

FACULTAD DE FARMACIA

Grado en Farmacia

Evaluación de los efectos terapéuticos de los flavonoides en enjuagues bucales.

Revisión sistemática

Memoria de Trabajo Fin de Grado

Sant Joan d'Alacant

Mayo 2024

Autora: Ángela González Richart

Modalidad: Revisión bibliográfica sistemática

Tutor: Jose Antonio Picó Monllor

Índice

Res	sumen	2
	stract	
1.	Introducción	4
2.	Objetivos	8
3.	Metodología	c
5.	Discusión	22
6.	Conclusiones	25
Ref	ferencias bibliográficas	26
ΑN	IEXOS	29

Resumen

Los flavonoides son metabolitos secundarios de las plantas que protegen contra la radiación UV y tienen funciones defensivas. Se clasifican en flavonoides, isoflavonoides y neoflavonoides según su estructura molecular. Se ha demostrado que exhiben propiedades antioxidantes, anticancerígenas, antiinflamatorias y analgésicas; y que son útiles en el tratamiento de afecciones como varices, hemorroides y enfermedades bucales. En la salud oral, pueden tener un efecto positivo, combatiendo la gingivitis, periodontitis o caries. En este estudio, se realiza una revisión sistemática que analiza los efectos de los flavonoides en los enjuagues bucales para mejorar la salud oral. Para ello, se realizó una búsqueda exhaustiva de artículos basados en la evidencia en las bases de datos ProQuest, Pubmed y Scopus. Se encontró que los flavonoides en los enjuagues bucales tienen una acción antiinflamatoria, antibacteriana y antioxidante; además de un potencial virucida. Se proponen más estudios que apoyen la idea de implementar esta sustancia en los enjuagues bucales.

Palabras clave: flavonoides, enjuague bucal, usos terapéuticos, salud oral.

Abstract

Flavonoids are secondary plant metabolites that protect against UV radiation and have defensive functions. They are classified into flavonoids, isoflavonoids and neoflavonoids according to their molecular structure. They have been shown to exhibit antioxidant, anticancer, anti-inflammatory and analgesic properties; and that they are useful in the treatment of conditions such as varicose veins, hemorrhoids and oral diseases. On oral health, they can have a positive effect, fighting gingivitis, periodontitis or cavities. In this study, a systematic review is conducted analyzing the effects of flavonoids in mouthwashes to improve oral health. To this end, an exhaustive search of evidence-based articles was carried out in the ProQuest, Pubmed and Scopus databases. It was found that flavonoids in mouthwashes have an anti-inflammatory, antibacterial and antioxidant action; in addition to a potential virucidal. More studies are proposed to support the idea of implementing this substance in mouthwashes.

Keywords: flavonoids, mouthwash, therapeutic uses, oral health.

1. Introducción

Los flavonoides son un tipo de metabolitos secundarios con bajo peso molecular que suelen encontrarse en plantas o alimentos de origen vegetal, de forma que se almacenan en las vacuolas de las células vegetales y las pigmentan ⁽¹⁾. Su función principal es proteger a las plantas de los daños causados por la radiación ultravioleta del sol, además de participar en el transporte hormonal y servir como mecanismo de defensa contra otros seres vivos como animales que se alimentan de ellas ⁽²⁾.

Según la nomenclatura de la Unión Internacional de Química Pura y Aplicada (IUPAC) se clasifican por su estructura molecular y vía metabólica en: (3)

 Flavonoides, derivados de la estructura 2-fenilcromen-4-ona (2-fenil-1,4-benzopirona).

II. Isoflavonoides, derivados de la estructura 3-fenilcromen-4-ona (3-fenil-1,4-benzopirona).

III. Neoflavonoides, derivados de la estructura 4-fenilcumarina (4-fenil-1,2-benzopirona).

Referido a su relación con la salud humana, se ha demostrado que los flavonoides presentan grandes propiedades biológicas, como la actividad antioxidante y mecanismos anticancerígenos relacionados con la inhibición de la proliferación celular y aumento de uniones gap, que son estructuras que permiten la comunicación directa entre células adyacentes. (4) También otros autores refieren que presentan efectos antiinflamatorios y analgésicos pudiéndose utilizar en el tratamiento de las varices o las hemorroides, además de tener efectos antisépticos y antibacterianos (5).

De forma más específica, se habla de que los flavonoides podrían tener grandes efectos en la salud bucal, sobre todo en aspectos como la gingivitis, periodontitis, caries, mucositis oral e incluso cáncer oral, aunque refieren que existen muy pocos estudios que hayan investigado sobre ello ⁽⁶⁾. No obstante, estudios recientes han hallado que los flavonoides y sus efectos antibacterianos son muy eficaces para eliminar las bacterias patógenas que se acumulan en la boca, aunque cabe destacar que no fue eficaz en algunas cepas, en otras tuvo un efecto muy positivo ⁽⁷⁾.

Se define la microbiota autóctona como un conjunto de microorganismos que habitan en la cavidad oral y que ayuda a proteger contra patógenos y contribuye al metabolismo y al sistema inmunitario. Estos microorganismos, que incluyen bacterias, hongos y virus, forman una comunidad compleja y dinámica que juega un papel crucial en la salud bucal. Cuando existe un desequilibrio en este conjunto de microorganismos, se da lo que se llama "disbiosis", que puede

causar enfermedades como caries, gingivitis y periodontitis. La disbiosis podría tener varias causas, como la mala alimentación, el consumo excesivo de sustancias como el azúcar, alcohol o tabaco; o una mala higiene bucodental, entre otros ⁽⁸⁾.

Por todo ello los enjuagues bucales, también llamados colutorios, son una parte imprescindible en la salud bucodental, pues sirven como complemento del cepillado y del hilo dental; además de ofrecer ciertos beneficios como el hecho de que suelen tener ciertos activos antisépticos y remineralizantes, cuyo objetivo es prevenir infecciones o enfermedades orales, evitar el estrés oxidativo y equilibrar la microbiota oral. Además, suelen contener entre sus agentes activos, la clorhexidina, el flúor o el triclosán, compuestos que tienen la capacidad de evitar la formación de la placa bacteriana, definida como un gran cúmulo de microorganismos no deseados, o la gingivitis ⁽⁹⁾.

Los enjuagues bucales están clasificados como cosméticos, que según el Reglamento (CE) Nº 1223/2009 del Parlamento Europeo y del Consejo) se trata de "cualquier sustancia o mezcla destinada a ser aplicada sobre las superficies externas del cuerpo humano (epidermis, sistema capilar y piloso, uñas, labios y órganos genitales externos) o sobre los dientes y las mucosas bucales, con el fin exclusivo o principal de limpiarlos, perfumarlos, cambiar su apariencia, protegerlos, mantenerlos en buen estado o corregir los olores corporales".

En la base de datos COSING (Cosmetic Ingredients) algunos flavonoides que se han estudiado y se encuentran en enjuagues bucales incluyen (10):

- Apigenina: Tiene propiedades antiinflamatorias y puede ayudar a reducir la inflamación de las encías.
- Quercetina: Conocida por su capacidad para combatir los radicales libres y tiene efectos antioxidantes.
- Kaempferol: Posee efectos antimicrobianos y puede ser útil en la prevención de enfermedades orales.
- Kurarinona: Se ha investigado por sus propiedades antibacterianas.

 Morina: Otro flavonoide con potencial terapéutico en el manejo de enfermedades infecciosas orales.

Por último, aunque si bien es cierto que existen escasos estudios sobre el efecto de los flavonoides en la salud oral (aunque cada vez más, siendo un campo emergente), se sabe que algunas plantas como el *Rosmarinus officinalis*, que contiene estos compuestos, se encuentran en los enjuagues bucales y ha demostrado tener efectos inhibitorios contra el crecimiento de los microorganismos bucales,⁽¹¹⁾ lo que corroboraría los beneficios de usar flavonoides en los enjuagues bucales para mejorar la salud oral debido a su efecto antibacteriano⁽¹²⁾.

2. Objetivos

Así, con todo ello, el objetivo general de este trabajo es realizar una revisión bibliográfica sistemática que recoja cuáles son los efectos terapéuticos de los flavonoides en los enjuagues bucales.

Como objetivos específicos, se exponen los siguientes:

- Identificar y describir los diferentes tipos de flavonoides que se han utilizado en los colutorios o enjuagues bucales, así como sus propiedades químicas y farmacológicas.
- Comparar la eficacia y la seguridad de los enjuagues bucales con flavonoides frente a otros ingredientes activos o placebo, para prevenir o tratar diversas patologías bucales, como la caries, la gingivitis, la periodontitis o la hipersensibilidad dentinal.

3. Metodología

3.1. Diseño

Se trata de una investigación con un diseño descriptivo transversal y análisis crítico de estudios seleccionados a través de una revisión bibliográfica sistemática, en la que se realizó la búsqueda de los componentes de estudio de este trabajo. Así, se seleccionarán aquellos trabajos que recojan el efecto que tienen los flavonoides en los enjuagues bucales.

3.2. Fuente de obtención de los datos

La información fue recopilada mediante el uso y consulta en línea de las bases de datos bibliográficas especializadas en ciencias de la salud, entre las que se incluyen MedLine (a través de PubMed), Scopus y ProQuest.

3.3. Tratamiento de la información

Tras establecer los elementos clave de la investigación, se inició la exploración en el DeCS (Descriptores en Ciencias de la Salud) para identificar los términos relevantes que se alinearan con el tema central del estudio, que es la evaluación de los efectos terapéuticos de los flavonoides en enjuagues bucales. Se seleccionaron los descriptores específicos en español que reflejaran este enfoque, como "Flavonoides, Enjuagues Bucales y Efectos Terapéuticos". Además, se buscaron en los títulos y resúmenes de la literatura científica sin aplicar filtros adicionales y utilizando los términos de entrada correspondientes. Se omitió el uso de subencabezados para obtener la búsqueda amplia y abarcadora. A continuación, se utilizó el vocabulario universal mediante el MeSH (Medical Subjects Headings)

Tabla 1.

Principales descriptores y algunos "entry terms" utilizados en la estrategia de búsqueda

Palabras clave	DeCs	MeSH
PRINCIPALES		
	Flavonoides	Flavonoids
	Enjuagues bucales	Mouthwashes
	Efectos médicos	Medical effects
COMPLEMENTARIOS		
	Antibacteriano	Antibacterial
	Antiinflamatorio	Anti-inflammatory

Con todo esto, la ecuación de que se llevó a cabo en las bases de datos mencionadas anteriormente tuvo en cuenta algunos conectores booleanos, resultando así:

("Flavonoids"[Mesh] "Flavonoids"[Title/Abstract] OR OR "Bioflavonoids"[Title/Abstract] OR "Flavonoid Therapy"[Title/Abstract] "Flavonoid Treatment"[Title/Abstract] OR "Flavonoid Effects"[Title/Abstract]) AND ("Mouthwashes"[Mesh] OR "Oral Rinses"[Title/Abstract] OR "Dental Rinses"[Title/Abstract] OR "Therapeutic Oral Rinses"[Title/Abstract]) AND ("Anti-Inflammatory Agents"[Mesh] OR "Anti-Inflammatory Effects"[Title/Abstract] OR "Anti-Inflammatory Treatment"[Title/Abstract] OR "Inflammation Mediators"[Title/Abstract] OR "Inflammatory Process"[Title/Abstract]) AND Plaque Reduction"[Title/Abstract] OR "Gingival Reduction"[Title/Abstract] OR "Oral Cavity Bacteria Reduction"[Title/Abstract] OR "Oral Mucosa Lesion Treatment" [Title/Abstract] OR "Chronic Periodontitis Treatment"[Title/Abstract] OR "Aphthous Ulcers Healing"[Title/Abstract] OR "Dentin Erosion Prevention"[Title/Abstract])

3.4. Selección final de los estudios

Se seleccionaron los estudios que cumplieran ciertos criterios de inclusión, como:

- Aquellos que se encontraran en revistas revisadas por pares.
- El idioma sea en español o portugués, inglés.
- Se basarán en la presencia y los consiguientes efectos de los flavonoides en los enjuagues bucales.

Como criterios de exclusión, se descartaron aquellos que:

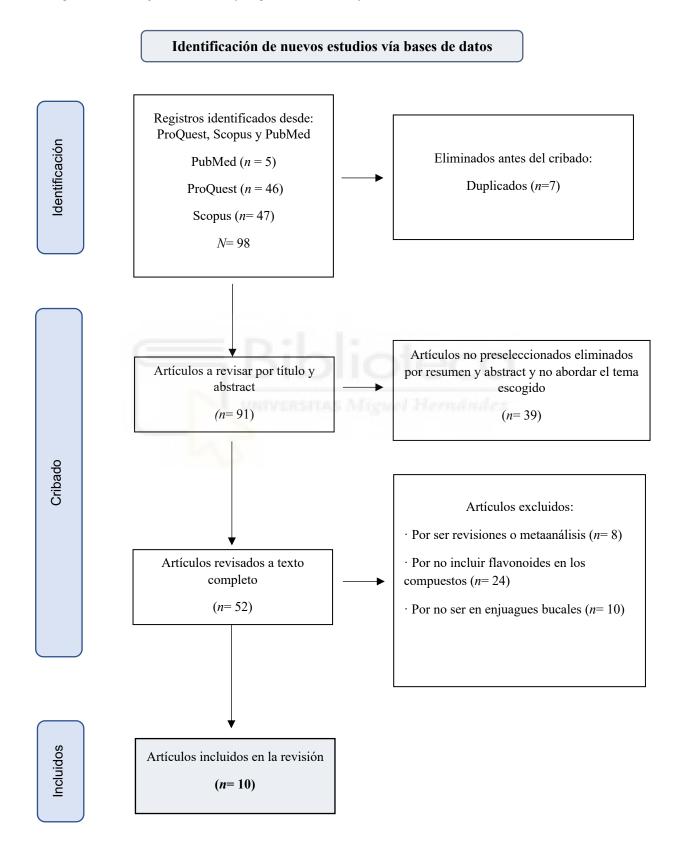
- No estuvieran en español, portugués, alemán o inglés.
- No investigara el compuesto propuesto en los enjuagues bucales.
- No tuviera en cuenta la salud bucal.

3.5. Evaluación de la calidad metodológica

Para evaluar la calidad de los estudios elegidos, se aplicaron las normas CONSORT (Consolidated Standards of Reporting Trials) (ver Anexo 1), que es una checklist que se utiliza para ensayos clínicos y cuenta con 25 puntos clave que deben estar detallados en cada uno de estos trabajos. Para ello, se otorgó un punto a cada artículo por cada criterio cumplido (si no era relevante, no se contaba); y si un criterio constaba de varios subpuntos, se valoraron individualmente, para poder calcular un promedio y así obtener el puntaje final de ese criterio, asegurándose de que no se excediera de un punto por cada uno.

3.6. Extracción de datos

Los estudios fueron agrupados por las variables que se querían investigar, para poder sistematizar y facilitar la comprensión de los hallazgos, teniendo en cuenta estos datos: primer autor de la referencia bibliográfica y año de publicación, tipo de estudio, intervención, objetivos y los resultados obtenidos


4. Resultados

Con los criterios de búsqueda anteriormente expuestos, se han podido recuperar 5 estudios de la base de datos Medline vía PubMed; 41 estudios de la base de datos ProQuest y 47 estudios de la base de datos Scopus. Finalmente, se incluyeron 10 estudios en esta revisión, puesto que el resto fueron eliminados por factores como: no contar con el diseño de investigación adecuado o falta de relevancia con el tema de estudio. A continuación, se expone el diagrama de flujo de esta investigación PRISMA (ver Figura 1).

Figura 1.

Diagrama de flujo PRISMA (Page et al., 2021)

Por otro lado, en las siguientes tablas se exponen las características y principales hallazgos de los estudios incluidos en esta revisión. En la Tabla 2 se exponen los estudios que se realizaron en humanos; y en la Tabla 3, los estudios realizados in vitro.

Tabla 2. Características y principales hallazgos de los estudios en humanos incluidos

Autor/es	Diseño de	Intervención	Objetivos	Resultados
	estudio			
Sharad y Kapur	Estudio	La naringina, el	Investigar la	BITS-003 mostró una
(2021) (17)	observacional	levotin y el quercetin	eficacia de	fuerte actividad
		(flavonoides) y un	cinco	virucida, inactivando el
		plásmido vector	formulaciones	virus SARS-CoV-2 en
		lentiviral para	herbales	un rango de 2 a más de
		pseudotipificar el	diferentes,	4 log10, y además
		virus SARS-CoV-2.	para combatir	demostró reducir el
(ے:اہا: ۵	la infección	crecimiento bacteriano
			por el virus	y de levaduras,
		encontract Miles	SARS-CoV-2.	sugiriendo su potencial
	100	HARRIST DAY THE PARTY		como enjuague bucal
	100			para reducir la carga
				viral y la propagación
				del virus.
Gunjal y Pateel	Ensayo	45 sujetos con	Valorar si el	El enjuague bucal de
(2024) (18)	controlado	gingivitis crónica,	propóleo	propóleo demostró una
	aleatorizado	divididos en tres	(compuesto	mejora significativa en
		grupos (propóleo,	por	la salud gingival y la
		clorhexidina y	flavonoides)	reducción de la placa.
		placebo). Cada	mejora la	
		grupo usó un	salud gingival	
		enjuague bucal	y la reducción	
		asignado durante 21	de la placa en	
		días, con	los enjuagues	
		evaluaciones de	bucales	
		placa y gingivitis		
		antes y después de		

		cada fase de		
		tratamiento.		
Syeda et al.	Ensayo	144 mujeres con	Comparar la	Ambos enjuagues
(2024) (19)	controlado	periodontitis crónica,	eficacia del	fueron eficaces para
	aleatorizado	de un total de 254	enjuague	tratar la periodontitis,
		evaluadas, y se	bucal con	pero el enjuague bucal
		asignaron a dos	propóleo con	con propóleo fue más
		grupos de	el enjuague	eficaz que el de
		tratamiento, uno con	bucal con	clorhexidina.
		enjuague bucal de	clorhexidina	
		propóleo al 20% y el	al 0,2% para	
		otro con enjuague	mejorar la	
		bucal de clorhexidina	periodontitis	
		al 0.2%,	de las	
		administrados dos	mujeres con	
		veces al día durante	menopausia.	
		seis semanas. Los		
- (participantes fueron	L	
		evaluados a través	reco	
		de sondaje		
	14 01	periodontal y	et Eternana	
		mediciones de		
		profundidad de		
		bolsillo, pérdida de		
		inserción clínica y		
		sangrado al sondaje		
		en períodos de seis y		
		doce semanas.		
Soundarajan y	Ensayo	Se realizó un ensayo	Investigar el	El enjuague bucal
Rajasekar	controlado	controlado aleatorio	efecto de las	nanocompuesto GO-
(2023) (20)	aleatorizado	doble ciego con 30	semillas de	Ag, con extracto de
		pacientes con	amla	semillas de amla,
		gingivitis, divididos	(compuestas	demostró ser efectivo
		en dos grupos: uno	por	para reducir la placa, la
		usando enjuague	flavonoides y	inflamación de las
		bucal	otros	encías y las unidades
		nanocompuesto y el	estractos) en	formadoras de

otro clorhexidina al	el enjuague	colonias en pacientes
0,2%. Se evaluaron	bucal para	con gingivitis causada
parámetros clínicos	valorar si éste	por la placa.
(índice de placa,	mejoraba la	
índice gingival),	gingivitis.	
microbiológicos		
(unidades		
formadoras de		
colonias) y		
bioquímicos (nivel de		
proteína C reactiva		
en el líquido gingival)		
al inicio y a los 15		
días.		

La Tabla 2, muestra tres estudios con un diseño de ensayo controlado aleatorizado (Gunial y Pateel ⁽¹⁸⁾; Syeda et al., ⁽¹⁹⁾; Soundarajan y Raiasekar ⁽²⁰⁾; mientras que otro se basó en un estudio observacional (Sharad y Kapur) ⁽¹⁷⁾. Todos son estudios muy actuales, con un intervalo de publicación de 2021 a 2024.

Así, Sharad y Kapur ⁽¹⁷⁾, en su trabajo , encontraron que la formulación herbal BITS-003, un enjuague bucal que contenía naringina, el levotin y el quercetin o querceitina (flavonoides), tenía una fuerte actividad virucida, inactivando el virus SARS-CoV-2 con resultados significativos. Además, redujo el crecimiento de bacterias y levaduras, lo que sugiere que podría ser una formulación efectiva en el enjuague bucal para disminuir la carga viral y prevenir la propagación del virus.

Por su parte, Gunjal y Pateel ⁽¹⁸⁾ llevaron a cabo un ensayo controlado aleatorizado en 45 sujetos, y encontraron que el enjuague bucal de propóleo, que está compuesto por flavonoides, mostró una mejora significativa en la salud gingival y la reducción de la placa en sujetos con gingivitis crónica, comparado con los grupos de clorhexidina y placebo.

Syeda et al. (19) también llevaron a cabo un ensayo controlado aleatorizado, y se comparó la eficacia de un enjuague bucal de propóleo al 20% con uno de clorhexidina al 0.2% en mujeres con periodontitis crónica. Los resultados indicaron que ambos enjuagues eran efectivos, pero el enjuague bucal de propóleo fue más eficaz que el de clorhexidina para mejorar la periodontitis en mujeres menopáusicas. Por ende, el propóleo (compuesto por flavonoides) podría ser una buena opción para tener en cuenta en los enjuagues bucales.

Por último, Soundarajan y Rajasekar ⁽²⁰⁾, también en un ensayo controlado aleatorio doble ciego, se encontró que el enjuague bucal nanocompuesto GO-Ag, que contiene extracto de semillas de amla (que contienen flavonoides) fue efectivo para reducir la placa, la inflamación de las encías y las unidades formadoras de colonias en pacientes con gingivitis.

Tabla 3. Características y principales hallazgos de los estudios in vitro incluidos

Autor/es	Diseño del	Intervención	Objetivos	Resultados
	estudio	DERESTAS Africa	of Hernánde	
Gutiérrez-	Experimental in	Diferentes	Investigar si los	Los flavonoides
Venegas et al.	vitro	estructuras de	flavonoides	muestran un efecto
(2019) (21)		flavonoides	tienen efectos	bacteriostático en
			antibacterianos	todas las bacterias y
			en la placa	hongos analizados.
			dental.	
Akshayaa et al.	Experimental in	Enjuagues	Investigar la	El enjuague bucal que
(2024) (22)	vitro	bucales	eficacia de la	contiene quercetina ha
		comerciales	quercetina en	mostrado una
		(control) y	los enjuagues	capacidad para matar
		quercetina	bucales contra la	bacterias de manera
		(muestra de	placa bacteriana	amplia y efectiva,
		prueba), a la que		similar a los enjuagues
		se añadieron lauril		bucales a base de
		sulfato de sodio,		hierbas que se
		conservante		encuentran en el
		(metilparabeno de		mercado.
		sodio) y sacarosa		

		para formular la		
		muestra de		
		prueba.		
Sagar et al.	Experimental in	Se formularon	Establecer una	La formulación dio
(2023) (23)	vitro	enjuagues	formulación de	efectos positivos en
(2023)	VILIO	bucales a base de		funciones
			, 3	
		extractos	a base de	antioxidantes y
		herbales, incluido	algunas hierbas	antiinflamatorias en la
		el ficus	para ofrecer	cavidad oral.
		benghalenis ,	beneficios en la	
		(compuesto por	_	
		flavonoides) y se	reducir los	
		evaluaron sus	efectos tóxicos	
		propiedades	de algunos	
		antioxidantes y	enjuagues.	
		antiinflamatorias		
		mediante ensayos		
6		in vitro.		
Soekanto et al.	Experimental in	Se cultivaron P.	Examinar el	Se sugiere que el
(2023) (24)	vitro	gingivalis (ATCC	efecto de	enjuague bucal de
	ON DIN	33277) y S.	un enjuague	propóleo al 5 % es
-		aureus (ATCC	bucal de	eficaz para tratar el
		25923) en medio	propóleo al 5%	crecimiento de P.
		Brain Heart	sobre el	gingivalis y S. aureus.
		Infusion (BHI) a	crecimiento y la	
		37°C durante 24	sensibilidad de	
		h, se preparó un	las biopelículas	
		enjuague bucal de	de especies	
		propóleo al 5% y	duales de P.	
		se evaluó su	gingivalis y S.	
		efecto sobre la	aureus.	
		formación de		
		biopelículas en		
		placas de 96		
		pocillos mediante		
		observaciones		
		microscópicas y la		
		prueba de cristal		
		pruena de Clistal		

		violeta, además de analizar la expresión génica mediante RT- PCR, seguido de análisis estadístico utilizando SPSS ver. 25 con un valor de p <0,05 considerado significativo.		
Omidi et al. (2023) (25)	Experimental in vitro	Se obtuvieron las estructuras cristalinas de enzimas bacterianas relevantes. Se realizaron cálculos de interacciones proteína-ligando y se prepararon para el análisis. Por último, se utilizaron métodos de laboratorio para evaluar la eficacia de enjuagues bucales.	Comprar los efectos del fluoruro al 0,2% y el enjuague bucal combinados con compuestos flavonoides ante ciertas bacterias	El flúor al 0,2% con eriocitrina mostró una mayor eficacia tanto en modelos computacionales como en experimentos de laboratorio, en comparación con el flúor al 0,2%, debido a su capacidad inhibidora notable en diversas concentraciones contra S. mutans y L. acidophilus.
Nanasombat (2023) (26)	Experimental in vitro	Se obtuvieron especias secas y se prepararon extractos con etanol al 85%. Se utilizaron cepas microbianas	Investigar acerca de los efectos de ciertas plantas medicinales para aplicar sus efectos	Los extractos de canela demostraron una fuerte actividad inhibitoria contra Candida albicans, con la canela y el cinamaldehído

	específicas,	antioxidantes o	exhibiendo efectos
	cultivadas bajo	antibacterianos	letales y fuga de
	condiciones	para formular	proteínas celulares en
	adecuadas. Se	enjuagues	la misma especie. Los
	evaluó la	bucales. Entre	extractos de canela y
	capacidad	estas plantas, la	jengibre en
	antioxidante y la	canela, que está	formulaciones de
	actividad	compuesta por	enjuagues bucales
	captadora de	flavonoides; o el	inhibieron
	radicales de óxido	jengibre, que	significativamente el
	nítrico. Todos los	también	crecimiento de C.
	ensayos se	contiene	albicans, mientras que
	llevaron a cabo en	flavonoides.	los extractos de roselle
	triplicado.		mostraron una alta
			actividad inhibitoria
			contra Lactobacillus
			casei, sugiriendo su
			potencial para
	DIIOIIC	precc	formulaciones bucales
			antimicrobianas.
UN UN	IVERSITAS Migr	iet Hernande	

Como se puede observar en la Tabla 3, todos los estudios incluidos fueron experimentales in vitro. En cuanto a las fechas de publicación, también se consideran actuales, siendo 2019 la fecha más antigua y el 2024 el más actual.

De esta forma, Gutiérrez-Venegas et al. (21) examinaron diferentes estructuras de flavonoides y encontró que tienen un efecto bacteriostático en todas las bacterias y hongos analizados, lo que sugiere su potencial para combatir la placa dental; por ende, podrían ser utilizados en enjuagues bucales.

Por otro lado, Akshayaa et al. (22) compararon enjuagues bucales comerciales con una muestra de prueba que contenía quercetina (flavonoide), y se le añadieron lauril sulfato de sodio, conservante (metilparabeno de sodio) y sacarosa. La quercetina demostró ser amplia y efectivamente bactericida, aunque también encontraron que estos resultados eran similares a los enjuagues bucales herbales del mercado.

Sagar et al. ⁽²³⁾, llevaron a cabo formulaciones de enjuagues bucales a base de extractos herbales, incluyendo ficus benghalensis, que está compuesto por flavonoides, y se evaluaron sus propiedades antioxidantes y antiinflamatorias. La formulación mostró efectos positivos en la cavidad oral, siendo un antiinflamatorio y antioxidante eficaz en los enjuagues bucales.

Además, Soekanto et al. (24) investigaron el efecto de un enjuague bucal de propóleo (compuesto de flavonoides) al 5% sobre P. gingivalis y S. aureus. El estudio sugiere que este enjuague es eficaz para tratar el crecimiento de estas bacterias.

Omidi et al. ⁽²⁵⁾, por otro lado, demostró que la combinación de flavonoides, específicamente la eriocitrina, con fluoruro al 0,2% en enjuagues bucales, aumenta significativamente su eficacia antibacteriana. Esta sinergia resultó en una inhibición notable de bacterias causantes de caries como S. mutans y L. acidophilus, superando la efectividad del fluoruro solo. Por lo tanto, los flavonoides, como la eriocitrina, podrían ser ingredientes clave para mejorar los tratamientos de salud bucal en el futuro.

Por último, Nanasombat ⁽²⁶⁾ evaluó los efectos antioxidantes y antibacterianos de extractos de especias secas, como la canela y el jengibre, que son ricos en flavonoides. Se prepararon extractos con etanol al 85% y se probaron contra cepas microbianas específicas. Los resultados mostraron que los extractos de canela tenían una fuerte actividad inhibitoria contra *Candida albicans*, causando efectos letales y la fuga de proteínas celulares. Además, las formulaciones de enjuagues bucales que incluían canela y jengibre inhibieron significativamente el crecimiento de *C. albicans*, mientras que los extractos de roselle fueron altamente efectivos contra *Lactobacillus casei*.

5. Discusión

Durante la revisión de las distintas investigaciones, se ha podido comprobar que el estudio de la relación existente entre los flavonoides y el efecto antiinflamatorio y/o antibacteriano, así como antioxidante, es positivo, aunque hay que resaltar que es un tema de bastante actualidad y, por ende, poco explorado, por lo que los resultados pueden haber sido poco concluyentes. Una razón podría haber sido que se usaban compuestos que incluían los flavonoides, pero también otros, por lo que la acción antibacteriana/antiinflamatoria podría haberla dado otra sustancia. También cabe mencionar que muchos ingredientes usados en los enjuagues bucales, pese a tener una gran cantidad de flavonoides, éstos no eran exclusivos.

No obstante, se pueden extraer varios datos interesantes de esta revisión. En primer lugar, referido al efecto bacteriostático y bactericida de los flavonoides, tanto el estudio de Gutiérrez-Venegas et al. (21) como el de Akshayaa et al. (22) proporcionan dicha evidencia, pues ambos estudios apoyan la idea de que los flavonoides pueden ser efectivos contra una amplia gama de microorganismos orales. Por su parte, Omidi et al. (25) demuestran que la combinación de flavonoides con fluoruro puede aumentar la eficacia antibacteriana, lo que indica que los flavonoides podrían potenciar los efectos de otros ingredientes activos en los enjuagues bucales.

Los estudios de Sagar et al. ⁽²³⁾ y Soundarajan y Rajasekar ⁽²⁰⁾ destacan las propiedades antioxidantes y antiinflamatorias de los flavonoides, lo que sugiere que su inclusión en enjuagues bucales podría beneficiar a pacientes con condiciones inflamatorias como la gingivitis.

Sharad y Kapur ⁽¹⁷⁾ proporcionan un interesante hallazgo sobre la actividad virucida de los flavonoides, lo que podría ser relevante en el contexto de pandemias y la necesidad de controlar la transmisión viral. Un estudio de revisión narrativa de García-Sánchez et al. ⁽¹³⁾, examinó la actividad virucida de diferentes enjuagues bucales contra la carga salival de SARS-CoV-2. Se halló que ciertos compuestos presentes en los enjuagues bucales, incluyendo los flavonoides,

podrían tener efectos virucidas. No obstante, también enfatizaron la necesidad de realizar más investigaciones para confirmar estos hallazgos y comprender mejor el mecanismo de acción de los flavonoides en la inactivación viral.

Por último, Gunjal y Pateel ⁽¹⁸⁾ y Syeda et al. ⁽¹⁹⁾ ofrecen evidencia clínica de que los enjuagues bucales a base de flavonoides pueden mejorar la salud gingival y ser más efectivos que tratamientos estándar como la clorhexidina. Del mismo modo, la revisión de Halboub et al. ⁽¹⁴⁾ encontró que los enjuagues bucales a base de propóleo mostraron buena eficacia en la reducción de la placa y la gingivitis en todos los estudios incluidos.

Otros estudios de revisión (Castro ⁽⁴⁾; Hernández ⁽⁵⁾) ya reconocían las propiedades beneficiosas de los flavonoides, pero la investigación reciente ha proporcionado una comprensión más profunda y específica de cómo estos compuestos pueden ser utilizados de manera efectiva en enjuagues bucales. Una revisión sistemática actual de Kovac et al. ⁽¹⁵⁾ sobre el potencial terapéutico de los flavonoides y taninos en el manejo de enfermedades infecciosas orales destaca su actividad antimicrobiana basada en usos tradicionales y la seguridad relativa de los productos herbales.

Algunas investigaciones han sugerido que los flavonoides no solo son efectivos contra patógenos orales, sino que también pueden mejorar la salud periodontal, como se observa en un análisis transversal que encontró una asociación entre la ingesta de flavonoides dietéticos y la periodontitis (16).

5.1. Limitaciones de este trabajo

En primer lugar, hay que resaltar que es un tema muy reciente y todavía no hay muchas publicaciones al respecto. La mayoría de los estudios encontrados son muy actuales, y no se puede hablar de eficacia todavía, ya que, por un lado, la mayoría de los mismos investigaban la eficacia de los flavonoides en procesos antiinflamatorios o antibacterianos

Por otro lado, la estrategia de búsqueda se vio alterada varias veces, ya que era complicado encontrar estudios que se centraran exclusivamente en los

flavonoides dentro de la composición de los enjuagues bucales sin la presencia de otros compuestos que pudieran influir en los resultados.

Seguido a esto, una limitación podría ser el diseño de los estudios in vitro, puesto que, aunque proporcionan una base para la investigación posterior, de momento no tienen aplicabilidad directa en humanos.

6. Conclusiones

Respondiendo a los objetivos de esta revisión, se ha comprobado que los flavonoides tienen una acción antiinflamatoria, antibacteriana y antioxidante; además de un potencial virucida.

Además, se ha identificado una variedad de flavonoides utilizados en colutorios, como la quercitina y la eriocitrina, destacando sus propiedades antiinflamatorias, antibacterianas y antioxidantes.

Finalmente, los flavonoides han mostrado ser efectivos contra una amplia gama de microorganismos orales y podrían potenciar los efectos de otros ingredientes activos en los enjuagues bucales. Además, algunos de los flavonoides como la quercitina podrían beneficiar a pacientes con condiciones inflamatorias como la gingivitis y mejorar la salud gingival, siendo potencialmente más efectivos que tratamientos estándar.

Referencias bibliográficas

- 1. Liu W, Feng Y, Yu S, Fan Z, Li X, Li J, Yin H. The flavonoid biosynthesis network in plants. Int J Mol Sci. 2021;22(23):12824.
- 2. Panche AN, Diwan AD, Chandra SR. Flavonoids: an overview. J Nutr Sci. 2016;5:e47.
- Cano Europa E, Blas Valdivia V, Rodríguez Sánchez R, Torres Manzano P, Franco Colín M, Hernández García A, Ortiz Butrón R. Uso terapéutico de algunos microorganismos, microalgas, algas y hongos. Rev Mex Cienc Farm. 2012;43(4):22-30.
- 4. Castro EÁ, Cambeiro FO. Actividad biológica de los flavonoides (I). Acción frente al cáncer. Bioquímica. OFFARM. 2003;22(10).
- 5. Hernández Guiance SN, Marino L, Isern DM, Coria ID, Irurzun IM. Flavonoides: aplicaciones medicinales e industriales. Invenio. 2019;22.
- Varoni E, Lodi G, Sardella A, Carrassi A, Iriti M. Plant polyphenols and oral health: old phytochemicals for new fields. Curr Med Chem. 2012;19(11):1706-1720.
- 7. Gutiérrez-Venegas G, Gómez-Mora JA, Meraz-Rodríguez MA, Flores-Sánchez MA, Ortiz-Miranda LF. Effect of flavonoids on antimicrobial activity of microorganisms present in dental plaque. Heliyon. 2019;5(12).
- 8. Rosier BT, Marsh PD, Mira A. Resilience of the oral microbiota in health: mechanisms that prevent dysbiosis. J Dent Res. 2018;97(4):371-380.
- 9. Villalobos OJ, Salazar CR, Ramírez de Sánchez G. Efecto de un enjuague bucal compuesto de aloe vera en la placa bacteriana e inflamación gingival. Acta Odontol Venez. 2001;39(2):16-24.
- 10. Kováč J, Slobodníková L, Trajčíková E, Rendeková K, Mučaji P, Sychrová A, Bittner Fialová S. Therapeutic Potential of Flavonoids and Tannins in Management of Oral Infectious Diseases-A Review. Molecules. 2022 Dec 24;28(1):158.
- 11. De Paula IMB, Moraes FC, Souza OVD, Yamamoto CH. Development of mouthwash with Rosmarinus officinalis extract. Braz J Pharm Sci. 2014;50:851-858.

- 12. Lee SH, Kim WH, Ju KW, Lee MS, Kim HS, Lee JH, et al. Antibacterial and anti-inflammatory potential of mouthwash composition based on natural extracts. Appl Sci. 2021;11(9):4227.
- 13. Garcia-Sanchez A, Peña-Cardelles JF, Salgado-Peralvo AO, Robles F, Ordonez-Fernandez E, Ruiz S, Végh D. Virucidal activity of different mouthwashes against the salivary load of SARS-CoV-2: a narrative review. Healthcare. 2022 Mar;10(3):469.
- 14. Halboub E, Al-Maweri SA, Al-Wesabi M, Al-Kamel A, Shamala A, Al-Sharani A, Koppolu P. Efficacy of propolis-based mouthwashes on dental plaque and gingival inflammation: a systematic review. BMC Oral Health. 2020;20:198. Disponible en: BMC Oral Health.
- 15. Kováč J, Slobodníková L, Trajčíková E, Rendeková K, Mučaji P, Sychrová A, Bittner Fialová S. Therapeutic potential of flavonoids and tannins in management of oral infectious diseases—a review. Molecules. 2022;28(1):158.
- 16. Liu Y, Yin T, He M, Fang C, Peng S. The relationship of dietary flavonoids and periodontitis in US population: a cross-sectional NHANES analysis. Clin Oral Investig. 2024;28(3):168.
- 17. Sharad S, Kapur S. Indian herb-derived phytoconstituent-based antiviral, antimicrobial and antifungal formulation: An oral rinse candidate for oral hygiene and the potential prevention of COVID-19 outbreaks. Pathogens. 2021;10(9):1130.
- 18. Gunjal S, Pateel DGS. Comparative effectiveness of Propolis with chlorhexidine mouthwash on gingivitis—a randomized controlled clinical study. BMC Complement Med Ther. 2024;24(1):154.
- 19. Seyda WM, Razi A, Qureshi SS, Saher F, Zaidi SJA, Kumar C. Comparative evaluation of propolis mouthwash with 0.2% chlorhexidine mouthwash as an adjunct to mechanical therapy in improving the periodontitis among perimenopausal women: a randomized controlled trial. BMC Oral Health. 2024;24(1):26.

- 20. Soundarajan S, Rajasekar A. Antibacterial and anti-inflammatory effects of a novel herb-mediated nanocomposite mouthwash in plaque-induced gingivitis: a randomized controlled trial. Dent Med Probl. 2023;60(3):445-451.
- 21. Gutiérrez-Venegas G, Gómez-Mora JA, Meraz-Rodríguez MA, Flores-Sánchez MA, Ortiz-Miranda LF. Effect of flavonoids on antimicrobial activity of microorganisms present in dental plaque. Heliyon. 2019;5(12).
- 22. Akshayaa L, Kumar JK, Shanmugam R. Formulation of Quercetin Mouthwash and Anti-microbial Potential Against Critical Pathogens: An In-Vitro Evaluation. Cureus. 2024;16(1).
- 23. Sagar S, Ramani P, Rajeshkumar S, Abilasha R. Antioxidant and antiinflammatory effects of herbal formulation (Ficus benghalenis, Azadirachta indica and Mentha piperita) based mouthwash. Int J Med Dent. 2023;27(3).
- 24. Soekanto SA, Zhafira A, Kalemben E, Theodorea CF, Bachtiar EW, Bachtiar BM. Effect of Propolis Mouthwash on Growth and Sensitivity of Dual-Species Porphyromonas Gingivalis and Staphylococcus Aureus Biofilms (In vitro). J Int Dent Med Res. 2023;16(3):1010-1013.
- 25. Omidi B, SarveAhrabi Y, Khoei SN. Comparison of the Effect of Fluoride 0.2% and a Combined Mouthwash (Flavonoid Compounds and Fluoride 0.2%) Against Streptococcus mutans and Lactobacillus acidophilus: In Silico and In Vitro Study. Avicenna J Dent Res. 2023;15(4):142-149.
- 26. Nanasombat S. Antioxidant, Anti-Oral Cancer, and Antimicrobial Activity of Medicinal Plant Extracts: Development of Mouthrinse Formulations. Trends Sci. 2023;20(5):4785.

ANEXOS

Anexo 1. Checklist CONSORT

CONSORT 2010. Listado de comprobación de la información incluida en un estudio con metodología experimental

Sección/Tópico	Número de ítem	Chequeo del item	Informado en página
Título y Resumen	1a Identificar la metodología experimental en el título.		
ritulo y Nesullieli	1b Resumen estructurado con métodos, resultados y conclusiones.		
Introducción	2a Antecedentes científicos, explicación y razonamiento.		
Antecedentes y objetivos	2b Especificar los objetivos o las hipótesis.		
	3a Descripción del diseño (como paralelo, factorial) incluyendo la tasa de asignación para		
Métodos	cada grupo (como 1:1 para los dos grupos).		
Diseño del estudio	3b Cambios importantes en los métodos después de que el estudio ha comenzado (como		
	criterio de elegibilidad) , señalar las razones.		
Participantes	4a Criterios de elección de los participantes.		
r uruoipariteo	4b Dispositivos y contextos donde los datos fueron recogidos.		
Intervenciones	5 Precisar con detalle las intervenciones para cada grupo para permitir la replicación, incluir		
	cuándo y cómo fueron realmente administradas.		
	6a Definir claramente las evaluaciones de los resultados primarios pre-especificados y la de		
Resultados	los secundarios, incluyendo cómo y cuándo se evaluaron.		
	6b Cualquier cambio en los resultados después de que el estudio ha comenzado, señalar las		
	razones.		
Tamaño de la muestra	7a Cómo fue determinado el tamaño de la muestra.		
Alesterización:	7b Cuando sea aplicable, explicar cualquier análisis intermedio y las reglas de finalización.		
Aleatorización: -Generación de la	8a Método utilizado para generar la secuencia de asignación aleatoria. 8b Tipo de aleatorización: incluir detalles de cualquier restricción (como bloqueo y tamaño de		
secuencia	bloque).		
-Mecanismo de asignación	9 Mecanismo utilizado para implementar la secuencia de asignación aleatoria (como		
oculta	contenedores numerados secuencialmente).		
	10 Quién genera la secuencia de la asignación aleatoria, quién inscribe a los participantes y		
-Implementación	quién asigna a los participantes a las intervenciones.		
	11a Si se aplica, quién quedo ciego después de la intervención (por ejemplo, los participantes,		
	los que administraron la intervención, los que evaluaron los resultados) y cómo se evaluó el		
Enmascaramiento	éxito del proceso de la técnica de enmascaramiento.		
	11b Si es relevante, descripción de las similitudes de las intervenciones.		
	12a Métodos estadísticos utilizados para comparar a los grupos en los resultados primarios y		
Métodos estadísticos	en los secundarios.		
	12b Métodos para análisis adicionales como análisis de subgrupos o análisis ajustados.		
Resultados	42- Days and a many of more than a string the many and a signature of the string than		
Flujo de los participantes	13a Para cada grupo, el número de participantes que son asignados aleatoriamente,		
(es altamente	recibiendo el tratamiento previsto y analizado para los resultados primarios. 13b Para cada grupo, señalar las pérdidas y las exclusiones después de la aleatorización		
recomendable utilizar un	iunto con sus razones.		
diagrama)	Junto con sus razones.		
Reclutamiento	14a Fechas indicadoras de los períodos de reclutamiento y seguimiento.		
	14b Por qué se terminó el estudio o se detuvo.		
Datos de línea base	15 Una tabla que muestre las características demográficas y clínicas de cada grupo.		
Números analizados	16 Para cada grupo, el número de participantes (denominador) incluido en cada análisis y si el		
Tumeros analizados	análisis fue realizado con los grupos asignados originalmente.		
	17a Para cada resultado primario y secundario, los resultados para cada grupo y el tamaño		
Resultados y estimación	del efecto estimado y su precisión (como un intervalo de confianza de 95%).		
•	17b Para resultados dicotómicos, se recomienda presentar tanto los tamaños del efecto		
	relativos como los absolutos.		
Análisis auxiliar	18 Resultados de cualquier otro análisis realizado, incluyendo análisis de subgrupos y análisis		
A diverside de e	ajustados, distinguiendo entre los pre-especificados y los exploratorios.		
Adversidades Discusión	19 Todos los efectos adversos importantes o los efectos no deseados en cada grupo. 20 Limitaciones del estudio, considerar las fuentes de posibles sesgos, imprecisiones y, si es		
Limitaciones	20 Limitaciones del estudio, considerar las fuentes de posibles sesgos, imprecisiones y, si es relevante, la multiplicidad de análisis.		
Limitaciones Generalización	21 Generalización de los hallazgos del estudio (validez externa, aplicabilidad).		
Generalización	21 Generalización de los naliazgos del estudio (validez externa, aplicabilidad). 22 Interpretación consistente con los resultados, equilibrando los efectos de las hipótesis y los		
Interpretación	posibles efectos de sesgo, y teniendo en cuenta otras pruebas relevantes.		
Otra información			
Registro	23 Registrar el número y el nombre del estudio.		
Protocolo	24 Cuando el protocolo del estudio pueda consultarse, hacerlo accesible.		
	25 Fuentes de financiación y de apoyo (como el suministro de medicamentos) y papel de los		
Financiación	financiadores.		

November 10, 2010
If you wish to cite the contents of this document, the APA reference for them would be: Frías-Navarro, D. (2010). CONSORT 2010: Adapted Spanish translation. Spain: University of Valencia. Retrieved <month, day, and year you downloaded this file> from https://www.uv.es/friasnav/CONSORTSpanish.pdf