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Abstract
Full spherical views provide advantages in many applications that use visual information. Dual back-to-back fisheye cameras
are receiving much attention to obtain this type of view. However, obtaining a high-quality full spherical view is very
challenging. In this paper, we propose a correction step that models the relation between the pixels of the pair of fisheye
images in polar coordinates. This correction is implemented during the mapping from the unit sphere to the fisheye image
using the equidistant fisheye projection. The objective is that the projections of the same point in the pair of images have the
same position on the unit sphere after the correction. In this way, they will also have the same position on the equirectangular
coordinate system. Consequently, the discontinuity between the spherical views for blending is minimized. Throughout the
manuscript, we show that the angular polar coordinates of the same scene point in the fisheye images are related by a sine
function and the radial distance coordinates by a linear function. Also, we propose employing a polynomial as a geometric
transformation between the pair of spherical views during the image alignment since the relationship between the matching
points of pairs of spherical views is not linear, especially in the top/bottom regions. Quantitative evaluations demonstrate
that using the correction step improves the quality of the full spherical view, i.e. IQ MS-SSIM, up to 7%. Similarly, using a
polynomial improves the IQ MS-SSIM up to 6.29% with respect to using an affine matrix.

Keywords Full spherical view · Dual fisheye images · Image stitching · Fisheye projection

1 Introduction

The research line dedicated to the generation of panora-
mas is receiving much attention. Such panoramas contain
a great quantity of information from the environment, which
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is advantageous in a wide variety of applications, such as
mobile robot localization [1, 2], vehicle panoramic view [3]
or driving assistance for power wheelchairs [4–6].

A panorama is a single image that contains a wide-angle
view of the environment around a vision system. There are
multiple panorama formats, which can be classified accord-
ing to whether only a portion (e.g. cylindrical format [7]) or
the whole sphere (e.g. equirectangular or cube map format
[8, 9]) is projected.

In terms of acquisition, there are different alternatives to
obtain such wide-angle views [10], such as rotating a camera
about its optical center, using an array of cameras point-
ing toward different directions (and subsequently fusing all
the images) or combining a camera with lenses or mirrors.
However, none of the above acquisition systems cover the
whole sphere. Nowadays, the most interesting configuration
to obtain an image with a field of view of 360 degrees hori-
zontally and 180 degrees vertically (i.e. a full spherical view)
is to arrange with opposite points of view (back to back) two
fisheye lenses with a field of view greater than 180 degrees
each one and fusing both images. There are some commer-
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cial cameras with this configuration, such as the Samsung
Gear 360 [11], the RICOH THETA S [12] or the Garmin
VIRB 360 [13]. In the related literature, several works, such
as [14–16], use some of these commercial cameras.

The two images captured by the back-to-back dual-fisheye
lens cameras can be fused to obtain high-resolution full-view
images. In addition to this, these cameras are lightweight,
cheap and small. Notwithstanding that, generating a full
spherical view fromdual fisheye images is challenging owing
to the next features. First, the projection centers of the dual
fisheye lenses are displaced (parallax). This fact creates mis-
matches between matching features and typically produces
ghost effects in the common area. Second, the common area
between the two fisheye images (which is the peripheral area)
is strongly distorted and cannot be directlymatched using the
raw fisheye images. Third, the pair of images has a limited
overlapping field of view, meaning that little information can
be extracted from the common region; moreover, this region
is the most affected by distortion as stated before.

Many researchers are working on solutions to these chal-
lenges and thus trying to obtain high-quality full spherical
views. In general, the algorithms to generate a full spherical
view from dual fisheye images typically start with a transfor-
mation of the fisheye images to a spherical format, followed
by a subsequent alignment of this pair of spherical views, and
a final merging through some blending technique to remove
possible inconsistencies in the final full spherical view. Some
algorithms have additional stages, such as a calibration pro-
cess or a photometric compensation.

In this work, we generate a full spherical view from a pair
of fisheye images using different algorithms. They differ in:
(a) the procedure to project the fisheye images into the unit
sphere surface, and (b) the type of geometric transformation
used to align the pair of spherical views.

First, to map from the fisheye image to a unit sphere, we
use either a calibration-based method or an equidistant fish-
eye projection-based method. Also, we propose a correction
step, which is applied to the equations of the equidistant fish-
eye projection. This correction models the relation between
both fisheye images. During the transformation of the fisheye
images to spherical format, it is assumed that the front and
back unit spheres have the same center, and the Z-axes are
perfectly aligned and opposite. Nevertheless, these assump-
tions may be erroneous due, for example, to the existence of
a slight offset between the centers. In addition, the relation-
ship between the fisheye pixels and the unit sphere projection
is considered the same for both cameras when the equidis-
tant projection is applied. Then, the proposed correction
step could address the possible errors caused by all these
assumptions. The functions that model the correction step
are obtained experimentally and consist in a sine function to
relate the angular polar coordinates and a linear relationship
between the radial polar coordinates.

Thus, the first stage of the algorithm considers that the
visual information to be blended has been captured by two
fisheye lenses and is jointly analyzed. This is different to
most existing algorithms in which the conversion to spher-
ical projection of each of the fisheye images is performed
independently. In such algorithms the common visual infor-
mation is only aligned in the stitching process.

Second, in previous works, the geometric transformation
used to align the pair of spherical views in the 2D plane is
typically the affine matrix. This transformation is character-
ized as a linear mapping. However, the use of fisheye lenses
may introduce substantial distortions, mainly at the poles of
the spherical views, so the relationship between matching
points in these regions may not be linear. Hence, while this
type of transformation may be a feasible solution when the
most textured regions are in the central area, it may not be an
adequate solution when much visual information is present
in the top and bottom regions of the views. This fact canmake
the difference between both spherical viewsmore noticeable,
appearing undesired effects in the full spherical view. This is
the reason why in this paper we propose to use a polynomial
to perform this transformation and we evaluate both types of
transformations (I) the polynomial and (II) the affine matrix.

In summary, the main contributions of this paper are:

1. A correction step to apply during the transformation of
the fisheye images to unit sphere projection. This correc-
tion models the relation between the front fisheye and the
back fisheye images.

2. Using a polynomial geometric transformation to align the
pair of spherical views.

3. A complete evaluation and comparison of full spherical
views generated by different variations of the algorithm
and the full spherical view provided by the Garmin VIRB
360 camera with the built-in method.

The remainder of this paper is organized as follows. Sec-
tion2 presents a review of related works. In Sect. 3, the
algorithm to create a full spherical view from dual fisheye
images is described. Also, the proposed correction step that
models the relationship between the pair of fisheye images is
presented. Section4 describes the vision system, the dataset
used in the experiments, and the variations of the algorithm.
In addition to this, the full spherical views have been eval-
uated in this work by means of qualitative and quantitative
assessments and the results are shown in Sect. 4.3. The con-
clusions and future works are presented in Sect. 5.

2 Related works

Nowadays, visual information is frequently used for the res-
olution of a wide range of tasks. For instance, Zhang et al.
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[17] solved the localization problem as a visual odometry and
compared the results employing images taken by three vision
systems with different field of view. They concluded that the
use of cameras with large field of view is advantageous for
localization in indoor scenes.

2.1 Panoramic vision systems

A panoramic image can be obtained by employing different
vision systems. These systems can be classified depending
on the number of conventional cameras that are utilized and
whether they are combined with another element (such as
fisheye lens or mirror) or not. For vision systems with more
than one camera, image stitching must be used to combine
all images into a single one. For instance, Zhang and Xiu
[18] propose an image stitching method based on the Human
Visual System (HVS) and Scale-Invariant Feature Transform
(SIFT) algorithm. Also, this method is based on optimal
seamline. Lyu et al. [19] present a survey of image stitch-
ing techniques to build a panoramic image.

First, a panoramic image can be obtained with a single
camera, capturing a sequence of images with some overlap-
ping field of view while the camera performs a full rotation
around the vertical axis. The problem is that all images are
not captured in a shot, so, this is not suitable for many appli-
cations in which the camera has continuous motion, such as
mobile robot navigation. Moreover, this fact can cause some
difficulties in the stitching process, especially if the environ-
ment is dynamic. In [20], some panorama rig systems are
described and an automatic panorama imaging rig system is
proposed, whose control is made through a smartphone.

Second, vision systems composed of multiple cameras
pointing to different directions with overlapping fields of
view constitute an alternative that overcomes the disadvan-
tage of rotating cameras. In this case, several cameras are
required to obtain a full 360◦ view, leading to many areas
in the image where stitching effects can occur. The number
of cameras can be reduced by combining them with fisheye
lenses. For instance, Zhang et al. [21] proposed an algorithm
based on optical flow to generate a panorama. The experi-
mental data they used are images provided by a Facebook
surround360 and a Insta360 PRO camera. The first camera
is composed of 17 lenses, 14 wide angle lenses and 3 fisheye
lenses, while the second one has six fisheye lenses.

The field of view in a single image can be increased
by combining a conventional camera with a reflecting sur-
face (catadioptric vision system) or with a fisheye lens. Such
systems are relatively extended in robotic applications. For
example, Flores et al. [22] evaluate an Adaptive Probability-
Oriented Feature Matching (APOFM) method for visual
odometry using images captured by both of these configura-
tions. Also, Cabrera et al. [23] tried to estimate the optimal
hyperparameters of a convolutional neural network (CNN),

which is employed to address the mobile robot localization
problem using images captured by a catadioptric omnidirec-
tional vision system. The previous works are related to the
localization problem, but another application in which the
large field of view is advantageous is person detection. For
instance, Yang et al. [24] propose a network to detect persons
in images taken by a top-view fisheye camera. The training
carried out is rotation equivariant. Once persons are detected,
their physical positions are estimated. Given the pixel loca-
tion of the human detected, it is expressed in the camera
coordinate system using a general fisheye camera model and
the known altitude of the fisheye camera.

Although the panoramic image generated by a catadioptric
vision system does not suffer from stitching effects, it typ-
ically presents a lower resolution. In addition, it captures a
field of view smaller than a whole sphere (the top and bottom
of the sphere, i.e. the poles, are excluded). By contrast, two
fisheye lenses with a field of view greater than 180 degrees
each and opposite view directions can be used to achieve the
whole sphere with only two cameras.

As regards the fisheye lens, only slightly more than a
hemisphere is captured with them. They are usually used
for visual surveillance. In this regard, Wang et al. [25] per-
formed a study based on people detection for surveillance
using Mask-RCNN in images taken by a top-view fisheye
camera.

Among all the vision systems capable of providing a
panoramic view of the scenario, dual back-to-back fisheye
cameras are gaining an increasing interest due to their many
benefits. Nonetheless, as already remarked in Sect. 1, the
challenging task with these cameras is to generate a high-
quality 360-degree view, that is, without artifacts produced
by the stitching process: ghosting, misalignment, structural
distortion, geometric error, chromatic aberrations and blur.
Tian et al. [26] describe each of these artifacts, their origin
and main properties. This vision system is the one chosen for
this work. Therefore, the following subsection is focused on
the methods that use a dual back-to-back fisheye camera.

In this paper, panorama refers, in general terms, to a sin-
gle image with wide field of view, while spherical view is a
panorama whose field of view is 180 degrees vertically and
360 degrees horizontally (a complete sphere is captured).

2.2 Full spherical view from dual back-to-back
fisheye systems

A variety of research works in the state-of-the-art have stud-
ied methods to obtain high-quality 360-degree views from
dual fisheye lenses. Typically, the main stages of themethods
are the fisheye images unwarping or projection, the registra-
tion and the stitching or blending. In the next paragraphs the
main approaches are described, focusing on the alternatives
to address these stages.
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2.2.1 Fisheye image unwarping

Fisheye unwrapping is the process of mapping a circular
fisheye image to a rectangular panoramic image [27]. It is
composed of two mappings: A first one from the fisheye
image plane onto a sphere and a second one from the sphere
to a flat surface.

The first projection employs a fisheye camera model,
which can be based on calibration models or classical
lens fisheye projections (stereographic, equidistant, equisolid
angle and orthogonal). For the second projection, there are
several ways to represent the sphere surface on a plane. Cai
et al. [28] present an overview of the projections to obtain a
full view of the environment.

As for fisheye image unwarping to generate a full spher-
ical view, the following procedures are examples that have
been employed in the literature. Ni et al. [29] propose an
algorithmwith twomain objectives: correcting the distortion
introduced by the fisheye lens (f -theta distortion) and elim-
inating the installation error. To achieve them, first, during
the fisheye images unwarping, they use a linear interpolation
method to relate the two parameters (r and θ ) of the equidis-
tant fisheye projection. Also, the center and the radius of the
effective area of the fisheye image are estimated. Lin et al.
[30] suggest a method to estimate the effective radius of a
fisheye image, as well as the effective field of view. Then,
these estimated parameters are used to transform the fisheye
images to equirectangular spherical view. Xue et al. [31] use
Latitude and Longitude Bilinear Interpolation (LLBI) during
the transformation of the fisheye images to rectangular. Lo
et al. [32] carry out a dual-fisheye camera calibration. The
authors proposed a concentric calibration. The optical centers
and the parameters of the projection functions corresponding
to the pair of fisheye lenses are jointly estimated.

By contrast, in this paper, we propose a correction step
based on a model that relates the pair of matching points
between the dual fisheye images. This model is employed
during the transformation of the back fisheye image to spher-
ical format. The purpose of this correction step is that the
projections of the same points in the fisheye images have the
same 3D coordinates on the unit sphere surface.

2.2.2 Image registration and blending

Both image registration and blending are relevant steps. The
first one is the process to relate common visual information,
whereas the image blending is the process of combining the
two images in one. Further details about image stitching can
be consulted in the review provided by Szelisk [33].

Concerning the registration and blending process from
visual information captured by a dual fisheye back-to-back
camera, several solutions are proposed in the literature, some
of which are described below.

Ho and Budagavi [34] propose an algorithm in which the
pair of fisheye images are expressed in equirectangular for-
mat an then registered in two steps. In the first one, given
a set of control points selected manually, the affine matrix
is estimated in order to minimize the geometric misalign-
ment between both equirectangular images. In the second
step, a template matching for objects in the overlapping area
is carried out. However, this method only produces a par-
tially accurate alignment. This is because the control points
in the central part of the equirectangular spherical view are
aligned well, but this does not occur when they are at the
top or bottom parts. For this reason, the authors propose an
improved method in [35]. In this paper, they suggest trans-
forming by grid interpolation based on rigid Moving Least
Squares (MLS), instead of an affine warping matrix like in
the previous work. Also, the authors extend the application
of this method to video in this paper.

Lo et al. [36] suggest using a local warping for the align-
ment of the image pair. This local mesh warping is based on
minimizing a cost function that combines a feature term and
a smoothness term through a weighted sum. The first term
aims to align each pair of matched feature points as close to
their center point as possible, whereas the second term tries
to preserve the geometric structure of themesh. To do it, once
the fisheye images have been transformed into equirectangu-
lar format, they are divided into a uniform mesh.

Souza et al. [37] propose an adaptive stitching method
based on high-texture image regions. Once the dual fisheye
images are converted to equirectangular projections, ORB
features are extracted from the overlapping regions and clus-
tered into templates. After that, the authors try to minimize
the discontinuity through a template matching by using only
the templates obtained in the previous step (high texture
areas) instead of the whole overlapping regions. Then, the
displacement information obtained from the template match-
ing is used to estimate the homography matrix.

For these algorithm steps, other methods proposed in the
literature are the estimation of a rotation matrix to relate both
fisheye spatial sphere coordinates [29], the implementation of
a weighted blending employing a nonlinear function [31] or
the application of amesh-deformation-based local alignment
[32].

In this sense, in this paper, we propose the use of a poly-
nomial as 2D geometric transformation for the alignment of
the pair of spherical views.

3 Generating a full equirectangular spherical
view

In this work, the vision system chosen is Garmin VIRB 360
[13]. This camera is composed of back-to-back dual-fisheye
lenses, each with a 201-degree field view. Thus, to get a
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Fig. 1 The algorithm input is a pair of fisheye images. In the initial
stage (blue color), both fisheye images are transformed into a spherical
format. Finally, this pair of spherical views are merged after carrying
out the two steps corresponding to the stitching image process (green
color), being the algorithm output a full spherical view

360-degree view, the use of the image stitching technique
is required to merge the pair of fisheye images provided
by this camera in one shot. Nevertheless, as an initial step,
each fisheye image must be projected to a more comprehen-
sible spherical format (e.g. the equirectangular projection) in
which the stitching technique can be applied.

The process of combining images with overlapping zones
taken by some cameras from different views is mainly com-
posed of two stages: (1) image registration and (2) image
blending. Considering this and the above paragraph, the algo-
rithm that generates a full spherical image from dual fisheye
images is composed mainly of three stages, including the
transformation to spherical format. For that reason, this sec-
tion is divided into three subsections, one for each stage. In
addition, the algorithm is shown by means of a diagram in

Fig. 1. In this diagram, the initial stage is highlighted in blue
color and the two stages of the image stitching in green color.

3.1 Transformation to spherical format

The initial stage of the algorithm consists in transforming
each fisheye image into an equirectangular spherical projec-
tion where the pixel relation between the pair of images is
more comprehensible. It is carried out by means of two con-
secutive steps. In the first one, the fisheye image is projected
onto a sphere. On the contrary, in the second step, the sur-
face of this sphere is projected to a rectangular plane (i.e. the
spherical view). For this last step, the equirectangular pro-
jection is employed. In this projection, a sphere is mapped
onto a rectangular image whose aspect ratio is 2:1, that is, the
width of this rectangular image is twice its height. The north
(Zenith) and south (Nadir) poles of the sphere are located at
the top and bottom in the rectangular image.

The algorithm used in this stage is based on a backward
mapping (Fig. 2), i.e. for each pixel of the equirectangular
(output) image, the coordinates on the fisheye (source) image
are calculated using the following inverse transformations:
(1) mapping from spherical view to a global unit sphere,
and, after that, (2) projecting to the fisheye image. The next
paragraphs describe these two transformations.

Mapping from 2D (spherical view) to 3D (unit sphere) As
shown in Fig. 3, the first mapping consists in calculating the
3D vector (PG) corresponding to the projection of a pixel
from the equirectangular spherical image into the surface of
the unit sphere.

According to equirectangular projection, the x-coordinate
of each pixel (xout) is proportional to the longitude (θ ) and the
y-coordinate of the pixel (yout) is proportional to the latitude
(α).

Fig. 2 The fisheye image (input), shown on the left side of the figure,
is first projected onto the unit sphere, which is shown in the center of
the figure. Finally, the projection of the unit sphere is transformed into

a spherical view. The result is shown on the right side of the figure.
The direction of the arrows at the bottom of the figure show that both
transformations are performed by means of backward mapping
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Fig. 3 Mapping of a normalized pixel from the equirectangular spheri-
cal image to the unit global sphere. The result is a 3Dvector (PG ) defined
by azimuth (θ ) and elevation (α) angles whose values are proportional
to the 2D cartesian coordinates of this normalized pixel

Fig. 4 There are three coordinate systems: {Cf }, the front camera frame,
{Cb}, the back camera frame, and {G}, the global frame. The transfor-
mation from {G} to {Cf }/{Cb} is given by a rotation matrix

Given the normalized coordinates of a pixel in the spher-
ical image (xout, yout), the equirectangular projection is
applied. Then, the projection onto the unit sphere (i.e. the
3D vector) is given by:

PG =
⎡
⎣
XG

YG
ZG

⎤
⎦ =

⎡
⎣
cosα cos θ

cosα sin θ

sin α

⎤
⎦ (1)

where α is the latitude coordinate that is calculated by α =
π/2 · yout, and θ is the longitude coordinate whose value is
given by θ = π · xout.

This 3D vector PG is expressed in the global frame system
({G}), where the positive direction of the z-axis (zenith) is
perpendicular to the ground plane, as shown in Fig. 4.

However, the z-axis of one camera points right (front cam-
era, {Cf}) and the other points left (back camera, {Cb}), not
up and down. Therefore, before proceeding further, a change
of coordinate system must be performed. This frame trans-
formation is composed of a rotation, since we assume that
the relative translation among the cameras is zero, and the
centers of the three frames are the same. Moreover, this rota-
tion will depend on which fisheye image (front or back) is
being processed.

In the case of the front lens ({Cf}), this transformation
(RGC f ) is composed by a first rotation of 90 degrees around
the ZG -axis and a second rotation of 90 degrees around the
XG -axis. For the back lens ({Cb}), this transformation (RGCb )

is defined by a first rotation of −90 degrees around the ZG-
axis and a second rotation of 90 degrees around the XG -axis.

Mapping from 3D (unit sphere) to 2D (fisheye image)
This mapping can be performed using a camera model based
on a sphere (e.g. the unified camera model proposed by
Scaramuzza et al. [38]) or using a fisheye projection (e.g.
equidistant projection). For the first option, the parameters
of the camera model must be previously estimated, i.e. a cal-
ibration process is required.

As mentioned at the beginning of this paper, this work not
only uses a unique method for this second mapping, but also
two methods have been implemented in order to compare
the correctness of the full spherical views obtained by using
each one. Both methods are applied to the 3D vector already
expressed in the front or back camera frame (PCf‖b ).

3.1.1 Calibration-based projection method (CPM)

Given PM = [XM ,YM , ZM ]T , the unified camera model
proposed by Scaramuzza et al. [38] defines the following
relation:

⎡
⎣
xsrc
ysrc
f (ρ)

⎤
⎦ =

⎡
⎢⎢⎢⎣

ρ · XM/

√
X2
M + Y 2

M

ρ · YM/

√
X2
M + Y 2

M

ρ · ZM/

√
X2
M + Y 2

M

⎤
⎥⎥⎥⎦ (2)

where xsrc and ysrc are the coordinates of the projection on a
hypothetical plane (ideal coordinates) and ρ is the radial dis-
tance (i.e. ρ = √

x2src + y2src). In addition, f (ρ) consists in
a Taylor polynomial, whose degree is four and whose coeffi-
cients are previously obtained during the calibration process.
The coordinates xsrc and ysrc can be calculated after esti-
mating the value of ρ through the third element of the vector
defined on Eq. (2). This camera model states the ideal coor-
dinates (xsrc, ysrc) and their corresponding real coordinates
on the image plane (usrc, vsrc) are related by an affine trans-
formation. Figure 5a shows themapping from the unit sphere
(3D) to the fisheye image (2D) using this method.

3.1.2 Equidistant fisheye projection (EFP)

The 3D point (PCf‖b ) projected onto the unit sphere can be
expressed as follows:

PCf‖b =
⎡
⎣
xCf‖b
yCf‖b
zCf‖b

⎤
⎦ =

⎡
⎣
sin φ cos θ

sin φ sin θ

cosφ

⎤
⎦ (3)

where φ is the angle from the camera view direction (ZCf‖b -
axis) to the 3D coordinate vector (called zenith angle) and θ
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Fig. 5 Mapping from 3D to 2D
using: a Calibration-based
Projection Method (CPM) and b
Equidistant Fisheye Projection
(EFP)

is the angle in the XCf‖b -YCf‖b plane from the positive XCf‖b -
axis.

θ = tan−1(yCf‖b/xCf‖b) (4)

This 3D point will be given by a radial (r ) and an angular
(θ ) coordinate in the fisheye image. The second coordinate
is the same that appears in Eq. (3), so θ can be calculated
using Eq. (4), whereas the former (r ) is calculated through
the equidistant fisheye projection. This projection explains
the linear relationship between r and φ:

r = a · φ (5)

Themaximum value the zenith angle (φmax) can take is equal
to half of the field of view in radians, and themaximum radial
distance (rmax) on the fisheye image is equal to one since
the coordinates are normalized. Taking this into account, the
parameter a can be calculated using these values and the
previous equation:

a = rmax

φmax
= 1

FOV /2
(6)

Up to this point, the polar coordinates (r , θ ) on the fisheye
image of the projected point have been calculated. Then, the
final step consists in a first transformation to the cartesian
coordinates (xsrc, ysrc):

(xsrc, ysrc) = (r · cos θ, r · sin θ) (7)

and a second one to obtain the denormalized pixel coordi-
nates of the fisheye image (usrc, vsrc) by means of:

[
usrc
vsrc

]
=

[
ax 0
0 ay

]
·
[
1 0
0 −1

]
·
[
xsrc
ysrc

]
+

[
cx
cy

]
(8)

where ax is the half of the fisheye image width (Wsrc/2) and
ay is the half of the fisheye image height (Hsrc/2).

3.1.3 The correction step proposed

During the registration process, the aim is to align the images
from matches of points and thus reduce the discontinuity
between them before fusion. Taking into account that initial
pair of images are fisheye, we propose an additional step in
the algorithm.When this correction step is applied during the
transformation to spherical, the difference between the pair
of images output at this stage will be reduced.

The algorithmdescribed in theprevious subsection assumes,
concerning the pair of fisheye images, the following facts:

• Both unit spheres have the same center, which means
that there is no displacement between the front and back
camera.

• The Z-axes of both coordinate systems are perfectly
aligned and opposite.

• In the case of EFP, the relationship between the coordi-
nates of a 3D scene point and its projection on the image
is the same for both cameras.

However, it is possible that these assumptions are not ful-
filled in reality. Accordingly, we propose the correction step
composed of two functions that relate the polar coordinates
of the same 3D point projected on the pair of fisheye images.

In order to estimate the functions describing a 2D rela-
tion, the coordinates of both projections must be expressed
in the same planar coordinate system. As Fig. 6 shows, given
a pair of fisheye images, the first step is to find match-
ing features between them. The objective is to obtain a
set of N feature points detected in the front fisheye image
(pCfront = [uCfront

p , v
Cfront
p ]) and their matching feature points
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Fig. 6 Process to obtain the
relation between pixel pairs of
the dual fisheye images.
Considering a pair of matching
points, the point corresponding
to the front image is expressed
in the same coordinate system as
the point of the back image.
This is achieved by a projection
onto the surface of the global
unit sphere followed by a
projection of this 3D point to the
back image. This is performed
by means of the transformations
between the coordinate systems
of both cameras and the unit
global sphere (Fig. 4), and the
equations for 3D to 2D
forward/backward mapping
(Sect. 3.1.2)

detected in the back fisheye image (qCback = [uCback
q , v

Cback
q ]).

The second step involves projecting pCfront onto the unit
sphere, whose z-axis points upwards (global sphere). Then,
they are projected on the back fisheye image plane (pCback ).
These coordinates are the ones expected in the back image,
in ideal conditions, in such a way that the corresponding pair
would have the same position on the sphere and thus on the
spherical view. Both pCback (expected coordinates) and qCback

(real coordinates) are expressed in polar coordinates: (rCback
p ,

θ
Cback
p ) and (rCback

q , θCback
q ).

After that, we define the functions of the correction step.
On the one hand, the relation between angle coordinates
(θCback

p and θ
Cback
q ) can be modeled by fθ as follows:

θCback
q = fθ (θ

Cback
p ) (9)

On the other hand, the function, fr corrects the radial
distance coordinate:

rCback
q = fr (r

Cback
p ) (10)

In Sect. 4.2.2, these functions and their corresponding
parameters are obtained by an experimental analysis.

For each pair of fisheye images, the parameters of both
functions are estimated.Then, these functions are usedduring
the transformation of the back fisheye image to spherical
view, concretely they are introduced in the 3D to 2Dmapping
equations.

In this case, once the projection on the unit sphere is
known, Eq. (3), the expected polar coordinates rCback

p and

θ
Cback
p can be calculated by means of Eqs. (4) and (5), respec-

tively.After that, the real polar coordinates of the backfisheye
image (rCback

q and θ
Cback
q ) are estimated by the functions of

the correction step, Eqs. (9) and (10) . To finish the mapping
from the unit sphere to the back fisheye image, the cartesian

coordinates (xsrc, ysrc) are calculated using Eq. (7) with the
real polar coordinates. After that, the pixel coordinates are
obtained by Eq. (8).

Taking into account the information included in Sect. 3.1,
the transformation to spherical format has several variations
in this work. They differ in themethod employed to relate the
3Dpoint on the sphere and the pixel in the fisheye image. This
mapping can be carried out by (a) a Calibration-based Projec-
tion Method (CPM) or (b) an Equidistant Fisheye Projection
(EFP). Also, the latter can be combined with the correction
step proposed in the present paper. Thus, an additional case
is obtained: (c) an Equidistant Fisheye Projection (EFP) +
correction. The correction can be carried out in a polar coor-
dinate, θ , (c.1) or both polar coordinates, r and θ , (c.2). It can
be visualized in Fig. 7, where the contribution of this paper
related to this stage (i.e. correction step) is highlighted in
orange color.

3.2 Image registration

After converting each fisheye image to a spherical view by
the equirectangular projection, the next stage to generate a
full spherical view consists in aligning the pair of spherical
views using an image registration method. For this purpose,
the technique employed is a feature-based image registration,
whichmeans that the geometrical transformation is estimated
by the pairs of matching feature points. In this work, the
method chosen to detect and describe local features is ORB
[39].

The main steps of the image registration are: feature point
extraction and description, feature matching, estimation of
the geometric transformation and performing the transfor-
mation.
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Fig. 7 Block diagram of the first stage of the algorithm: fisheye images
transformation into spherical views (Sect. 3.1). Three different cases
will be analyzed in this stage of the algorithm, depending on themethod

to map from 3D to fisheye image: CPM (Sect. 3.1.1), EFP (Sect. 3.1.2)
or EFP with correction (Sect. 3.1.3). The correction step proposed in
this paper is highlighted with orange color

The most common type of transformation used for this
kind of image is the 2D affine. This geometric transforma-
tion is a linear mapping method that preserves the points,
straight lines and planes, but not angles and length (even
though ratios) [40]. For instance, with this transformation,
a rectangle becomes a parallelogram. An affine transforma-
tion combines linear transformations (rotation, scale, shear
and reflection) and translations.

However, a spherical view presents huge distortion at the
poles. Thus, there is a nonlinear difference between the pairs
of correspondences in this representation. It occurs predom-
inantly in the most distorted parts of the view. This statement
will be supported by experimental data in Sect. 4.2.1.

As a consequence, we propose using a 2D polynomial
geometric transformation. For this type of transformation,
a second-degree polynomial was selected. The inverse 2D
polynomial transformation is given by:

[
u
v

]
=

[
a5 a4 a3 a2 a1 a0
b5 b4 b3 b2 b1 b0

]
·

⎡
⎢⎢⎢⎢⎢⎢⎣

y2

x2

xy
y
x
1

⎤
⎥⎥⎥⎥⎥⎥⎦

(11)

where a5, a4, a3, a2, a1, a0 are the polynomial coefficients
for estimating the coordinate u and b5, b4, b3, b2, b1, b0 are
the polynomial coefficients for estimating the coordinate v.

In this work, the two types of geometric transformation
described in this section have been implemented. In this way,
the full spherical views obtained using each of them can be
compared to assess whether the quality is improved by using

the proposed polynomial transformation. The results of this
study are shown in Sect. 4.3.3.

Considering the information described in Sect. 3.2, the
image registration stage of the algorithm has two variations
in this paper. The difference is in the type of geometric trans-
formation to align the pair of spherical views. The block
diagram of this stage and its variations are shown in Fig. 8.
The alignment of the spherical view pair can be carried out
employing (a) an affine matrix or (b) a polynomial. The con-
tribution of this paper related to this stage (i.e. the use of the
polynomial) is highlighted in orange color.

3.3 Image blending

The image blending attempts to create a unique image with-
out visible seams, that is, minimizing discontinuities in the
global appearance of the final image caused by geometrical
or/and photometrical misalignment. Two main approaches
can be found to perform image blending: optimal seam find-
ing and transition smoothing.

The first approach tries to estimate the optimal seam loca-
tion in the overlapping zone to minimize the differences
between both sides of this seam line. Since these algorithms
consider the visual information of the scene in the over-
lapping region, optimal seam finding is a good solution for
dealing with the artifacts due to parallax or dynamic scenes
(moving objects), but not with those caused by exposure
differences or illumination variations in the scene between
the images. In contrast, the approaches based on transition
smoothing fuse the image information of the overlapping
region. These methods can address discontinuities caused
by photometric misalignment, such as those which are not
caused by small registration errors or moving objects. In [41,
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Fig. 8 Block diagramof the second stage of the image alignment. There
are two variations depending on the type of geometric transformation
used to align the pair of spherical views (Sect. 3.2): affine matrix or

polynomial (Eq. (11)). The kind of geometric transformation proposed
in this paper is highlighted with orange color

42], more information about algorithms for image blending
can be found.

In the present paper, themethod employed to blend the pair
of spherical views is the described in [34].Then, the blending
is carried out by means of a ramp function in the overlapping
zones.

4 Experiments

In this section, the results of the experiments are presented.
First, the vision system is described. Second, the pixel-based
relationship between the pair of fisheye images and the pair
of spherical views is studied in Sect. 4.2. On the one hand, the
first study is performed with the purpose of confirming the
nonlinearity between the spherical views pair (Sect. 4.2.1).
On the other hand, the objective of the second study is to
support the proposed correction step and identify the types
of functions (Sect. 4.2.2). After that, the quality of the full
spherical views is evaluated in Sect. 4.3.

4.1 Vision system

The vision system used in this work is a Garmin VIRB 360
camera [13], whose main features are shown in Table 1.

The Garmin VIRB 360 camera is composed of two back-
to-back fisheye lenses and two backside-illuminated CMOS
sensors (1/2.3"). The field of view of each lens is 201.8
degrees, therefore, a full spherical view can be constructed
using the two images captured with both cameras.

This camera can provide different types of images in
".JPEG" format. The type of the image captured depends
on the setting of the lens mode (Table 1): 360, front only,
rear only or RAW. In this paper, we only worked with images

captured using 360 (Fig. 9c) and RAW (Fig. 9b and a) lens
mode.

4.2 Experimental evaluation of the difference
between feature matchings

The objective of this section is to experimentally support the
theoretical aspects on which the two contributions of this
paper are based. For this purpose, two studies have been
carried out in order to obtain the pixel-based relationship
between the image pair before applying any transformation.
The first one is related to the pair of spherical views in rect-
angular coordinates (Sect. 4.2.1) with the aim of confirming
the nonlinearity. The second one is concerning to the pair of
fisheye images in polar coordinates (Sect. 4.2.2) to model the
function of the proposed correction step.

4.2.1 Spherical views: rectangular coordinates

In the case of a pair of spherical views, the procedure consists
in a featurematching search between pairs of spherical views
that are the outputs of the first stage (see Sect. 3.1), i.e. with-
out any transformation applied. With the purpose of having
the lowest number of false positives, this search is based on
Aruco Markers. The pairs of feature matches are the corners
of an Aruco marker with a specified identifier captured in
both images. To accomplish this, the camera was positioned
so that several Aruco markers appeared in the overlapping
area. The camera was then rotated around the z-axis of one
of the fisheye lenses to capture these marks over the whole
overlapping area. After multiple rotations, a set of several
image pairs were acquired from which a total of 1628 fea-
ture matches were obtained.
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Table 1 Main technical features of the Garmin VIRB 360 camera

Physical Weight 160g (with battery)

Size 39.0 mm(H)×59.3 mm(W)×69.8 mm(D)

Optics Sensor 1/2.3"Backside-IlluminatedCMOS(2 sen-
sors)

Lens count 2

FOV 201.8 degree per Lens

Effective focal length 1.036 mm

Lens Mode 360 This mode outputs stitched fully spherical
photos in equirectangular format. The res-
olution is 5640×2820 (15 MP)

front only This mode outputs a perspective image cal-
culated from thephoto capturedby the front
lens. The resolution is 1920×1440 (3 MP)

rear only This mode outputs a perspective image cal-
culated from the photo captured by the rear
lens. The resolution is 1920×1440 (3MP)

RAW This mode captures one raw picture for
each lens (2 files). The resolution is
3008×3000 for file (2×9MP)

Fig. 9 Example of the images output by the Garmin VIRB 360 camera: a and b show, respectively the images captured in RAW mode with the
front and the rear fisheye cameras and c shows the full spherical view output in 360 mode

Figure 10 shows the results of the x-coordinate study,
where each overlapping zone is analyzed independently: left
(Fig. 10a and c) and right (Fig. 10b and d).

First, Fig. 10a and b shows the error in the x-coordinates of
each pair ofmatching points for the left and right overlapping
region, respectively. These values are represented (plot y-
axis) versus the x-coordinate of the back spherical view (plot
x-axis). Also, the y-coordinate can be visualized with a color
that depends on its value. After analyzing both figures, we
can observe that this difference is higher for points located
on the upper and lower areas (highest and lowest values for y-
coordinate) and also far from the center of each overlapping
zone, i.e. x = 1410 (−90 degrees of longitude) and x = 4230
(90 degrees of longitude), respectively.

Second, Fig. 10c and d shows the x-coordinate of the front
spherical view versus the x-coordinate of the back spherical
view.

Figure 11 shows the same results than Fig. 10, but for the
y-coordinate. For this coordinate, we observe amore straight-

forward relationship. After studying Fig. 11a and b, we can
observe that the error in y-coordinates is practically linear in
the middle region of the image, but this linearity is lost in the
upper and lower regions of the image (i.e. in the poles of the
global sphere, where there is more distortion).

Making a comparison between both overlapping zones,
the behavior of the y-coordinate is inverse, as it is clearly
illustrated in Fig. 11c and d. In regards to the left overlap-
ping region (Fig. 11c), the error is maximum and positive in
the top part of the view (lower y-coordinate values), whereas
it is minimum and negative in the bottom part (higher y-
coordinate values) of the view. On the contrary, in the right
overlapping region (Fig. 11d), the error is minimum and neg-
ative in the top part and maximum and positive in the bottom
part.

This first study has allowed us to observe the nonlinear
relationship between pairs of matched features in a pair of
spherical views. This nonlinearity is more noticeable at the
top and bottom parts of the spherical view. An affine matrix
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Fig. 10 Results of the
x-coordinate study, where a and
c are related to the left
overlapping region, whereas b
and d are related to the right
overlapping region

can correctly register the middle part of one spherical view
with respect to the other, where certain linearity exits, but
not the top and bottom parts. As a result, we propose the use
of a polynomial geometric transformation during the image
registration process.

4.2.2 Fisheye images: polar coordinates

In the case of the fisheye image pair, the procedure is more
elaborated due to the fact that the points must be expressed in
the same image frame to calculate the distance. The algorithm
is shown in Fig. 6. The last step is calculating the difference
between each pair of these coordinates. The results are shown
in Fig. 12.

As can be seen in Fig. 12b, the difference between θ
Cback
p

and θ
Cback
q can bemodeled by a sine function. As for the radial

distance coordinate (Fig. 12c), even though the relationship
is not so direct and common for most cases, we have noted
that an α factor models the relationship between the pair of
radial distance coordinates.

After analyzing the results of this experimental study, the
functions of the correction step are identified. The function

fθ can be defined as a sine function as follows:

θCback
q = fθ (θ

Cback
p ) = θCback

p − a · sin (b · θCback
p + c) (12)

As for the correction of the radial distance coordinate,
both rCback

p and rCback
q are related by a proportional factor

denominated α.

rCback
q = fr (r

Cback
p ) = α · rCback

p = α · a · φ (13)

The factor α is estimated as themean of the ratios between
the pairs of radial distance coordinates:

α =
N∑
j=1

rCback
q j

rCback
p j

(14)

The parameters a, b, c and α are estimated before the
transformation to spherical format. Then, these functions are
applied during the transformation of the back fisheye image
to spherical format.
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Fig. 11 Results of the
y-coordinate study, where a and
c are related to the left
overlapping region, whereas b
and d are related to the right
overlapping region

4.3 Quality evaluation

In this section, the ability of the algorithm to output a correct
full spherical view is evaluated, i.e. with a global appearance
as homogeneous as possible andwithout visible stitching arti-
facts. The full spherical view provided by the Garmin VIRB
360 is the only visual information provided by this camera.
That is to say, the firmware of the camera is not public, so
that any previous composition nor internal data are avail-
able for evaluation purposes. Nonetheless, to perform this
evaluation, two approaches are considered to obtain quality
measurements.

The first approach is a no-reference quality method (see
Sect. 4.3.2), which will be employed to make a comparative
evaluation among the four types of full spherical views gen-
erated according to the projection method (see Table 2) and
the one provided by the Garmin VIRB 360 in 360 lens mode
(VIRB). In this first experiment, the full spherical views gen-
erated are the result of applying an affinematrix as geometric
transformation between the pairs of spherical views.

The second approach is a full-reference quality approach
(see Sect. 4.3.3), which will be applied only to the final full

spherical views generated (see Table 2) using both types of
geometric transformation (i.e. affine and polynomial).

4.3.1 Dataset garmin VIRB 360

About the visual dataset, to perform the experiments, a set
of images has been captured in a variety of scenarios. These
scenarios present different levels of visual information and
challenging features, to obtain a complete evaluation. More
concisely, the dataset is composed of images captured at a
total of 50 positions in four kinds of scenarios: Office, Labo-
ratory,Meeting room andHall. In Table 3, a brief description
of each scene is shown.Apair of fisheye images (RAWmode)
and a full spherical view (360 mode) have been captured at
each position. The RAW fisheye images are the input of the
proposed algorithm, while the full spherical view will be
used as reference to check the performance of the proposal
(among other parameters). Figure 9 displays an example of
the images corresponding to a single position in the database
(Hall).
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Fig. 12 Study of the polar
coordinates, where a and c are
related to the radial distance
coordinate (r ), whereas b and d
are related to the angular
coordinate (θ )

Table 2 Main information about each variation related to the transformation of a fisheye image into a spherical view

Case Abbr Method: Projection from sphere to fisheye
image

Equations

a CPM Calibration-based projection method
(Sect. 3.1.1)

[38]

b EFP Equidistant Fisheye Projection
(Sect. 3.1.2)

Eqs. (3), (4) and (5)

c.1 EFP+θ Equidistant Fisheye Projection with the
correction of the θ polar coordinate
(Sect. 3.1.2 and Sect. 3.1.3)

Eqs. (3), (12) and (5)

c.2 EFP+θ+r Equidistant Fisheye Projection with the
correction of both polar coordinates (r and
θ) (Sect. 3.1.2 and Sect. 3.1.3)

Eqs. (3), (12) and (13)

4.3.2 No-reference quality assessment

In this first experiment, the evaluation focuses on the sharp-
ness of the final image, using a no-reference image quality
assessment method. The sharpness of an image is related to
the presence of high-frequency components. Therefore, this
approach studies the image in the frequency domain.

Firstly, the discrete 2D Fourier transform of the overlap-
ping area is computed using a Fast Fourier Transform (FFT)
algorithm. Then, after shifting the zero-frequency compo-
nents to the center, a high filter pass is applied, removing the
low frequencies. Once the zero frequency components are
moved back to their original location (Fi ), the mean of the
magnitude spectrum, which is the Image Quality (IQ) score
in this evaluation, is calculated by means of Eq. (15). The
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Table 3 Brief description of the
scenarios in which the images
that compose this dataset were
captured

Description Number of positions Area

Office In these images, the objects that typ-
ically appear are computers, desks,
cupboards, coat stands, posters and
a whiteboard. Besides, this scene
has some Aruco markers, providing
more visual information

24 positions 27m2

Laboratory This scene is a laboratory. This
room is the largest one of this
dataset. There considerable amount
of and variety of objects, thus being
a space rich in visual information.
However, owing to the dimensions
of the scenario, this information
usually appears in the middle rows
of the spherical view, what chal-
lenges the registration step

6 positions 117m2

Meeting room The predominating structures in
this scenario are bookcases with
books, chairs and desks, among
other objects.While the space is rich
in visual information, this scenario
is specially challenging because of
the repetitivity and symmetry of the
visual appearance

11 positions 55m2

Hall This scene is less rich in detail, since
it is primarily constituted by walls,
large windows, and doors, though
there exists some scarce visual
information due to the emergency
exit signs or informative posters, for
instance

9 positions 69m2

higher this value, the sharper the image is.

I Qsharpness score =
∑M

i=1(1 + |Fi (u, v)|)
M

(15)

where M is the total number of pixels in the overlapping
region. Figure 13 shows the mean for each kind of scenario
of this sharpness IQ score using bar graphs.Also, the standard
error of the mean is represented with orange color and the
deviation with respect to the best result of mean IQsharpness

score (the highest mean value) is indicated as a percentage.
Regarding the results shown in this figure, the highest

average values have been reached in the Office (Fig. 13a and
b) and Laboratory (Fig. 13c and d) scenarios. Additionally,
the Meeting room (Fig. 13e and f) and Hall (Fig. 13g and h)
scenarios have the lowest average values. This result is in
line with the fact that the Office and Laboratory scenarios
are rich in visual information, as noted in Table 3.

Analyzing in depth the results obtained, we can observe
that the views generated by the Calibration-based Projec-
tion Method (CPM) present relatively good results for all the
scenes (CPM has the highest values of IQsharpness score). On
the contrary, the results with the lowest quality values are

from the Garmin VIRB camera. In scenes with poor visual
information, the percentage deviation is lower.

In regards to the results using the variations of equidis-
tant fisheye projection described in this paper, the difference
between the three cases (i.e. EFP, EFP+θ and EFP+θ+r) is
minimal, and although they do not have the best IQsharpness

scores, they are very close to the Calibration-based Projec-
tion Method (CPM), being the percentage deviation around
one percent.

It is worth noting that a relatively small percentage devi-
ation may not imply higher quality but instead, that more
visual information appears in the overlapping region (more
or less visual information can appear in this region depend-
ing on the projection type). However, when the percentage
deviation is significant, we can consider that it is due to blur
effect.

In an overall analysis, the IQsharpness scores are more sim-
ilar among them in scenarios with poor visual information.
This fact is expected since the transformation between the
pair of spherical views is estimated using matching fea-
tures. In this respect, a more significant number of matching
features will only be found if there is distinctive visual infor-
mation in the common area. Particularly, in the case of the
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Fig. 13 Evaluation of the full
spherical views based on
sharpness (no-reference metric).
Comparison between the views
obtained with the different
configurations of the algorithm
(CPM, EFP, EFP+θ and
EFP+θ+r) and the one provided
by the Garmin VIRB 360
(VIRB) in 360 mode. This
IQsharpness score was calculated
for the left (a, c, e, g) and right
(b, d, f, h) overlapping region of
each full spherical view

algorithms based on the proposed correction model, this
drawback is more remarkable due to the fact that not only
the image registration but also the correction model is based
on matching features.

4.3.3 Full-reference quality assessment

In this section, the evaluation is realized by a full reference
image quality approach.MS-SSIM is the full-reference qual-
ity method chosen for this section.

A full-reference approach calculates the quality score of a
test image as a result of comparing it with a reference image.
Themost used full-reference imagequalitymethods aremean
squared error (MSE) and peak signal-to-noise ratio (PSNR),

which is a variation of the former. The score of these meth-
ods is calculated by means of a pixel-to-pixel comparison
between the test and reference image. However, the result
of these methods might not be correlated with the human
perception of quality unlike Structured Similarity Indexing
Method (SSIM) [43] since it is based on the structural infor-
mation from the scene.

In the literature, there are also full-reference image qual-
ity evaluation alternatives for omnidirectional images. In this
line, Li et al. [44] provide a cross-reference omnidirectional
image dataset. It contains stitched images as well as dual-
fisheye images. The main feature of this dataset is that it
is composed of four images captured from the same posi-
tion but with different orientations (0◦, 90◦, 180◦ and 270◦).
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Fig. 14 Evaluation based on
MS-SSIM of the full spherical
views generated using an affine
matrix light green color or a
polynomial dark green color as
geometric transformation. The
scores for each case are
represented by Yellow color.
This IQMS−SSIM score was
calculated for the left (a, c, e, g)
and right (b, d, f, h) overlapping
region of each full spherical
view
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This manner, the stitched image from the pair of fisheye
images taken from 0◦ and 180◦ can be used as perfect ref-
erence groundtruth when evaluating the stitched image from
the pair of fisheye images taken from 90◦ and 270◦, and
vice versa. As for quality score, Li et al. [45] present the
Attentive Quality Assessment (AQA). This evaluation is car-
ried out using different metrics and also human subjective
evaluations. The aim of the latter is to supervise their linear
classifier. With the classifier, the metric is consistent with
human subjective assessment. About metrics, the authors
propose two local quality assessment metrics (sparse recon-
struction and appearance similarity) and two global quality
assessment metrics (color chromatism and blind zone). Duan
et al. [46] suggest the use of an Attentive Multi-channel IQA
Neural Network for designing an objective IQAmetric. They
propose both full reference and no reference quality assess-
ment algorithms and are based on the subjective ratings that
the authors obtained. The method consists of a first trans-
formation of the omnidirectional images to cubic images in
which data refinement and data augmentation methods are
applied.As for the deep convolution neural networks, ResNet
is the backbone and the authors present a sub-network for
spatial attention to extract the features associated with the
stitching distortions.

In the present work, an IQ score based on SSIM is used
in this subsection. This IQ score compares the test image (I )
with a reference image (Ir) and is based on three features:
luminance, contrast and structure.Then, theSSIMscore is the
combination of three comparison functions related to these
features. In addition, an extended version called Multi-Scale
Structural Similarity Index Method (MS-SSIM) [47] evalu-
ates the structural similarity of both images at different image
scales.

MS-SSIM combines the luminance comparison at the
highest scale M, lM (I , Ir), with the structure, s j (I , Ir), and
contrast, c j (I , Ir), comparison calculated at different scales.
Themultiple scales are obtained by applying a low-pass filter
and down-sampling the image by a factor of twoM−1 times,
corresponding the scale 1 to the original resolution image and
the scale M to the lowest resolution. The MS-SSIM quality
score is calculated as:

IQMS−SSIM score(I , Ir) =

lM (I , Iref)]αM
M∏
j=1

[c j (I , Ir]β j [s j (I , Ir)]γ j )
(16)

where the exponent of each term is used to adjust its relative
importance.

As stated previously, MS-SSIM requires a reference for
calculating the score. In this evaluation, the reference image
is the overlapping region of the back spherical view before
the blending step. Besides, the test image is the overlapping

region of the full spherical view (i.e. after the blending step).
In other words, the test image is the result of blending the ref-
erence image and the overlapping regionof the front spherical
view.

Figure 14 shows the mean scores of the four full spheri-
cal views generated using either an affine matrix (light green
bars) or a polynomial (dark green bars) as geometric trans-
formation. Like in the previous evaluation, the results of each
scene are studied separately.

In general terms, this figure shows that the results obtained
with a polynomial transformation have higher quality than
applying an affine matrix. This difference is less noteworthy
for theCalibration-basedProjectionMethod (CPM)or for the
two possible proposed methods (EFP+θ and EFP+θ+r) than
for equidistant fisheye projection (EFP). In this last case, the
use of a polynomial greatly improves the quality based on this
measurewith respect to the affine In general terms, this figure
shows the results obtainedwith a polynomial transformation.

Concerning the projection method, we can see that the
equidistant fisheye projection (EFP) has the worst quality
based onMS-SSIM using affine matrix. However, the results
for the proposedmethods (EFP+θ and EFP+θ+r) are good. In
fact, they aremore similar to theCalibration-basedProjection
Method.

4.3.4 Study of the misalignment error and computation
time

Another approach to evaluate the stitching process, con-
cretely the image registration, is to calculate the error after
applying the geometrical transformation. This error can be
calculated as the Euclidean distance between matching fea-
ture pairs found in a pair of spherical views.

In Fig. 15, we can visualize the error in pixels for all
spherical view pairs: without transformation (Fig. 15a) and
applying an affine (Fig. 15b) or a polynomial (Fig. 15c) as
geometric transformation in one of the spherical views. A
boxplot represents the error, and the number of matching
features is indicated below.

About the results without transformation (Fig. 15a), the
error is higher with the Calibration-based Projection Method
(CPM). On the contrary, the proposed method with two
corrections (EFP+θ+r) has the best result regarding the mis-
alignment error, followed by the proposed method with
one correction (EFP+θ ). The Equidistant Fisheye Projection
(EFP) has worse results than the Calibration-based Projec-
tion Method and the number of matching features is lower.

In relation to the results of affine transformation (Fig. 15b),
the mean error value is lower, getting the best results for
Calibration-based Projection Method (CPM) and the pro-
posed method with two corrections (EFP+θ+r).
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Fig. 15 Misalignment error in pixels considering each pair of spherical
views: a without transformation and after estimating and applying b an
affine geometric transformation or c a polynomial geometric transfor-
mation. The mean error for each case is represented by Orange color

Finally, concerning the results of polynomial transforma-
tion (Fig. 15c), the misalignment error is lower than in the
two previous cases.

For some applications, the computation time is crucial. As
a consequence, we also studied this factor. For each pair of
fisheye images, the time spent to create a full spherical view
(run the complete algorithm) was calculated. Table 4 shows
the mean time of the 50 fisheye image pairs of the dataset
for each possible combination between the two stages of the
spherical view generation: the method used to project on
the sphere (MP, EFP, EFP+θ or EFP+θ+r) and the method to

Table 4 Average computation time of each possible combination

CPM (s) EFP (s) EFP+θ (s) EFP+θ+r (s)

Affine 368.88 36.02 36.87 37.59

Polynomial 375.48 36.77 37.70 38.35

estimate the geometric transformation (affine or polynomial)
for the image registration.

After assessing these values, we can confirm that the
fastest way to obtain a full spherical view is by using the
Equidistant Fisheye Projection (EFP) and the affine matrix.
Theuse of the proposed correction slightly increases the com-
putation time, which is higher if the two polar coordinates are
corrected (EFP+θ+r). This fact was expected since, first, esti-
mating the correction parameters requires some additional
time and, as we have observed in Fig. 15. Second, more
matched features are detected when applying this correction,
which implies a higher time during the image registration
process. Despite these facts, the difference in computation
time between the Equidistant Fisheye Projection (EFP) with-
out and with correction is less than one second, whereas
the computation time using the Calibration-based Projection
Method (CPM) is approximately ten times higher than using
the equidistant fisheye projection.

Regarding the geometric transformation, the polynomial
takes more computation time than the affine matrix, but the
difference is slight (less than one second in all cases).

4.3.5 Visual qualitative assessment

In the previous sections, a quantitative evaluation has been
addressed. However, sometimes, the image quality metric
may not agree with the quality perception appreciated by a
human or not take into account all possible stitching arti-
facts. Considering, we also propose a qualitative evaluation.
This section is divided into two parts. In the first one, the
qualitative evaluation is performed with the camera Garmin
VIRB 360. In contrast, the second part shows the qualitative
evaluation of the proposed correction step for another dual
fisheye camera, the Samsung Gear 360.

Garmin VIRB 360 The quantitative evaluation results estab-
lish that the correction step proposed and the polynomial
provide a spherical view with good quality, as the quantita-
tive assessment has shown. Now, these views are evaluated
qualitatively. Figure 16 shows an overlapping region for each
scenario. In each example, we can see and compare the four
full spherical views calculated with the algorithm and the
ones provided by the Garmin VIRB 360.

Analyzing Fig. 16, we can state that the vertical error
after applying the Equidistant Fisheye Projection (EFP) is
reduced with the correction of the θ coordinate (EFP+θ ). On
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Fig. 16 Overlapping zones of
the final images generated with
CPM, EFP, EFP+θ and
EFP+θ+r (using affine matrix)
and of the image provided by
the Garmin VIRB 360
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Fig. 17 Left (a) and right (b)
overlapping regions of the
different full spherical views at
the same position

123



M. Flores et al.

Fig. 18 Examples of signs captured in the overlapping region

Fig. 19 Samsung Gear 360: overlapping zones of the final images generated with EFP, EFP+θ and EFP+θ+r (using affine matrix)

the contrary, the horizontal error is lower with the additional
correction of the r coordinate (EFP+θ+r).

As previously described, we have not only applied an
affine matrix to align both spherical views, but we have
also proposed to use a polynomial. In this regard, Fig. 17
shows the same overlapping regions belonging to full spher-
ical views arising from the combination of the different
projections from sphere to fisheye image and the geomet-
ric transformation types. These overlapping regions are part

of the same full spherical view. Figure 17a presents the left
overlapping region and Fig. 17b the right overlapping region.

By visually comparing them, we can say that the quality
of the full spherical view is higher using a polynomial than
an affine matrix, as happened in the evaluation based onMS-
SSIM. This fact can be clearly seen in those image regions
which are rich in texture.

After all these studies, it can be confirmed that the pro-
posed method produces a powerful solution for applications
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such as objects, text of face recognition, jointly considering
the qualitative and quantitative quality results and the com-
puting time. As an example of this, in Fig. 18, the signs or
informative posters can be easily recognized and readable.

SamsungGear 360 The functions of the proposed correction
stephavebeen estimatedusing experimental data providedby
images captured by a Garmin VIRB 360 camera. Therefore,
this section evaluates the proposed correction step qualita-
tively using another dual fisheye commercial camera. For
this evaluation, we have chosen a set of fisheye image pairs
of the publicly availableCross-reference dataset [44]. For this
dataset, the authors use a set of Samsung Gear 360 cameras.

The main difference of the Samsung Gear 360 camera
with respect to the Garmin VIRB 360 camera is that the
fisheye lenses of the first one have a shorter field of view.
Each fisheye lens of the Samsung Gear 360 camera has 195
degrees of field of view.

Figure 19 shows the overlapping zones of four dual fisheye
images of the set. For each dual fisheye image, the algorithm
has been run three times: (1) using the equidistant fisheye pro-
jection, (2) the equidistant fisheye projection and correcting
the angular polar coordinate and (3) the equidistant fisheye
projection and correcting both polar coordinates. The affine
matrix is the geometric transformation to align the pair of
spherical views.

Analyzing visually the overlapping zones, we can confirm
that the quality of the spherical viewsgeneratedby employing
the correction step is improved.

5 Conclusions

The purpose of this paper is to propose some algorithms to
achieve a high-quality full spherical view from dual fisheye
images. A Garmin VIRB 360 camera is used to obtain the
experimental datasets.

The algorithm implemented to generate the full spheri-
cal view from dual fisheye images has different variations
associated to: (a) the equations to project from the sphere to
the fisheye image during the spherical format transformation
stage, and (b) the transformation used to align the pair of
spherical views. Regarding the projection, the options are:
a Calibration-based Projection Method (CPM), the Equidis-
tant Fisheye Projection (EFP), and, also, this latter combined
with a correction step which is one of the main contributions
of this paper (EFP+θ or EFP+θ+r). As for the alignment of
the spherical views pair, the options of transformation are:
an affine matrix or a polynomial.

To determine the performance of each configuration, a
variety of evaluations has been carried out. From the results
obtained using a no-reference method based on sharpness

and visual qualitative assessment, we can conclude that the
full spherical view provided by the proposed algorithm is a
good solution that substantially improves the one provided
by the Garmin VIRB 360 camera.

Concerning to the generated full spherical views, the con-
clusion is that the correction step proposed and the alignment
based on polynomial improve the quality of the view, being
very similar to the generated using a Calibration-based Pro-
jection Method (CPM). This fact is expected since more
effectiveness is achieved with the calibration but requires
a previous process, whereas it is not necessary with the pro-
posed correction. However, the drawback we have observed
is that both contributions depend on local feature points.
The proposed correction step and the registration process are
based on feature matches between dual fisheye images and
spherical views, respectively. Besides, estimating the param-
eters of the correction step and the polynomial requires a
certain number of relevant pairs (e.g. at least six for the poly-
nomial). If the requirement is not reached, the estimation of
these parameters may not be adequate and cause lower image
quality.

The results show the validity of the proposed correction
step, specially in the image areas with more texture. Then,
as future work, we will evaluate the utility of the resulting
full spherical views in some high-level tasks, such as people
or object detection and recognition (specially when they are
in the overlapping areas), mapping or localization of mobile
robots.
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