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Abstract: This paper deals with the weighted combination of forecasting methods using intelligent
strategies for achieving accurate forecasts. In an effort to improve forecasting accuracy, we develop
an algorithm that optimizes both the methods used in the combination and the weights assigned to
the individual forecasts, COmbEB. The performance of our procedure can be enhanced by analyzing
separately seasonal and non-seasonal time series. We study the relationships between prediction
errors in the validation set and those of ex-post forecasts for different planning horizons. This study
reveals the importance of setting the size of the validation set in a proper way. The performance of
the proposed strategy is compared with that of the best prediction strategy in the analysis of each of
the 100,000 series included in the M4 Competition.

Keywords: forecasting; time series methods; forecasting combination; M4 Competition

MSC: 62-08; 62L05; 62P20

1. Introduction

In uncertain environments, decision making based on the analysis of historical data is
of utter importance. This often implies the implementation and development of different
prediction strategies, which have to be adapted to the specific characteristics of the data.
Nowadays, the vast majority of companies have access to large datasets. Hence, the de-
velopment of simple, accessible, competitive, and automatic tools that provide accurate
forecasts in a reasonable computing time is a need.

It is well known that the combination of forecasts derived from methods that may differ
substantially and draw from different sources of information can improve the forecasting
accuracy in comparison with forecasts provided individually by these methods ([1–3],
for example). For instance, [4] proposes using exponential weighted information criteria,
while other authors use neural networks (see, for instance, [5–7]) and machine learning
techniques ([8,9]) for improving the accuracy of the forecasts. The key is to note the
importance of deciding on suitable and robust procedures to select the contributed models
and their assigned weights so as to produce accurate out-of-sample point forecasts. To this
end, this paper proposes a procedure for suitably selecting both methods and weights.

The M4 Competition [10], available in the R package M4comp2018 [11], is an open
competition that includes a large number of time series. In particular, the package contains
100,000 series, each of them with the following components: the series, the true future values
(the test part ), type, and domain, and the submitted forecasts of the top 25 participants.
The competition was used to establish a ranking of forecasting procedures based on different
strategies (hybrid technologies, combination of prediction methods, statistical approaches,
etc.) to build accurate forecasts. One of the main objectives of this competition was to
improve the performance of forecasting methods that use historical data for decision
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making (see, for instance, [12] and references therein). As shown, the most accurate results
were obtained by implementing several exponential smoothing formulations within neural
networks [13] and applying a meta-model to combine forecasts [14].

Within the framework of combining forecasts, our objective in this paper is to develop
a procedure to select both forecasting methods and their corresponding weights based
on the behavior of well-established models and weighting strategies. To do so, we work
with the time series of the M4 Competition under the same conditions set with respect
to the seasonal pattern (yearly, quarterly, monthly, and other time series) and forecasting
horizons (6 years, 8 quarters, 18 months, 14 days, 13 weeks, and 48 h, depending on the
nature of the series). In particular, we develop an experiment in which each time series
is segmented into two subsets: the training set and the validation set, which contains the
last observations and whose size coincides with that of the established forecasting horizon.
The performance of several model selection and weighting strategies is compared using
the yearly and quarterly time series. This involves the analysis of the forecasting results
of 47,000 time series. Based on this comparison, we then present a new algorithm for
combining forecasts, COmbEB. The performance of our procedure is assessed using the
remaining 53,000 series from the competition.

This paper is organized as follows. In the next section, we briefly review the forecasting
methods that we use in the convex linear combination and several weighting criteria.
The strategies used in the experiment for the selection of models and weights are also
developed in Section 2. Section 3 presents a new procedure to combine the selected
forecasting methods. The main results obtained by applying the new algorithm in the
forecasting of the time series classified as either monthly or other time series are shown in
Section 4. The last section offers some concluding remarks.

2. Materials and Methods

It is well known that the linear combination of different forecasting methods may
produce more accurate out-of-sample forecasts. Within this scenario, the computation of
sensible weights also plays an important role, and different strategies have been proposed
in an effort to improve the forecasting accuracy (see [1], and references therein). One of
the most widely used error-based weighting strategies is the one proposed in [2]. Here,
the weight assigned to each method is inversely proportional to its forecasting MSE. This
strategy has also been used with other measures of the forecasting error. Alternatively,
many authors consider convex combinations of forecasts, that is, linear combinations in
which the weights are constrained to be non-negative and add up to one. This simplifies
the interpretation of the weights.

In the next subsection, we briefly describe the forecasting methods and the weighting
strategies that we use in our combination.

2.1. Forecasting Methods

Let Y = {y1, y2, . . . , yN} be the time series under study and p be the length of
the seasonal cycle. At time N, we want to forecast the vector of future observations
Ŷ = {ŷN+1, ŷN+2, . . . , ŷN+h}, h being the forecasting horizon. Forecasts for the time series
are calculated by using the following models, which can be grouped into three categories:

Category 1: Those models that use the last observations to provide forecasts.

• Naïve 1 method (Naive). The forecast coincides with the last observation: ŷt = yt−1.
• Naïve 2 method (Naive2). The forecast includes an estimation of the trend:

ŷt = yt−1 + (yt−1 − yt−2).
• Seasonal Naïve method (SNaive2). The forecast is the observation in the same period

of the previous seasonal cycle: ŷt = yt−p.
• Moving average of k periods (MAk). The forecast is given by the arithmetic average of

the last k ≥ 2 observations: ŷt =
yt−1+yt−2+...+yt−k

k .
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Category 2: Exponential smoothing models (see, for instance, Refs. [15,16]) which
can analyze either the original data (named raw data) or their logarithmic transformation
(named ln data). Note that the logarithmic transformation converts the multiplicative trend
and seasonal effects into additive ones. To work with exponential smoothing models, the
initial values for the level, trend, seasonal effects, and the smoothing parameters must be
estimated using the observed data. In our approach, the corresponding initial values are
also considered as parameters of the model, and they are jointly estimated using statistical
and optimization tools (see, for instance, Refs. [17–19]). In particular:

• For the analysis of non-seasonal time series, we apply Gardner’s damped trend
model ([20,21]), which is denoted as G-Raw data or G-ln data, indicating the model
(Gardner) and the data analyzed (raw or log transformed), respectively.

• For the analysis of seasonal time series, the additive Holt–Winters model with a
damped trend is applied ([18,22]). Analogously, the results associated with this model
are respectively identified as HW-Raw data or HW-ln data.

Category 3: Finally, in order to incorporate the advantages of ARIMA models [23], we
consider the forecasts provided by using the auto.arima function included in the forecast
package of R [24], which is available in CRAN (http://cran.r.project.org/ accessed on
15 February 2022). See, also, Ref. [25].

2.2. Linear Combination of Forecasting Techniques

In this paper, we consider a two-stage procedure for combining forecasting models.
In a first stage, h forecasts are collected for every time series Y individually, using the
aforementioned models, Mj, for j = 1, . . . , 9. Since these take into account the value of the
parameter of the seasonal cycle, p, only six models can be considered either for seasonal
or non-seasonal time series. In the second stage, the procedure computes a linear convex
combination of the selected models with their assigned weights wj to provide the new h
ex-post combined forecasts for each time series: Ŷ.

Let us now analyze three error-based weighting strategies. They are based on either
the fitting sMAPE or the forecasting sMAPE, depending on the data used to compute
the weights.

First, the procedure makes a segmentation of the observed data set Y = {y1, . . . , yN}
into two subsets: the training set, which contains the first observations, T1 = {y1, . . . , yN−h},
and the validation subset T2, with the last h observations. Using T1, each Mj method

provides h forecasts: T̂ j
2 = {ŷj

N−h+1, . . . , ŷj
N}. The fitting and forecasting sMAPE errors for

each method are respectively evaluated as follows:

sMAPEj
T1

=
200

N − h

N−h

∑
t=1

|yt − ŷj
t|

|yt + ŷj
t|

, (1)

and

sMAPEj
T2

=
200

h

N

∑
t=N−h+1

|yt − ŷj
t|

|yt + ŷj
t|

. (2)

The k (2 ≤ k ≤ 6) models selected to be included in the linear convex combination are
those with smaller forecasting sMAPE (sMAPEj

T2
). The value of k is set by the forecaster.

The weights assigned to the methods included in the combination can be determined by
means of one of the following strategies:

• sMAPE error-based (EB). The weights wj are the normalized inverse of the sMAPE
fitting errors obtained in T1 for each model, that is:

wj =

1
sMAPEj

T1

∑k
i=1(

1
sMAPEi

T1

)
, j = 1, . . . , k (3)

http://cran.r.project.org/
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for the k methods included in the linear combination.
• Optimal weights for time series (OW-ts). For the time series Y, the optimal weights

assigned to each method, wj, correspond to the solution of the following nonlinear
optimization problem:

Min sMAPEC
T2

=
200

h

N

∑
t=N−h+1

|yt −∑k
j=1 wjŷ

j
t|

|yt + ∑k
j=1 wjŷ

j
t|

s.t. ∑k
j=1 wj = 1, wj ≥ 0, j = 1, . . . , k (4)

• Optimal weights for time series and period (OW-tsp). The weights are dynamically
obtained depending on both the time series and the position within the forecasting
horizon, i = 1, . . . , h. For the time series Y, the optimal weights assigned to each
method are given by the k× h vector solution of the following nonlinear optimiza-
tion problem:

Min sMAPECh
T2

=
200

h

N

∑
t=N−h+1

|yt −∑k
j=1 wj,i ŷ

j
t|

|yt + ∑k
j=1 wj,i ŷ

j
t|

s.t. ∑k
j=1 ∑h

i=1 wj,i = 1,

wj,i ≥ 0, j = 1, . . . , k i = 1, . . . , h (5)

i = t + h− N being the position of the forecast within the forecasting horizon; that is,
i = 1 when t = N − h + 1; i = 2 when t = N − h + 2, and so on.

The optimization problems defined in (4) and (5) are solved using simulation tech-
niques. The procedure randomly generates from 5000 to 10,000 vectors of weights, using the
Dirichlet distribution with all its parameters equal to 1, which is equivalent to the uniform
distribution in the (k− 1)-simplex, for the different values of k = 2, . . . , 6. For each time
series, it chooses the value of k and the weights that obtain the minimum of the objective
function sMAPEC

T2
or sMAPECh

T2
, depending on the strategy used.

Finally, in the second stage, using the complete time series Y, h-steps ahead forecasts
(ex-post forecasts) are calculated individually using the k forecasting models selected:
Ŷ j = {ŷj

t}
N+h
t=N+1. Regarding the calculation of the weights at this stage, there is a small

difference. For the weighting strategies OW-ts and OW-tsp, those weights previously
determined as a solution of the corresponding optimization problems are applied. Instead,
for the sMAPE error-based strategy, the weights are recalculated using all the data in Y,
as follows:

wj =

1
sMAPEj

Y

∑k
i=1(

1
sMAPEi

Y
)

, j = 1, . . . , k (6)

Then, the weights are applied to build the convex linear combination of the h ex-
post forecasts:

ŶC = {ŷc
N+1, . . . , ŷc

N+h}, (7)

where ŷc
t = ∑k

j=1 wjŷ
j
t, for t = N + 1, ...N + h, and wj (wj,i, within OW-tsp) is the non-

negative weight assigned to the jth forecasting method.
Our objective is to select an appropiate set of weights for a subset of models, so that

the resultant combined forecasts are the most accurate ex-post forecasts. Let us present
an experiment that is carried out to both assess the three weighting strategies previously
described and provide guidance for the selection of k (the number of methods included in
the linear combination).
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2.3. Model and Weighting Selection: An Experiment

The experiment works as follows: First, forecasts for T2 are individually obtained using
six forecasting models and the data in T1. For the non-seasonal time series, we consider:
Naive, Naive2, MA3, G-Raw data, G-ln data and ARIMA models. For the seasonal series:
Naive, SNaive2, MA3, HW-Raw data, HW-ln data, and ARIMA. The fitting and forecasting
sMAPE for T1 and T2 are obtained for each model. Then, it defines m different linear
combinations of these forecasting methods, LCm for m = 1, . . . , 16. Gardner’s damped trend
and Holt–Winters model are always included in the corresponding linear combination.
The corresponding weights, for every combination, have been calculated using the three
proposed weighting strategies: EB, OW-ts, and OW-tsp.

The experiment has been tested on two sets of time series from the M4 Competition,
the yearly and quarterly data sets ([10]). The forecasting sMAPEC

T2
are used to analyze both

the effect of the cardinality of the linear convex combination and the performance of the
weighting strategies.

2.3.1. Yearly Time Series

Table 1 shows the fitting and forecasting sMAPE obtained by individually applying
Naive, Naive2, MA3, G-Raw data, G-ln data, and ARIMA models for the the set of non-
seasonal yearly time series, whose prediction horizon is h = 6. The lowest average
forecasting error in T2 was obtained using the automatic ARIMA with 15.22% of sMAPE.

Table 1. Average sMAPE for the 23,000 yearly time series, for h = 6.

sMAPE Naive Naive2 MA3 G-Raw Data G-ln Data ARIMA

T1 8.84 9.41 13.47 7.47 6.73 6.44
T2 19.25 22.60 21.48 16.30 16.72 15.22

The combined forecasting errors obtained in T2 by using each specified linear combi-
nation are shown in Table 2. The horizontal lines between rows enable us to compare the
results with respect to the cardinality of the linear combination. As expected, combined
forecasting usually provides more accurate forecasts than those obtained with an individual
forecasting model. Practically all the combinations obtain lower forecasting errors in T2.
It is also worth noting that increasing the cardinality in the convex combination does not
clearly improve the accuracy, as indicated in [1].

Table 2. Average sMAPEC in the validation set T2 for the yearly time series, using 16 linear combina-
tions and the three weighting strategies: EB, OW-ts, and OW-tsp. In bold the minimum sMAPEC.

Linear Combination (LCm, m = 1, . . . , 16) EB OW-ts OW-tsp

G-Raw data, G-ln data 16.13 14.18 13.55

G-Raw data, G-ln data, Naive 15.59 11.84 10.39
G-Raw data, G-ln data, Naive2 14.70 9.48 7.09
G-Raw data, G-ln data, MA3 15.98 12.49 11.14
G-Raw data, G-ln data, ARIMA 14.98 11.62 10.29

G-Raw data, G-ln data, Naive, Naive2 14.68 9.02 6.69
G-Raw data, G-ln data, Naive, MA3 15.81 11.84 10.35
G-Raw data, G-ln data, Naive, ARIMA 14.88 10.79 9.22
G-Raw data, G-ln data, Naive2, MA3 14.70 8.97 6.36
G-Raw data, G-ln data, Naive2, ARIMA 14.44 9.14 6.82
G-Raw data, G-ln data, MA3, ARIMA 15.04 11.01 9.37

G-Raw data, G-ln data, Naive, Naive2, MA3 14.85 8.90 6.46
G-Raw data, G-ln data, Naive, Naive2, ARIMA 14.48 8.80 6.41
G-Raw data, G-ln data, Naive, MA3, ARIMA 15.07 10.75 9.12
G-Raw data, G-ln data, Naive2, MA3, ARIMA 14.49 8.83 6.32

G-Raw data, G-ln data, Naive, Naive2, MA3, ARIMA 14.61 8.95 6.61
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On the other hand, there seems to be large differences between the average forecasting
sMAPE when the strategies based on optimal weights are used. Are these strategies
overfitting the data? To analyze this question, we have also calculated the ideal average
sMAPE in the validation subset T2, which is the forecasting sMAPET2 that we would have
obtained if we had chosen the method that provided the minimum forecasting error for
every time series. For the set of yearly series, this ideal sMAPE error was 9.52% in T2,
confirming that the overfitting problem has arisen.

2.3.2. Quarterly Time Series

We now describe the performance of our experiment for the 24,000 quarterly time
series from the M4 Competition, the seasonal cycle being p = 4, and the forecasting horizon
h = 8. Table 3 shows the averaged fitting and forecasting sMAPE obtained by individually
applying Naive, SNaive2, MA3, HW-Raw data, HW-ln data, and ARIMA methods. The
lowest averaged forecasting error in T2 was obtained using the HW-ln data with 10.97%
of sMAPE.

Table 3. Average sMAPE for the 24,000 quarterly time series, for h = 8. In bold the minimum sMAPE
at T2.

sMAPE Naive SNaive2 MA3 HW-Raw Data HW-ln Data ARIMA

T1 8.20 11.96 10.38 6.92 6.75 6.70
T2 11.85 12.82 11.82 11.03 10.97 11.05

Table 4 shows a summary of the averaged forecasting sMAPEC in T2 for the 16 speci-
fied convex linear combinations and weighting strategies. Overall, we see that increasing
the cardinality of the linear combination does not necessarily imply a better accuracy. So,
if we decide to apply the EB weighting strategy (in order to avoid the problem of over-
fitting), the lowest sMAPEC (10.37%) is obtained using the combination of four models
HW-Raw data, HW-ln data, Naive, and ARIMA.

Table 4. Average sMAPEC in the validation set T2, for the quarterly time series, using 16 linear
combinations and three weighting strategies: EB, OW-ts, and OW-tsp. In bold the minimum sMAPEC.

Linear Combination (LCm) EB OW-ts OW-tsp

HW-Raw data, HW-ln data 10.84 10.23 9.83

HW-Raw data, HW-ln data, Naive 10.54 8.81 7.53
HW-Raw data, HW-ln data, SNaive2 10.87 9.36 7.88
HW-Raw data, HW-ln data, MA3 10.70 9.25 8.14
HW-Raw data, HW-ln data, ARIMA 10.47 8.85 7.72

HW-Raw data, HW-ln data, Naive, SNaive2 10.62 8.72 7.36
HW-Raw data, HW-ln data, Naive, MA3 10.57 8.72 7.36
HW-Raw data, HW-ln data, Naive, ARIMA 10.37 8.31 6.87
HW-Raw data, HW-ln data, SNaive2, MA3 10.77 9.06 7.36
HW-Raw data, HW-ln data, SNaive2, ARIMA 10.49 8.43 6.69
HW-Raw data, HW-ln data, MA3, ARIMA 10.43 8.46 7.10

HW-Raw data, HW-ln data, Naive, SNaive2, MA3 10.65 8.58 7.51
HW-Raw data, HW-ln data, Naive, SNaive2, ARIMA 10.41 8.10 7.03
HW-Raw data, HW-ln data, Naive, MA3, ARIMA 10.40 8.24 7.35
HW-Raw data, HW-ln data, SNaive2, MA3, ARIMA 10.48 8.28 7.22

HW-Raw data, HW-ln data, Naive, SNaive2, MA3, ARIMA 10.44 8.16 6.40

2.3.3. Comparisons with Ex-Post Forecasts

The M4 Competition provides the values of the true future values Tnew = {yN+1,
..., yN+h} [11]. Therefore, it is possible to calculate the ex-post forecasting errors, et =
yt − ŷc

t , for t = N + 1, . . . , N + h, for all linear combinations and for the three weighting
strategies, allowing us to analyze their ex-post performance. Here, we show these results
for the linear combinations of four methods.
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Tables 5 and 6 show the averaged forecasting sMAPEC for the yearly and quarterly time
series, respectively. For yearly time series, the best result is obtained for the combination
G-Raw data, G-ln data, Naive, and ARIMA, with the weights provided by the EB strategy,
with a sMAPEC of 13.66%. These four methods also obtained the lowest forecasting sMAPE
in T2, when they were individually applied to the yearly time series. For quarterly series,
the best result is obtained with the combination HW-Raw data, HW-ln data, Naive, and
ARIMA. It is worth emphasizing here that if we select the k = 4 methods with the smallest
forecasting sMAPE in T2, we achieve a very accurate combined ex-post forecast.

In addition, the forecasting errors obtained in T2, when the EB weighting strategy
was applied, are close to the ones in Tnew. However, this is not the case when the optimal
and dynamic weighting strategies are applied. Figure 1 shows the comparison of the
averaged forecasting sMAPEC obtained in T2 and Tnew for all the corresponding 16 lin-
ear convex combinations proposed for the yearly and quarterly time series and using
the three weighting strategies. The overfitting clearly appears when OW-ts and OW-tsp
weighting strategies are applied. Based on these results, we propose to use the sMAPE
error-based (EB) weighting strategy, which is the simplest one and provides the best ex-post
combined forecasts.

Table 5. Yearly time series: average sMAPEC of the ex-post forecasts in Tnew, using convex combina-
tions of four forecasting methods and three weighting strategies. In bold the minimum sMAPEC.

Linear Combination EB OW-ts OW-tsp

G-Raw data, G-ln data, Naive, Naive2 13.75 17.08 17.18
G-Raw data, G-ln data, Naive, MA3 14.12 14.96 15.09
G-Raw data, G-ln data, Naive, ARIMA 13.66 14.69 14.74
G-Raw data, G-ln data, Naive2, MA3 13.83 17.77 17.58
G-Raw data, G-ln data, Naive2, ARIMA 14.06 17.49 17.60
G-Raw data, G-ln data, MA3, ARIMA 13.92 14.89 14.90

Table 6. Quarterly time series: average sMAPEC of the ex-post forecasts in Tnew, using linear
combinations of four methods and three weighting strategies. In bold the minimum sMAPEC.

Linear Combination EB OW-ts OW-tsp

HW-Raw data, HW-ln data, Naive, SNaive2 10.28 10.50 10.51
HW-Raw data, HW-ln data, Naive, MA3 10.27 10.50 10.51
HW-Raw data, HW-ln data, Naive, ARIMA 10.00 10.28 10.32
HW-Raw data, HW-ln data, SNaive2, MA3 10.47 10.80 10.90
HW-Raw data, HW-ln data, SNaive2, ARIMA 10.13 10.48 10.63
HW-Raw data, HW-ln data, MA3, ARIMA 10.10 10.35 10.39

Figure 1. Forecasting sMAPEC obtained in the validation set (T2) and Tnew for all the proposed convex
combinations LCm (m = 1,. . . , 16) and weighting strategies. The three upper graphs correspond to the
yearly time series, while the three graphs at the bottom correspond to quarterly ones.
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All calculations were performed on a workstation with two Intel® Xeon® E5-2650 v3
2.3 GHz processors with 10 physical cores and 20 threads (two processes per core). To carry
out our study, we used the R language [26]. However, the estimation of parameters and
predictions using Gardner’s damped trend and Holt–Winters models were obtained with
the SIOPRED tool ([19,21]).

3. Combination of Forecasts: A New Algorithm

The performance of the above experiment suggests using a reduced number of meth-
ods for combining forecasts and to apply the sMAPE error-based (EB) strategy to calculate
the weights for the linear combination of these forecasts. Additionally, we propose selecting
those models having the smallest sMAPE in the validation set T2 when applied individually.
All these facts are included in the algorithm that we propose to combine forecasts, which
we call COmbEB algorithm.

Let us assume we want to compute pointwise h-step-ahead forecasts for a set of S
time series, all of them with the same seasonal cycle p. Our algorithm simultaneously
analyzes the S series. In particular, it selects the k forecasting models, out of the J con-
sidered ones, with the smallest forecasting sMAPE in the validation set (when they are
individually applied). Then, the sMAPE error-based (EB) weighting strategy is used to
assign the weights to the models selected. Once the models and the weights have been
set, the algorithm provides the ex-post combined forecasts. The outline of the algorithm is
shown in Algorithm 1.

Algorithm 1 COmbEB

1: procedure COMBEB ALGORITHM(S, Ys, Ns, h, J, k)
2: Let Ys be a time series in S with length Ns. Divide Ys into two subsets: Ts,1 ={

y1, . . . , yNs−h
}

and Ts,2 =
{

yNs−h+1, . . . , yNs

}
.

3: Let Mj be one of the J considered forecasting methods.
4: for all j ∈ J do
5: for all s ∈ S do
6: Apply the Mj method using Ts,1 and calculate the h-step-ahead forecasts: ŷj

s,t,
t = Ns − h + 1, . . . , Ns.

7: Apply Equation (2) to calculate sMAPEj
Ts,2

.
8: end for
9: Evaluate the average sMAPEj

S for the S time series.
10: end for
11: Select the k ≤ J models with the lowest average sMAPEj

S, arranged in increasing
order of forecasting error.

12: if sMAPEk
S ≥ 2 sMAPE1

S then
13: Remove the kth model from this set of methods.
14: end if
15: Let K be the final subset of selected methods, (K ≤ k).
16: for all s ∈ S do
17: for all j ∈ K do.
18: Apply the Mj method to fit Ys.

19: Determine the weight ws,j using Equation (6) for the sMAPEj
Ys

.

20: Apply the Mj method to generate the h-step-ahead forecasts: ŷj
s,t, for t =

Ns + 1, . . . , Ns + h.
21: end for
22: Compute the combined forecasts: ŷc

s,t = ∑j∈K ws,jŷ
j
s,t, for t = Ns + 1, . . . , Ns + h.

23: end for
24: end procedure
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Additionally, when a large amount of time series with the same characteristics have
to be forecasted, and the size of the validation set is h, the performance of the training
experiment allows us to provide an estimation of the future average forecasting error.

Note that Algorithm 1 can also be used to predict an individual time series Y. In that
case, we propose to select the k methods, from a set of J forecasting methods, with the
lowest forecasting error in the validation set T2, which must have the size of the forecasting
horizon h. The weights assigned to the selected models are the ones provided by the
sMAPE error-based strategy (EB). A flowchart of this forecasting process can be seen in
Figure 2.

Figure 2. Flowchart of the COmbEB algorithm for an individual time series.

4. Numerical Results

In this section, we present the main results obtained with the COmbEB algorithm
using the forecasting methods introduced in Section 2, and assuming J = 6 and k = 4.

We use here the 100,000 time series of the M4 Competition [10]. Table 7 shows a
summary of the main characteristics of its times series sets. It must be noted that the size
of the validation set T2 will coincide with the forecasting horizon h, while the contributed
forecasting methods depends on the presence of a seasonal cycle (p > 1).

Table 7. Summary of the characteristics of the M4 Competition series.

Time Series Yearly Quarterly Monthly Weekly Daily Hourly

Size 23,000 24,000 48,000 359 4227 414
Seasonal pattern (p) 1 4 12 1 1 24
Forecasting horizon (h) 6 8 18 13 14 48

4.1. Combined Forecasts for Non-Seasonal Time Series

For the yearly time series, the COmbEB algorithm selects the following four methods:
G-Raw data, G-ln data, Naive, and ARIMA (see Table 1). Using these selected methods,
the COmbEB algorithm determines the error-based weights and the individual ex-post
h-step-ahead forecasts. Finally, it computes the combined forecasts for each time series.
The average ex-post sMAPEC is 13.66% (see Table 5).

For the weekly time series, the COmbEB algorithm selects the following methods:
G-ln data (8.07%), MA3 (8.17%), G-Raw data (8.46%), and Naive (9.2% of sMAPE in T2).
The procedure generates the linear combination of their ex-post forecasts, whose average
forecasting sMAPEC is 9.02%.

For the daily time series, our algorithm selects the methods: Naive (2.79% of sMAPET2 ),
G-Raw data (2.87%), ARIMA (2.87%), and G-ln data (2.88%), which obtained the lowest
averaged forecasting error in the validation set T2. The ex-post average sMAPEC in Tnew
was 3.03%. Note that this is the same combination of methods that was selected for the
non-seasonal set of yearly time series.

4.2. Combined Forecasts for Seasonal Time Series

For the quarterly times series set, the linear combination is built using HW-Raw data,
HW-ln data, MA3, and ARIMA models (the models with the smallest forecasting errors in T2;
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see Table 3). For this combination, the COmbEB algorithm calculates an ex-post forecasting
sMAPEC of 10.10% (see Table 6).

For the monthly time series, Table 8 shows the average fitting and forecasting sMAPE.
These results allow us to select the k = 4 methods that will be used in the combination
as explained in the COmbEB algorithm. In particular, the COmbEB algorithm selects the
following four methods: HW-ln data, HW-Raw data, MA3, and ARIMA, which have rerturned
the best results in the validation set. Using these selected methods, the COmbEB algorithm
determines the error-based weights and the individual ex-post h-step-ahead forecasts.
Finally, it computes the combined forecasts for each monthly time series. The average
ex-post sMAPEC is 12.81%.

Table 8. Average sMAPE for the 48,000 monthly time series, for h = 18. In bold the minimum sMAPE.

sMAPE Naive SNaive2 MA3 HW-Raw Data HW-ln Data ARIMA

T1 7.79 15.53 8.35 6.17 6.08 6.61
T2 13.99 15.18 13.05 12.58 12.44 13.60

For the hourly time series, the algorithm computes the sMAPEj
T2

and selects the
following models for the linear combination: SNaive2 (14.57% of sMAPE in T2), HW-Raw
data (15.96%), HW-ln data (17.59%), and ARIMA (30.19%), respectively. At this point, since
the averaged sMAPE obtained by the automatic ARIMA is more than twice the average
sMAPE for the SNaive2 method, the procedure allows us to decide whether or not to
include the fourth forecasting method, especially considering the relationship between this
forecasting error in T2 and the ex-post forecasting error.

In order to analyze the role of this restriction affecting the cardinality of the linear
combination, we run the COmbEB algorithm twice: for a linear combination of four (HW-
Raw data, HW-ln data, SNaive2, ARIMA) and for a linear combination of three (HW-Raw data,
HW-ln data, SNaive2) forecasting models. Table 9 shows the average forecasting sMAPEC

obtained for these selected EB-weighted linear combinations, in both the validation and
the prediction set, T2 and Tnew. These results also show the importance of the information
provided by the forecasting errors in the validation set, which provides an estimate of the
future forecasting error, on average.

Table 9. Average forecasting sMAPE for the 4227 hourly time series, using two alternative linear
combinations of methods. In bold the minimum sMAPEC.

Linear Combination sMAPEC
T2

sMAPEC
Tnew

HW-Raw data, HW-ln data, SNaive2 15.62 13.46
HW-Raw data, HW-ln data, SNaive2, ARIMA 17.37 14.96

4.3. Comparative Results

Finally, we compare our forecasting results with those published at the end of the
competition. Global Winner refers to the results provided in [13], which apply a hybrid
approach based on exponential smoothing methods and a neural network. This was the
most accurate proposal for forecasting the 100,000 times series, on average. The FFORMA
procedure automatically computes combined forecasts based on features of the time series.
It achieved the second overall position [14]. The last row includes the benchmark used in
the M4 Competition, an arithmetic mean combination of three models: simple, Holt, and
Damped exponential smoothing [10].

Table 10 shows the average sMAPE for the different categories and the average for
all of them. In brackets, we show the ratio (in %) between the best forecasting result in
the M4 and the result with the other procedures. For the entire set of the M4 Competition
series, the averaged sMAPE using the CombEB algorithm was 11.93%, which would
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have hypotetically achieved 8th place in the M4 competition, performing better than
the benchmark.

Table 10. Comparison of the average forecasting ex-post sMAPE.

Algorithms Yearly Quarterly Monthly Weekly Daily Hourly Average

Global Winner 13.18 (100%) 9.68 (100%) 12.13 (100%) 7.82 (84%) 3.17 (77%) 9.33 (95%) 11.37
FFORMA 13.53 (97%) 9.73 (99%) 12.64 (96%) 7.63 (86%) 3.10 (79%) 11.51 (77%) 11.72
COmbEB 13.66 (96%) 10.10 (96%) 12.81 (95%) 9.02 (73%) 3.03 (81%) 13.46 (66%) 11.93
Benchmark 14.85 (89%) 10.18 (95%) 13.43 (90%) 8.94 (74%) 2.98 (82%) 22.05 (40%) 12.56

5. Conclusions

In an effort to improve forecast accuracy, we have tried to bring new ideas and
strategies in the field of combining forecasts. Since the proposed algorithm can be easily
adapted and implemented, decision-making platforms can benefit from these results.

In particular, we have presented a nonsophisticated competitive procedure, the CombEB
algorithm, which provides accurate out-of-sample forecasts based on the convex combina-
tion of simple and accessible forecasting methods. The selection of methods is obtained
using an error-based strategy working with the forecasting errors in the validation set,
whose size should coincide with that of the forecasting horizon. An extensive computa-
tional analysis has been performed to assess the performance of the proposed procedure.
In particular, we have carried out an experiment with the 100,000 time series from the
M4 Competition.

The results show that applying dynamic and optimal strategies for calculating the
weights does not benefit the accuracy of the ex-post forecasts. Therefore, we recommend
using weights that are inversely proportional to the fitting sMAPE.

The number and nature of the methods that will be included in the combination
may depend on the preferences of the forecasting researcher. However, a small number
of well-known and accessible methods and a simple weighting strategy have produced
good forecasting results. It is important to highlight the good behavior of the exponential
smoothing models that were included in all the combinations.

In order for the algorithm to be implemented automatically by any user, it would be
interesting to adapt it so that all the prediction models considered are implemented in R.
The development of an R package that requires as input the time series to be studied (or
the set of time series), the forecast horizon, and the number of models to be used in the
combination would be of great interest from a practical viewpoint.
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