval

Parameter Value

Batch size (B) 16
Number of epochs 30
Learning rate 1 × 10

−3

Momentum 0.9
Number of rooms (R) 9

Table 5   Room retrieval ablation study for different top-level classi-
fication architectures tested under three different illumination condi-
tions: cloudy, night, sunny and all together

Bold values represent the best accuracy for every lighting condition

Backbone model Room retrieval accuracy (%)

Cloudy Night Sunny Global

AlexNet 97.61 97.60 70.67 89.93
ResNet-152 96.76 96.64 64.95 87.63
ResNeXt-101 64X4d 98.11 95.16 72.47 89.71
MobileNetV3 98.50 96.93 77.29 91.88
EfficientNetV2 98.81 97.16 75.73 91.63
ConvNeXt Large 98.77 97.64 86.28 94.80

https://github.com/juanjo-cabrera/IndoorLocalizationSingleCNN.git
https://github.com/juanjo-cabrera/IndoorLocalizationSingleCNN.git
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exceptional accuracy of 86.28% in sunny conditions, indi-
cating its robustness and generalization capabilities.

4.3.2 � Fine localization

Once the CNN model is trained for the room retrieval step, it 
can be used to embed the input image into a global descripor. 
This facilitates the resolution of the fine localization step 
through an image retrieval process, in which the descriptor 
of the test image is compared with the descriptors of the 
visual map of the previously retrieved room. As in previous 
subsection, we are going to evaluate the performance of dif-
ferent CNN backbones to address the fine localization step. 
Fig. 3 shows the hierarchical localization error for differ-
ent backbone models (AlexNet, ResNet-152, ResNeXt-101, 
MobileNetV3, EfficientNetV2 and ConvNeXt Large) under 
various lighting conditions (cloudy, night, sunny) and con-
sidering jointly the three conditions (global). The errors are 
measured in meters and are represented by box plots with 
whiskers, indicating the distribution of the errors. Further-
more, the Mean Absolute Error (Eq. 7) is represented by the 
black dot and the text displaying the error value. In addition, 
Table 6 shows the computation time required to execute the 
whole hierarchical localization process for all the evaluated 
models.

where (xi, yi) is the actual position, (x̂i, ŷi) is the position of 
the visual map retrieved after the complete localization pro-
cess, and N is the number of images in the test dataset.

Each backbone model exhibited similar characteristics 
in hierarchical localization comparing to room retrieval, 
since both tasks are correlated. As Fig. 3 shows, AlexNet 

(7)MAE =
1

N

N∑

i=1

||(xi, yi) − (x̂i, ŷi)
||

demonstrated a consistent localization error and low dis-
persion for cloudy and night conditions. However, its 
performance degraded in sunny conditions. ResNet-152 
displayed higher errors across all conditions compared to 
AlexNet, with a notable increase of both the mean absolute 
error and dispersion in sunny conditions. ResNeXt-101 
demonstrated a better performance than ResNet-152 
for cloudy and sunny conditions, but the error slightly 
increases for night scenarios. MobileNet consistently 
maintained low errors across all conditions, signifying its 
adaptability to diverse lighting environments. EfficientNet 
showcased a worse performance than MobileNet in each 
scenario. Finally, ConvNeXt emerged as the top-perform-
ing model, consistently outperforming others with the low-
est errors across all conditions. Its remarkable accuracy 
in sunny conditions implies a robust capability to handle 
scenarios with substantial changes of the lighting condi-
tions. In terms of computation time, Table 6 illustrates that 
the hierarchical localization process with the shortest aver-
age computation time occurs when employing AlexNet, 
which requires only 3.4 ms. In contrast, the hierarchical 
localization process employing ConvNeXt Large requires 
the longest computation time, with a mean of 12.5 ms. 
However, despite the need for more time to estimate the 

Fig. 3   Hierarchical localization 
errors in meters for different 
CNN architectures. The box 
plots represent the distribu-
tion of errors, with whiskers 
indicating variability. The Mean 
Absolute Error for each model 
and condition is marked by a 
black dot and annotated with the 
specific error value. Results are 
obtained under different lighting 
conditions: cloudy (red), night 
(orange), sunny (yellow) and 
considering jointly the three 
conditions (green)

Table 6   Computation time required to execute the whole hierarchical 
localization process for all the evaluated models

Backbone model Mean time (ms)

AlexNet 3.4
ResNet-152 6.9
ResNeXt-101 64X4d 9.5
MobileNetV3 4.6
EfficientNetV2 10.7
ConvNeXt Large 12.5
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position, this time is sufficiently short to enable real-time 
localization.

4.4 � Data augmentation ablation study

In this comprehensive experiment, the investigation is 
extended to evaluate the influence of both data augmentation 
effects (illumination and orientation changes) on the perfor-
mance of the CNN. Due to the existence of a high probabil-
ity of variations in robot orientation during operation under 
real operation conditions with respect to the images captured 
in the visual map, a model should demonstrate robustness 
to orientation changes. To this end, a data augmentation 
technique is employed that consists in applying 35 differ-
ent orientation changes to each training image as described 
in Sect. 3.3. This augmentation is essential to improve the 
adaptability of the model to the various orientations encoun-
tered in practice.

Simultaneously, the illumination effects that occur under 
real operating conditions, a critical aspect for robust visual 
perception, have been explored in detail. Five specific light-
ing effects are considered (Sect. 3.3): spotlights, shadow 
spots, general brightness/darkness, contrast, and satura-
tion. Each effect is systematically applied individually on 
the training data set, leading to the creation of distinct aug-
mented training datasets. Using the different effects sepa-
rately allows a detailed understanding of their individual 
contributions, which sheds light on the importance of each 
effect in performance.

In particular, for each image, the experiment incorporates 
a detailed approach by applying different levels of spotlights, 
contrast and saturation (five levels for each), ensuring a thor-
ough assessment of the impact of these factors on the abil-
ity of the CNN to adapt to various lighting conditions. In 
addition, the effect of brightness is meticulously explored, 
with three levels of brightness and three levels of darkness 
applied to each image. This dual investigation of orientation 
changes and illumination effects is intended to provide a 
comprehensive understanding of the robustness of the CNN 
to cope with real-world challenges, encompassing variations 
in both spatial orientation and illumination conditions. As 
a result of applying these effects, six additional training 
datasets have been obtained: Augmented Training Dataset 
1 (spotlights), Augmented Training Dataset 2 (shadows), 
Augmented Training Dataset 3 (general brightness/dark-
ness), Augmented Training Dataset 4 (contrast), Augmented 
Training Dataset 5 (saturation) and Augmented Training 
Dataset 6 (rotations). Augmented Training Datasets 1, 2, 
4 and 5 consist of 3336 images each, whereas Augmented 
Training Datasets 3 and 6 includes 3892 and 17,236 images 
respectively.

In conclusion, in this ablation study the model is retrained 
using separately each of the Augmented Training Datasets 

1, 2, 3, 4, 5 and 6. As in previous experiments, the Baseline 
Training Dataset serves as a visual map and the Validation 
Dataset is employed to validate the performance of the CNN. 
Furthermore, for the model evaluation, three different test 
datasets are considered: the Cloudy Test Dataset, the Night 
Test Dataset and the Sunny Test Dataset.

4.4.1 � Coarse localization: room retrieval

In this subsection we use the best CNN architecture obtained 
in Sect.  4.3.1, which is ConvNeXt Large. In a similar 
approach, we have departed from the pre-trained weights 
for ImageNet Large Scale Visual Recognition Challenge and 
re-trained the model for the different datasets obtained by 
the proposed data augmentation.

Table 7 presents the room retrieval accuracy when the 
model has been trained with each of the augmented training 
datasets previously described. The performance of the CNN 
is evaluated under the three different lighting conditions: 
cloudy, night, sunny and all together.

Training with the baseline dataset shows a remarkable 
accuracy, especially in cloudy and night conditions. How-
ever, a significant decrease is observed in sunny conditions, 
which differ more from the training set. This evaluation pro-
vides a reference to analyse the impact of the different effects 
that have been applied to the training data.

The spotlight augmentation (Augmentation 1) shows 
insignificant improvements or even small decreases under 
night and sunny conditions. In contrast, data augmentation 
with shadows (Augmentation 2) produces slight improve-
ments, especially in sunny conditions.

Alterations to the overall brightness and darkness of the 
image (Augmentation 3) are effective and show substantial 
improvements, especially in sunny conditions. In addition, 
contrast-based effects (Augmentation 4) are very effective, 
with substantial improvements in all lighting conditions and 

Table 7   Room retrieval accuracy for ConvNeXt Large architecture 
with different augmented training datasets

Bold values represent the best accuracy for every lighting condition

Training dataset Room retrieval accuracy (%)

Cloudy Night Sunny Global

Baseline 98.77 97.64 86.28 94.80
Augmented 1 (spotlights) 98.84 97.45 86.14 94.71
Augmented 2 (shadows) 98.96 97.56 86.52 94.90
Augmented 3 (brightness/dark-

ness)
98.81 97.41 91.11 96.10

Augmented 4 (contrast) 99.08 97.27 93.57 96.84
Augmented 5 (saturation) 98.88 97.60 83.07 93.91
Augmented 6 (rotations) 99.15 97.52 91.39 96.34



Evolving Systems	

especially in sunny circumstances, thus achieving improved 
results in this challenging environment.

Surprisingly, augmentation with changes in saturation 
(Augmented 5) shows a negative impact on accuracy, espe-
cially in sunny conditions. Finally, augmenting the data set 
with rotations (Augmented 6) shows substantial improve-
ments, especially in cloudy conditions.

4.4.2 � Fine localization

Once the ConvNeXt Large model is trained for the room 
retrieval step, it can be used to embed the input image into 
a global descriptor. This facilitates the resolution of the fine 
localization step through an image retrieval process, wherein 
the descriptor of the test image is compared with the descrip-
tors of the visual map. As in previous subsection, we are 
going to evaluate the performance of different data augmen-
tation effects to address the fine localization step.

As shown in Fig. 4, training with every augmented data-
set result in similar network performance under cloudy illu-
mination conditions for the fine localization task, achieving 
a mean absolute error around 0.22 ms. The same happens 
under the night condition, in which the mean absolute 

error is around 0.27 ms. In this case, the minimum error is 
obtained by training the network without data augmentation.

In contrast, under sunny lighting conditions the mean 
localization error has a higher variability, similarly to the 
coarse localization (Table 7). This demonstrates the corre-
lation between the two tasks. Under this condition, the best 
fine localization result is obtained by training the model with 
the contrast effect (DA 4) and the worst with saturation (DA 
5).

4.4.3 � General comparison with other methods

Finally, the proposed method is compared with other pre-
vious global appearance techniques, including the use of 
single CNN structures (Cabrera et al. 2022; Rostkowska and 
Skrzypczynski 2023), triplet structures (Alfaro et al. 2024) 
and two classical analytical descriptors: HOG and gist, as 
described in Cebollada et al. (2022). Both HOG and gist 
are only taken into consideration when testing with night 
and sunny conditions, since the conditions of the cloudy 
test experiment in Cebollada et al. (2022) are different to 
the conditions in the present work. Table 8 compares all the 
methods in a global localization task, using in all cases the 
COLD-Freiburg dataset, which is the same dataset used in 

Fig. 4   Hierarchical localiza-
tion errors in meters when 
training the ConvNeXt Large 
architecture with different data 
augmentation effects. The box 
plots represent the distribu-
tion of errors, with whiskers 
indicating variability. The Mean 
Absolute Error for each model 
and condition is marked by a 
black dot and annotated with the 
specific error value. Results are 
obtained under different lighting 
conditions: cloudy (red), night 
(orange), sunny (yellow) and 
considering jointly the three 
conditions (green)

Table 8   Comparison with other 
methods

Bold values represent the minimum error for every lighting condition

Global-appearance descriptor technique Cloudy 
error (m)

Night error (m) Sunny error (m)

Alexnet + DA (Cabrera et al. 2022) 0.29 0.29 0.69
EfficientNet (Rostkowska and Skrzypczynski 2023) 0.24 0.33 0.44
Triplet VGG16 (Alfaro et al. 2024) 0.25 0.28 0.40
ConvNeXt Large (ours) 0.22 0.26 0.83
ConvNeXt Large + DA (ours) 0.22 0.27 0.57
HOG (Cebollada et al. 2022) – 0.45 0.82
gist (Cebollada et al. 2022) – 1.07 0.88
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the previous subsections. This table shows that ConvNeXt 
Large without data augmentation provides the best results 
in terms of localization error for cloudy and night condi-
tions. Training with data augmentation does not improve the 
performance in cloudy conditions. However, it favours the 
results under sunny conditions. In this illumination condi-
tion, the best result is obtained with a triplet VGG16 pro-
posed in Alfaro et al. (2024).

5 � Conclusion

This study assesses the application of a deep learning tech-
nique in addressing hierarchical localization using omnidi-
rectional imaging. The technique involves training a CNN 
to perform room retrieval, addressed as an image classifica-
tion problem. Additionally, the CNN is employed to embed 
the input image into a holistic descriptor from intermediate 
layers, aggregating relevant information that characterizes 
the input image. Additionally, we evaluate the influence of 
two main components on the localization performance: CNN 
architecture and effects applied in the data augmentation.

As for the CNN backbone, AlexNet shows excellent 
overall performance, especially when tested under the same 
lighting conditions than the training images. In contrast, 
ResNet performance decreases in sunny conditions which 
are the most challenging test conditions. This fact shows its 
low capability of generalization. The ResNext model surpass 
both in cloudy and sunny conditions, showcasing versatility 
across different lighting environments. However, Efficient-
Net exhibits a slight advantage over the ResNext model in 
terms of accuracy, although it requires more computational 
time. Furthermore, MobileNet consistently produces accu-
rate results with a competitive computational time, demon-
strating high performance across all conditions. Finally, the 
most striking result comes from ConvNext, which consist-
ently achieves the highest accuracy in all scenarios, mak-
ing it the top-performing model. Particularly noteworthy is 
its exceptional accuracy in sunny conditions, indicating its 
robustness and generalization capabilities.

Regarding the proposed data augmentation, training 
with the baseline dataset yields a remarkable accuracy, 
especially in cloudy and night conditions. However, a sig-
nificant decrease is observed in sunny conditions, which 
diverge more from the training dataset. The spotlight effect 
shows marginal improvements, indicating that spotlight-
based enhancement does not contribute to improve the 
generalization ability of the network. In contrast, data aug-
mentation with shadows produces moderate improvements, 
especially in sunny conditions. Changing the overall 
brightness and darkness of the image produces substantial 
improvements, especially in sunny conditions. In addition, 
contrast-based effects are very effective, with significant 

improvements in all lighting conditions and especially in 
sunny conditions, improving results in this tough environ-
ment. Surprisingly, augmenting the dataset with changes 
in saturation shows a negative impact, especially in sunny 
conditions. Finally, increasing the dataset with rotations 
results in significant improvements in cloudy conditions. 
Finally, as for sunny conditions, the contrast effect yields 
the most optimal results, thereby enhancing the model’s 
generalization capabilities and preventing overfitting.

In future works, studying more advanced techniques for 
generating more realistic visual effects with Generative 
Adversarial Networks (GANs) is a priority. Furthermore, we 
will evaluate other deep learning schemas such as Siamese, 
Triplet Neural Networks and Feature Pyramid Networks 
(FPNs). Finally, we will approach the localization problem 
in outdoor environments by using CNNs, considering the 
specificities of such scenarios.
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