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A B S T R A C T

In this paper we analyze the portfolio selection problem from a novel perspective based on the analysis and
prediction of the time series corresponding to the portfolio’s value. Namely, we define the value of a particular
portfolio at the time of its acquisition. Using the time series of historical prices of the different financial assets,
we calculate backward the value that said portfolio would have had in past time periods. A damped trend model
is then used to analyze this time series and to predict the future values of the portfolio, providing estimates of
the mean and variance for different forecasting horizons. These measures are used to formulate the portfolio
selection problem, which is solved using a multi-objective genetic algorithm. To show the performance of this
procedure, we use a data set of asset prices from the New York Stock Market.
1. Introduction

The portfolio selection problem is an important topic in financial
mathematics. It focuses on allocating the investor’s capital to a set of
assets (which assets and in what proportion) so that the expected return
is maximized assuming a minimum risk. The future return on an asset
is unknown when the decision is made, therefore one has to deal with
the uncertainty associated with the future portfolio return. This can be
done by using probability-based stochastic tools such as the classical
formulation provided by Markowitz (1952), where a mean–variance
model is used to either maximize the investment return under certain
risk level or minimize the investment risk under certain return level.
The investment return and risk are quantified, respectively, by means
of the expected value and the variance of the random variables repre-
senting the returns of individual assets. The standard mean–variance
model assumes that the returns on the assets follow a multivariate
Normal distribution, which does not necessarily hold in practice. In
order to achieve suitable information regarding these random variables
in absence of Normality, the incorporation of moments higher than
the second plays an important role. Lai (1991) determined a portfolio
selection with skewness from solving a polynomial goal programming
problem that incorporates the investor’s preferences. Alternatively,
different risk measures have been proposed: for instance, the mean
absolute deviation risk (Konno & Yamazaki, 1991) and the conditional
value-at-risk (Rockafellar & Uryasev, 2000). These measures allow the
portfolio selection problem to be formulated and solved using linear
programming techniques. Within this framework, robust formulations,

∗ Corresponding author.
E-mail addresses: Ana.Corberan@uv.es (A. Corberán-Vallet), Enriqueta.Vercher@uv.es (E. Vercher), Jvsh@umh.es (J.V. Segura), Jose.D.Bermudez@uv.es

(J.D. Bermúdez).

which use uncertainty structures, have been proposed for handling the
sensitivity of optimal portfolios to statistical errors in the estimates of
market parameters (Goldfarb & Iyengar, 2003). Robust optimization
problems can be formulated as second-order cone programs. Models
incorporating the multidimensional nature of the problem become
relevant to portfolio management, and multiobjective optimization has
also been used to address conflicting objectives related to return and
risk (Ehrgott et al., 2004).

Time series forecasting has been applied to the finance industry
in applications such as stock market price. Due to the nonlinearity
and high volatility of financial time series, accurate stock price/return
prediction is difficult (Rezaei et al., 2021). This has motivated the
recent development of neural network and machine learning strategies,
which can automatically learn the temporal dependencies and patterns
present in this type of data (see, for instance, Kim & Kim, 2019,
Wang et al., 2020, Zhang et al., 2020). In the context of portfolio
management, these forecasts can be used to preselect the assets with
higher potential returns and to apply, in a second stage, the mean–
variance model to determine their weights (Wang et al., 2020). Freitas
et al. (2009) describe a neural network prediction-based portfolio
optimization model that have the same statistical foundation of the
mean–variance model. The differences are that this model uses pre-
dicted returns as expected returns and the variance of the prediction
errors as risk measure. Return forecasts have also been used to gener-
ate investor views in Black–Litterman asset allocation modeling (Kara
et al., 2019). The evolution of electronic trading has also promoted
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the development of stochastic learning algorithms for online portfolio
selection in the context of high-frequency trading (Li et al., 2022).

The use of soft computing techniques based on fuzzy set theory
has also been applied to the portfolio selection problem to model the
uncertainty regarding the future performance of asset returns using
possibility and credibility distributions (Liu, 2006, Tanaka & Guo,
1999). These techniques provide new procedures and strategies to
build efficient portfolios under realistic goals and constraints (see, for
instance, Arenas et al., 2001, Gupta et al., 2013, León et al., 2002,
Li et al., 2010, Saborido et al., 2016, Vercher & Bermúdez, 2013,
Watada, 1997). Within this approach, the decision-making process
usually establishes the portfolio selection problem as a multi-objective
optimization problem.

In this work we adopt a new procedure to portfolio management
that models the time series corresponding to the portfolio’s value.
Specifically, we define the value of a particular portfolio at the time
of its acquisition as the weighted average of the values of the assets
included in the portfolio. Assuming that the amount of shares held in
each asset has been kept back in time, the time series corresponding
to the portfolio’s value is then defined using the historical prices of
the different assets. Hence, our procedure considers the historical data
available for all the assets without making any particular assumption
regarding the relationship between the price movements of the dif-
ferent assets. Any type of existing correlation among the assets will
be implicitly included in the series corresponding to the portfolio’s
value. The expected return and risk of a given portfolio can both be
derived from the prediction of the portfolio’s future value, which can
be obtained using time series forecasting techniques. In particular, we
employ an exponential smoothing model. Forecasts of future values
will be used by a multi-objective genetic algorithm to provide a set
of efficient solutions.

The remainder of this paper is structured as follows. In Section 2
we define the problem from our perspective and introduce the main
notation. Section 3 is devoted to the description of the methodology
that will be used afterwards. Section 4 describes the portfolio decision
making process and the inputs of the proposed algorithm. Numerical
results are presented in Section 5. We conclude the paper with some
final comments and possible future directions.

2. Problem description and notation

The classical portfolio selection problem has the double objective
of maximizing the return while minimizing the risk. Hence, it can be
formulated as a non-linear multi-objective optimization problem, where
an optimal portfolio is selected from among the feasible ones lying on
the efficient front based on the notion of Pareto optimality (see, for
instance, Ehrgott et al., 2004).

In this work we analyze the time series corresponding to the value
of given portfolios. Forecasts of the future values of the portfolios
allow us to estimate their expected return and risk at different future
time periods. These estimates can then be used to define the objective
functions of suitable multi-objective optimization problems.

2.1. Portfolio’s value definition

Let us consider a universe of 𝑛 risky assets that have remained in
the market from 𝑡 = 1 to 𝑡 = 𝑇 , where the time unit can be days,
weeks, months or quarters, and 𝑇 represents the point in time when the
decision regarding the portfolio composition has to be made. Portfolio
selection aims at selecting a portfolio that fulfills the investor’s goal
with respect to return and risk in a context of uncertain returns on
the assets due to changes in their future price and financial market
volatility. In practice, this means that one has to select a vector 𝐱 =
(𝑥1, 𝑥2,… , 𝑥𝑛)′ of weights, where 𝑥𝑖 is the proportion of the capital 𝑀
that is invested in the 𝑖th asset at time 𝑇 . This allocation vector must
provide a good balance between return opportunities and risk.
2

f

For each financial asset 𝑖, 𝑖 = 1, 2,… , 𝑛, we have the corresponding
time series of historical prices: (𝑦𝑖1, 𝑦𝑖2,… , 𝑦𝑖𝑇 )′. So, for a particular
portfolio allocation at time 𝑇 , the amount of shares held in asset 𝑖 is
given by 𝑠𝑖(𝐱) = 𝑀 × 𝑥𝑖∕𝑦𝑖𝑇 ; that is, the amount of the capital that is
invested in asset 𝑖 divided by the current price of the asset.

Assuming that the amount of shares held in each asset has been
kept back in time, we can define the time series corresponding to the
portfolio’s value 𝐯(𝐱) = (𝑣1(𝐱), 𝑣2(𝐱),… , 𝑣𝑇 (𝐱))′ as:
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× 𝑠𝑛(𝐱). (1)

We can apply a forecasting technique to model this time series
and forecast the vector of future values, represented by 𝐯𝑓 (𝐱) =
(𝑣𝑇+1(𝐱), 𝑣𝑇+2(𝐱),… , 𝑣𝑇+ℎ(𝐱))′, ℎ being the forecasting horizon. The time
eries corresponding to the historical portfolio’s value does not typi-
ally have seasonal patterns. Hence, we recommend using an additive
amped trend model, which is appropriate when there is a trend in
he time series, but the growth rate observed at the end of the series
ay not persist in the long term (McKenzie & Gardner Jr, 2010). As

xplained afterwards, the mean vector and the covariance matrix of
he distribution of 𝐯𝑓 (𝐱) conditioning on 𝐯(𝐱) can be used to derive the
xpected return and risk of the portfolio. Additionally, other alternative
easures of interest based on either the distribution of 𝐯𝑓 (𝐱) or the
rediction intervals can be included in the decision-making process.

.2. Portfolio selection problem

In a portfolio selection problem, the decision variables are the
ector 𝐱 = (𝑥1, 𝑥2,… , 𝑥𝑛)′ of weights, which indicate the proportion
f the capital allocated to each of the 𝑛 assets. These decision variables
ave to fulfill the non-negativity constraint, 𝑥𝑖 ≥ 0, and investment
f the total capital, ∑𝑛

𝑖=1 𝑥𝑖 = 1. Additionally, other constraints may
e considered; for instance, upper and lower bounds can be included
o ensure diversification of the investment (𝑥𝑖 ≤ 𝑢𝑖) and to prevent
mall investments in a number of securities (𝑙𝑖 ≤ 𝑥𝑖). The cardinality
onstraint is also commonly incorporated to restrict the number of
ssets composing the portfolio: 𝑘𝑙 ≤

∑𝑛
𝑖=1 𝐼(0,1](𝑥𝑖) ≤ 𝑘𝑢 (where 𝐼𝐴(𝑥)

s the indicator function). These constraints define the decision space:

=
{

(𝑥1, 𝑥2,… , 𝑥𝑛) ∈ 𝑛 ∶ 0 ≤ 𝑙𝑖 ≤ 𝑥𝑖 ≤ 𝑢𝑖 ≤ 1;
𝑛
∑

𝑖=1
𝑥𝑖 = 1;

𝑘𝑙 ≤
𝑛
∑

𝑖=1
𝐼(0,1](𝑥𝑖) ≤ 𝑘𝑢

}

.

The conditional mean and variance of the portfolio’s value at future
time point 𝑇 + ℎ, 𝑣𝑇+ℎ(𝐱), are related to its expected return and
risk. Hence, efficient portfolios can be found by solving the following
non-linear bi-objective optimization problem:

MV(h): Max 𝑓1(𝐱) = 𝐸(𝑣𝑇+ℎ(𝐱)|𝐯(𝐱))
Min 𝑓2(𝐱) = 𝑉 (𝑣𝑇+ℎ(𝐱)|𝐯(𝐱))

s.t. 𝐱 ∈  (2)

here ℎ ≥ 1 represents the investment horizon and it is specified by
he investor. Therefore, depending on the interests of the investor, one
ay have to solve different problems associated with different values

f ℎ. It is important to emphasize here that, from a mathematical
nd computational viewpoint, the analysis of the problem does not
epend on the value of ℎ. However, since the prediction error increases
ith ℎ, long-term horizons are not recommended. Alternative objective

unctions, such as the skewness or the trend of the series, can also be
ncorporated into the multi-objective optimization problem if required.

The cardinality constraint incorporated into the problem makes us

ace an NP-hard problem (Moral-Escudero et al., 2006). To obtain
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efficient portfolios, we apply an adaptation of the genetic algorithm
proposed by Bermúdez et al. (2012). This adaptation improves the
construction of the Pareto front and reduces the computation time.

Portfolio rebalancing may be needed during the investment horizon
due to changes in the market. In our procedure, this can be done
by modifying the constraints that define the decision space; for in-
stance, varying the box constraints associated with specific assets. The
assets composing the efficient portfolios then generated will meet the
specified requirements.

3. Methodology

In the next two subsections, we describe the forecasting model and
the multi-objective genetic algorithm that will be later applied in the
portfolio decision making process.

3.1. Damped trend model

We consider the approach for the incorporation of the damped trend
as proposed in the original work by Gardner and McKenzie (1985).
Gardner’s damped trend model assumes that the observed data {𝑦𝑡}𝑇𝑡=1
re described by the following equation:

𝑦𝑡 = 𝑎𝑡−1 + 𝜙𝑏𝑡−1 + 𝜖𝑡, 𝑡 = 1, 2,… , 𝑇 ,

here 𝑎𝑡 and 𝑏𝑡 represent, respectively, the level and trend at time
, 0 ≤ 𝜙 ≤ 1 is the damping parameter and {𝜖𝑡} are independent
omoscedastic Normal random variables with zero mean and unknown
ariance 𝜎2. Holt’s linear model is obtained when 𝜙 = 1.

The level and trend are updated through the transition equations:

Level: 𝑎𝑡 = 𝛼𝑦𝑡 + (1 − 𝛼)(𝑎𝑡−1 + 𝜙𝑏𝑡−1) = 𝑎𝑡−1 + 𝜙𝑏𝑡−1 + 𝛼𝜖𝑡,

rend: 𝑏𝑡 = 𝛽(𝑎𝑡 − 𝑎𝑡−1) + (1 − 𝛽)𝜙𝑏𝑡−1 = 𝜙𝑏𝑡−1 + 𝛼𝛽𝜖𝑡,

0 ≤ 𝛼, 𝛽 ≤ 1 being the smoothing parameters.
For parameter estimation we use the alternative formulation pro-

posed by Vercher et al. (2012), which eases the joint estimation of
the initial conditions 𝜔 = (𝑎0, 𝑏0)′ and the smoothing parameters 𝜃 =
(𝛼, 𝛽, 𝜙)′ through maximum likelihood. Using recursively the observa-
tion equation together with the transition equations, the observation at
time 𝑡 can be stated as:

𝑦𝑡 = 𝑎0 +𝛷𝑡𝑏0 + 𝛼(1 + 𝛽𝛷𝑡−1)𝜖1 + 𝛼(1 + 𝛽𝛷𝑡−2)𝜖2 +⋯+ 𝛼(1 + 𝛽𝛷1)𝜖𝑡−1 + 𝜖𝑡,

where 𝛷𝑡 =
∑𝑡

𝑖=1 𝜙
𝑖 = 𝜙

1−𝜙 × (1 − 𝜙𝑡) if 𝜙 ≠ 1 (in the case 𝜙 = 1, 𝛷𝑡 = 𝑡).
Hence, the model can be formulated as a linear heteroscedastic model
whose matrix form is:

𝐘 = 𝐴𝜔 + 𝐿𝜀, (3)

where 𝐴 is the 𝑇 × 2 matrix whose first column is the identity vector
1𝑇 and its second one the vector (𝛷1, 𝛷2,… , 𝛷𝑇 )′; 𝐿 is the 𝑇 × 𝑇 lower
triangular matrix whose main diagonal is equal to the identity vector
1𝑇 and 𝑙𝑖𝑗 = 𝛼(1 + 𝛽𝛷𝑖−𝑗 ) for 𝑖 = 2, 3,… , 𝑇 and 𝑖 > 𝑗; and 𝜀 is the
error vector. The joint distribution of the data vector 𝐘 is multivariate
Normal with mean 𝐸(𝐘) = 𝐴𝜔 and covariance matrix 𝑉 (𝐘) = 𝜎2𝐿𝐿′.
This covariance matrix depends on the smoothing parameter vector 𝜃.
It is always a positive definite matrix since |𝐿| = 1, whatever the value
of 𝜃 is, so no constraints on the vector 𝜃 are necessary. However, we
will assume that 𝜃 ∈ [0, 1]3.

3.1.1. Parameter estimation
The log-likelihood function of the data vector 𝐘 is proportional to:

𝑙𝑜𝑔(𝑓 (𝐘|𝜃, 𝜔, 𝜎2)) ∝ −𝑇
2
𝑙𝑜𝑔(𝜎2) − 1

2𝜎2
(𝐘 − 𝐴𝜔)′(𝐿𝐿′)−1(𝐘 − 𝐴𝜔),

∝ −𝑇
2
𝑙𝑜𝑔(𝜎2) − 1

2𝜎2
(𝐿−1(𝐘 − 𝐴𝜔))′(𝐿−1(𝐘 − 𝐴𝜔)),

∝ −𝑇 𝑙𝑜𝑔(𝜎2) − 1 (𝐙 − 𝐶𝜔)′(𝐙 − 𝐶𝜔),
3

2 2𝜎2 𝐱
with 𝐙 = 𝐿−1𝐘 and 𝐶 = 𝐿−1𝐴. Let 𝑃𝐶 be the orthogonal projection
matrix on the vectorial space generated by the columns of matrix 𝐶,
𝑃𝐶 = 𝐶(𝐶 ′𝐶)−1𝐶 ′, and let 𝜔̃ be the usual least squares estimator of 𝜔,
̃ = (𝐶 ′𝐶)−1𝐶 ′𝐙. The log-likelihood function can then be expressed as:
𝑇
2
𝑙𝑜𝑔(𝜎2) − 1

2𝜎2
𝐙′(𝐼 − 𝑃𝐶 )𝐙 − 1

2𝜎2
(𝜔 − 𝜔̃)′𝐶 ′𝐶(𝜔 − 𝜔̃).

The second quadratic form in the above expression can always be
nnulled, whatever the value of 𝜃 is, while the first quadratic form
nly involves parameter 𝜃, which appears in matrix 𝐿 and 𝐶 = 𝐿−1𝐴.
ence, the maximum likelihood estimator of 𝜃 is obtained by solving

he following non-linear optimization problem with respect to three
ecision variables:
min (𝐿−1𝐘)′(𝐼 − 𝑃𝐶 )(𝐿−1𝐘)
𝜃∈[0,1]3

Once 𝜃̂ has been obtained, the maximum likelihood estimator of 𝜔
is given by the vector 𝜔̃ computed at 𝜃̂; that is:

𝜔̂ = (𝐶̂ ′𝐶̂)−1𝐶̂ ′𝐿̂−1𝐘 = (𝐴̂′𝐿̂′−1𝐿̂−1𝐴̂)−1𝐴̂′𝐿̂′−1𝐿̂−1𝐘.

Finally, the maximum likelihood estimator of 𝜎2 is:

2̂ = 1
𝑇
(𝐿̂−1𝐘)′(𝐼 − 𝑃𝐶̂ )(𝐿̂

−1𝐘).

.1.2. Forecasting
Let 𝐘𝑓 = (𝑦𝑇+1, 𝑦𝑇+2,… , 𝑦𝑇+ℎ)′ be the ℎ × 1 vector of future values.

ssuming that the joint vector (𝐘′,𝐘′
𝑓 )

′ follows the damped trend
odel (3), we obtain:

𝐘
𝐘𝑓

)

=
(

𝐴
𝐴𝑓

)

𝜔 +
(

𝐿 0
𝐿𝑓1 𝐿𝑓𝑓

)(

𝜀
𝜀𝑓

)

,

where matrices 𝐴 and 𝐿 are partitioned in a similar way to the
vector (𝐘′,𝐘′

𝑓 )
′. Hence, the joint vector (𝐘′,𝐘′

𝑓 )
′ follows a multivariate

Normal distribution and the conditional distribution of the future data
vector 𝐘𝑓 given the historical data vector 𝐘 is also a multivariate
Normal distribution with the following mean vector and covariance
matrix:

𝐸(𝐘𝑓 |𝐘) = 𝐴𝑓𝜔 + 𝐿𝑓1𝐿
−1(𝐘 − 𝐴𝜔), (4)

(𝐘𝑓 |𝐘) = 𝜎2𝐿𝑓𝑓𝐿
′
𝑓𝑓 . (5)

Let 𝜇2.1 = 𝐴𝑓 𝜔̂ + 𝐿𝑓1𝐿−1(𝐘 − 𝐴𝜔̂). If the parameter vector 𝜃 were
known, the distribution of 𝐘𝑓 − 𝜇2.1 would be the multivariate Normal
distribution with mean 0 and covariance matrix 𝜎2𝑆, where:

𝑆 = (𝐴𝑓 − 𝐿𝑓1𝐿
−1𝐴)(𝐴′(𝐿′)−1𝐿−1𝐴)−1(𝐴𝑓 − 𝐿𝑓1𝐿

−1𝐴)′ + 𝐿𝑓𝑓𝐿
′
𝑓𝑓 .

Then, for any constant vector 𝑣 ≠ 0, the distribution of the random
ariable defined as:

𝑇 − 1
𝑇

𝑣′(𝐘𝑓 − 𝜇2.1)

𝜎̂(𝑣′𝑆𝑣)
1
2

is the Student’s t-distribution with 𝑇 − 1 degrees of freedom. Since 𝜃
is unknown in practice, we can substitute 𝐿 with 𝐿̂ in the previous
equations. This result allows us to build exact prediction intervals for
different goals.

For more details on parameter estimation and forecasting see
Vercher et al. (2012) and Bermúdez et al. (2007), where the calculation
of prediction intervals is also presented.

3.2. A multi-objective genetic algorithm

Multi-objective problems (MOP) arise when the goal is to optimize
simultaneously 𝑟 objective functions: 𝑓1(𝐱), 𝑓2(𝐱),… , 𝑓𝑟(𝐱), which are
sually in competition with each other. The decision variable vector
= (𝑥 , 𝑥 ,… , 𝑥 )′ usually has to fulfill some constraints, which define
1 2 𝑛
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the decision space (or feasible region) that is denoted by  ( ∈ 𝑛).
In general, a MOP can be formulated as:

Max [𝑓1(𝐱), 𝑓2(𝐱),… , 𝑓𝑟(𝐱)]
s.t. 𝐱 ∈ 

ote that if any objective function is to be minimized, we could define
𝑖(𝐱) = −𝑓𝑖(𝐱), 𝑓𝑖(𝐱) being the objective function to be minimized.

The evaluation function of a MOP maps the decision variable vectors
to vectors 𝐳 = (𝑓1(𝐱), 𝑓2(𝐱),… , 𝑓𝑟(𝐱))′, which constitute the objective

pace  ∈ 𝑟.
For non-trivial MOPs, there exists a (possibly infinite) number of

olutions which are found through the use of the Pareto Optimality
heory (Ehrgott, 2005). A solution 𝐱 ∈  is Pareto optimal (or efficient)

f the corresponding objective vector 𝐳 cannot be improved in any
imension without another one degrading. Hence, without additional
ubjective preference information, all Pareto optimal solutions are
qually good. Let  be the set of all Pareto optimal solutions (also
alled the efficient set). Their corresponding vectors 𝐳 are termed
on-dominated and constitute the Pareto front.

Bermúdez et al. (2012) proposed a bi-objective evolutionary algo-
ithm for generating efficient portfolios of restricted cardinality in the
ase of 𝑟 = 2. Let {𝐱𝑖}𝑁𝑖=1 be a initial population of 𝑁 points randomly
enerated in the decision space. In a general bi-objective optimization
cenario, an improved version of the algorithm can be described as:

Repeat:

1. Evaluation.
Compute the objective vectors 𝐳𝑖 = (𝑓1(𝐱𝑖), 𝑓2(𝐱𝑖)), 𝑖 = 1, 2,… , 𝑁 .
Define 𝜑 as the 𝑁 × 2 matrix whose first column is the vector
(𝑓1(𝐱(1)), 𝑓1(𝐱(2)),… , 𝑓1(𝐱(𝑁)))′ whose elements have been sorted
in decreasing order and the second one is the corresponding
vector (𝑓2(𝐱(1)), 𝑓2(𝐱(2)),… , 𝑓2(𝐱(𝑁)))′.

2. Selection of efficient solutions.
Eliminate the rows of 𝜑 that are dominated (row 𝑗2 is dominated
if there is a row 𝑗1, with 𝑗1 < 𝑗2, such that 𝑓2(𝐱(𝑗1)) > 𝑓2(𝐱(𝑗2))),
and define the current upper bound as the polygonal chain
whose vertices are the rows of the resulting matrix 𝜑.

3. Elitism.
Select the 𝑁∕𝑐 (𝑐 > 1 being a given integer) feasible points
whose objective vectors are closest to the upper bound in the
current generation. Here the distance is defined as the minimum
of the orthogonal distances to each one of the vertices of the
polygonal chain.

4. Mutation.
Mutate 𝑐−1 times each one of the 𝑁∕𝑐 feasible solutions selected
in the previous step, obtaining 𝑁 − 𝑁∕𝑐 new solutions. The
mutation operator slightly perturbs a pair of randomly selected
elements of 𝐱𝑖 taking into account the constraints that define the
decision space.

5. Definition of the next generation.
Build the new generation as the union of the sets obtained by
elitism and mutation (so that the population size remains equal
to 𝑁).

until the termination condition is fulfilled.

A reasonable termination condition is that the distance between two
uccessive upper bounds is smaller than a given constant 𝑑. The last

upper bound provides a rough approximation of the Pareto front.
4

4. Portfolio decision making process

Once the time series corresponding to the portfolio’s value has been
defined (see Eq. (1)), we can apply the damped trend model previously
described to forecast the vector of future values 𝐯𝑓 (𝐱). The mean vector
nd the covariance matrix of the distribution of 𝐯𝑓 (𝐱) conditioning on
(𝐱) are given, respectively, by Eqs. (4) and (5) substituting 𝐯(𝐱) for 𝐘.
amely:

𝐸(𝐯𝑓 (𝐱)|𝐯(𝐱)) = 𝐴𝑓𝜔 + 𝐿𝑓1𝐿
−1(𝐯(𝐱) − 𝐴𝜔),

(𝐯𝑓 (𝐱)|𝐯(𝐱)) = 𝜎2𝐿𝑓𝑓𝐿
′
𝑓𝑓 .

Point forecasts for the portfolio’s future value at time 𝑇 + 1, 𝑇 +
,… , 𝑇 + ℎ are given by an estimate of the mean vector:

̂ (𝐯𝑓 (𝐱)|𝐯(𝐱)) = 𝐴̂𝑓 𝜔̂ + 𝐿̂𝑓1𝐿̂
−1(𝐯(𝐱) − 𝐴̂𝜔̂), (6)

here the hat symbol means that the parameters have been substituted
or their maximum likelihood estimates. Similarly, the covariance ma-
rix can be estimated as 𝜎̂2𝐿̂𝑓𝑓 𝐿̂′

𝑓𝑓 . However, we consider here the
lternative estimate of the predictive variance that takes into account
he uncertainty about 𝜔 and 𝜎; that is:

̂ (𝐯𝑓 (𝐱)|𝐯(𝐱)) = 𝜎̂2𝑆̂. (7)

Let 𝜇𝑇+ℎ(𝐱) be the ℎth element of the estimated mean vector
nd 𝜎2𝑇+ℎ(𝐱) the element in row ℎ and column ℎ of the estimated
ovariance matrix. Then, 𝜇𝑇+ℎ(𝐱) and 𝜎2𝑇+ℎ(𝐱) estimate, respectively,
(𝑣𝑇+ℎ(𝐱)|𝐯(𝐱)) and 𝑉 (𝑣𝑇+ℎ(𝐱)|𝐯(𝐱)). Consequently, the bi-objective op-

imization problem that we have to solve to find efficient portfolios (see
q. (2)) can be finally formulated as:

V(h): Max 𝑓1(𝐱) = 𝜇𝑇+ℎ(𝐱)
Min 𝑓2(𝐱) = 𝜎2𝑇+ℎ(𝐱)

s.t. 𝐱 ∈  (8)

et:

- 𝑛 be the number of risky assets,
- 𝐲 the 𝑇 ×𝑛 matrix whose columns are the time series of historical

prices of the assets,
- 𝑀 the capital to be invested at time 𝑇 ,
- ℎ the future time point for which we want to calculate the return

and risk,
- 𝐥 = (𝑙1, 𝑙2,… , 𝑙𝑛)′ and 𝐮 = (𝑢1, 𝑢2,… , 𝑢𝑛)′ the vectors of lower and

upper bounds,
- 𝑘𝑙 and 𝑘𝑢 the minimum and maximum number of assets to be

included in the portfolio,
- 𝑁 the size of the population used in the genetic algorithm,
- 𝑐 the integer used in the elitism step to prevent the disappear-

ance of the best individuals,
- 𝑞0 the maximum quantity that a share in a portfolio will decrease

in the mutation step, and
- 𝑑 the maximum distance allowed between two consecutive up-

per bounds of the genetic algorithm to reach the termination
condition.

The workflow diagram of our algorithm is described in Algorithm
1 GAPS.

5. Case study

To assess the performance of our procedure in a real context, we
have considered the daily closing price time series of 𝑛 = 74 healthcare
stocks listed on the New York Stock Exchange. Their quotes were
observed from July 15, 2020 to April 29, 2021, so that the time series

include a total of 200 observations. Based on these 74 price series,
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Algorithm 1 GAPS
1: procedure Genetic algorithm for portfolio
selection(𝑛, 𝐲,𝑀, ℎ, 𝐥,𝐮, 𝑘𝑙 , 𝑘𝑢, 𝑁, 𝑐, 𝑞0, 𝑑)

2: Set  ← Ø and 𝑖 ← 1.
3: while 𝑖 ≤ 𝑁 do ⊳ generation of the initial population.
4: Select 𝑘, an integer varying in the set {𝑘𝑙 , 𝑘𝑙 + 1,… , 𝑘𝑢}.
5: Generate randomly 𝑘 integers between 1 and 𝑛. ⊳ representing assets.
6: Simulate a vector 𝐱′𝑖 of dimension 𝑘 using the Dirichlet distribution

of order 𝑘, with all its parameters equal to 1. ⊳ equivalent to the uniform
distribution over the (𝑘 − 1)-simplex.

7: Create the portfolio 𝐱𝑖 using the components of 𝐱′𝑖 in an orderly way
and adding 0s in those positions corresponding to the assets that have not
been selected in 5.

8: if 𝐱𝑖 ∈  then
9:  ←  ∪ {𝐱𝑖}; 𝑖 ← 𝑖 + 1.
0: end if
1: end while
2: Set  = {𝐱𝑖}𝑁𝑖=1 as the current population and UB𝑜 = Ø.
3: repeat ⊳ evaluation.
4: for all 𝑖 ∈ 1 ∶ 𝑁 do
5: Compute the portfolio’s value time series 𝐯(𝐱𝑖) (see Equation (1).
6: Apply the damped trend model to the series 𝐯(𝐱𝑖).
7: Estimate 𝐸(𝐯𝑓 (𝐱𝑖)|𝐯(𝐱𝑖)) and 𝑉 (𝐯𝑓 (𝐱𝑖)|𝐯(𝐱𝑖)) using Equations (6)

and (7).
8: Compute the objective vectors 𝐳𝑖 = (𝑓1(𝐱𝑖) = 𝜇𝑇+ℎ(𝐱𝑖), 𝑓2(𝐱𝑖) =

𝜎2
𝑇+ℎ(𝐱𝑖)).

19: end for
20: Define the matrix 𝜑 whose first column is the vector

(𝑓1(𝐱(1)), 𝑓1(𝐱(2)),… , 𝑓1(𝐱(𝑁)))′ (elements sorted in decreasing order)
and the second one (𝑓2(𝐱(1)), 𝑓2(𝐱(2)),… , 𝑓2(𝐱(𝑁)))′.

1: Eliminate the rows of 𝜑 that are dominated. ⊳ selection of efficient
solutions.

22: Set the current upper bound UBcurr as the polygonal chain with
vertices the rows of 𝜑.

3: for all 𝑖 ∈ 1 ∶ 𝑁 do
4: Compute 𝑑𝑢𝑏

𝑖 ∶ distance from 𝐳𝑖 to the current upper bound
UBcurr.

5: end for
6: Elistism. Define 𝐄 as the 𝑛×𝑁∕𝑐 matrix whose columns are the 𝑁∕𝑐

portfolios 𝐱𝑖 in  with smallest 𝑑𝑢𝑏
𝑖 .

27: Mutation. Set  ← Ø.
8: for all 𝑖 ∈ 1 ∶ (𝑁∕𝑐) do
9: 𝑗 ← 1

30: while 𝑗 ≤ 𝑐 − 1 do
31: 𝐱𝑚𝑖𝑗 ← 𝑖-th column of 𝐄 ⊳ portfolio to be mutated.
32: Select randomly 2 integers 𝑘1 and 𝑘2 between 1 and 𝑛.
33: Define 𝑞1 = min{𝑞0, 𝐱𝑚𝑖𝑗 [𝑘1] − 𝐥[𝑘1]} and 𝑞2 = min{𝑞1,𝐮[𝑘2] −

𝐱𝑚𝑖𝑗 [𝑘2]}.
34: 𝐱𝑚𝑖𝑗 [𝑘1] ← 𝐱𝑚𝑖𝑗 [𝑘1] − 𝑞2; 𝐱𝑚𝑖𝑗 [𝑘2] ← 𝐱𝑚𝑖𝑗 [𝑘2] + 𝑞2.
35: if 𝐱𝑚𝑖𝑗 ∈  then ⊳ the cardinality constraint may have been violated.
36:  ←  ∪ {𝐱𝑚𝑖𝑗}; 𝑗 ← 𝑗 + 1.
37: end if
38: end while
39: end for
40: Set  = 𝐄 ∪  as the current population and name its elements

{𝐱𝑖}𝑁𝑖=1.
41: if UB𝑜 ≠ Ø then
42: Compute 𝑑𝑖𝑠𝑡 ∶ the maximum distance from any vertex in UB𝑜

to UBcurr.
43: else
44: 𝑑𝑖𝑠𝑡 ← ∞
45: end if
46: Set UB𝑜 ← UBcurr.
47: until 𝑑𝑖𝑠𝑡 ≤ 𝑑
48: end procedure

the time series of the portfolio’s value is computed for each of the
portfolios randomly generated by the GAPS procedure (see Step 15 of
the algorithm).
5

0

Fig. 1. Time plot of the series corresponding to the value of a naive portfolio acquired
at time 𝑇 = 199 and assuming a capital 𝑀 = 80.

Our objective here is to apply the proposed algorithm to find effi-
cient portfolios based on the bi-objective optimization problem defined
in Eq. (8) for the forecasting horizon ℎ = 1. We will then analyze the
financial behavior of some efficient portfolios that make up the last
upper bound UB𝑜. The selected portfolios are associated with three
different profiles in terms of the risk that the investor is willing to
endure: low, moderate and high.

Due to the computational complexity of the analysis, we have
run some of the processes in parallel. The analysis has been carried
out on a server with 2 Intel Xeon E5-2650 2.3 GHz processors, with
10 physical cores and 20 threads (2 processes per core) each. The
parallelization of the processes has been carried out using the R parallel
library (R. Core Team, 2021).

5.1. Performance analysis of GAPS algorithm

In this experiment we use the first 𝑇 = 199 observations of the time
series corresponding to a given portfolio’s value 𝐯(𝐱𝑖) as the test set. Ap-
lying the damped trend model, we can estimate 𝐸(𝑣𝑇+1(𝐱𝑖)|𝐯(𝐱𝑖)) and
(𝑣𝑇+1(𝐱𝑖)|𝐯(𝐱𝑖)), where 𝑇 + 1 corresponds to April 29, 2021 (see Step
7 of the algorithm). Let 𝜇𝑇+1(𝐱𝑖) and 𝜎2𝑇+1(𝐱𝑖) be the corresponding
stimates. For the efficient portfolios selected by the GAPS algorithm,
e can calculate their expected return as:

𝑇+1(𝐱𝑖) =
𝜇𝑇+1(𝐱𝑖) − 𝑣𝑇 (𝐱𝑖)

𝑣𝑇 (𝐱𝑖)
.

he expected risk is given by 𝜎𝑇+1(𝐱𝑖) (the square root of 𝜎2𝑇+1(𝐱𝑖)).
rom now on, we will simply refer to it as risk.

Let us first describe the computation of these quantities for a naive
ortfolio acquired at time 𝑇 = 199 and assuming 𝑀 = 80. In particular,
e have randomly selected 𝑘 = 8 assets among the 𝑛 = 74 considered
nd we have assumed that the proportion of the capital 𝑀 allocated to
ach of these assets is 1∕8 (that is, vector 𝐱 has all its elements equal to
except those associated with the selected assets, which are equal to
∕8). Based on the price of the assets at time 𝑇 = 199, 𝑦𝑖𝑇 , the amount of
hares held in each of them is given by 𝑠𝑖(𝐱) =

𝑀
8

1
𝑦𝑖𝑇

if asset 𝑖 has been
elected. For the non-selected assets, 𝑠𝑖(𝐱) = 0. Using the time series of
istorical prices of the assets and 𝑠𝑖(𝐱), the time series corresponding to
he value of the naive portfolio has been computed using Eq. (1). Fig. 1
hows the evolution of this time series from 𝑡 = 1 to 𝑡 = 𝑇 = 199. The
xpected return and risk for this naive portfolio at time 𝑇 +1 = 200 are,
espectively, 𝑟200(𝐱) = 0.101 and 𝜎200(𝐱) = 1.529.

The first step to implement the GAPS algorithm is the definition
f the constraints that define the decision space. In this experiment
e consider the following: the cardinality constraint that restricts the
umber of assets composing the portfolio assumes 𝑘𝑙 = 6 and 𝑘𝑢 = 9;
o ensure diversification of the investment, we set 0 = 𝑙𝑖 ≤ 𝑥𝑖 ≤ 𝑢𝑖 =
.3. On the other hand, the GAPS algorithm has been implemented so
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Fig. 2. Current upper bounds for generations 1, 5, 10, 15, 20, and 25 when the GAPS
algorithm is applied to a population of 𝑁𝐴 = 600 feasible portfolios.

Fig. 3. Expected return and risk corresponding to the portfolios in the first (gray
points) and last (red points) generations of the GAPS algorithm when it is applied
to a population of 𝑁𝐴 = 600 feasible portfolios.

that the elites contain 20% of the initial population size. Regarding
the mutation parameter 𝑞0, we have considered different values: 𝑞0 ∈
{0.05, 0.02, 0.01, 0.0001}. Finally, the maximum distance allowed be-
tween two consecutive upper bounds to reach the termination condition
is 𝑑 = 10−5.

Based on this definition of the decision space, we show now the
results provided by the GAPS algorithm when it is applied to a pop-
ulation of 𝑁𝐴 = 600 feasible portfolios. Fig. 2 shows the evolution of
the upper bounds that the GAPS algorithm has generated at different
iterations; namely, they correspond to generation 1, 5, 10, 15, 20, and
25, when the algorithm has reached the termination condition. This
figure highlights both the improvement in the optimization process
and the quasi continuity of the approximation of the Pareto front at
generation 25.

To verify both that the initial random generation of the portfolios
widely covers the objective space  ∈ 2 and that portfolios with a
worse expected return–risk behavior are discarded by the optimization
process, Fig. 3 shows the expected return and risk corresponding to the
portfolios in the first (gray points) and last (red points) generations of
the GAPS algorithm.

Finally, we assess if the performance of our procedure is affected by
the size of the population used in the genetic algorithm. Fig. 4 shows
the expected return and risk of the portfolios in the first (gray points)
6

c

Fig. 4. Expected return and risk corresponding to the portfolios in the first (gray
points) and last (red points) generations of the GAPS algorithm when it is applied
to a population of 𝑁𝐵 = 1000 feasible portfolios.

nd last (red points) generations of the GAPS algorithm when it is
pplied to a population of 𝑁𝐵 = 1000 feasible portfolios. As can be seen,
he results provided in both cases are quite similar, which demonstrates
he stability of our procedure. The biggest change is observed in the
omputation time, which increases from 17 to 28.5 h.

.2. GAPS algorithm: A multi-start strategy

In this section, we evaluate the performance of our procedure when
e implement a multi-start strategy that allows us to parallelize the
eneration of populations of feasible portfolios; that is, we can consider
single population of (for instance) 𝑁𝐴 = 600 feasible portfolios

r, alternatively, we can apply the GAPS algorithm to 6 different
opulations of size 𝑁𝐴2

= 100. In the latter case, an additional final
tep is included in the analysis to find efficient portfolios from among
hose that make up the different Pareto fronts obtained by applying the
APS algorithm to each of the populations.

We consider here the following strategies:

• Strategy A2: The GAPS algorithm is applied to 6 different popu-
lations of size 𝑁𝐴2

= 100 feasible portfolios.
• Strategy B2: The GAPS algorithm is applied to 10 different popu-

lations of size 𝑁𝐵2
= 100 feasible portfolios.

• Strategy B3: The GAPS algorithm is applied to 5 different popu-
lations of size 𝑁𝐵3

= 200 feasible portfolios.

Fig. 5 shows the expected return and risk of the portfolios in the first
gray points) and last (red points) generations of the GAPS algorithm
or these 3 strategies. The graphs shown in this figure combine the
ortfolios obtained when the GAPS algorithm is applied to each of the
ifferent populations considered. It is interesting to note that the multi-
tart strategy increases the time needed to solve the problem compared
o using a single population of the same size. This increase in time is
ore noticeable for larger population sizes.

Fig. 6 shows the Pareto fronts (expected return–risk) generated by
he GAPS algorithm in each of the strategies considered. Strategies A1
nd B1 refer to the ones described in the previous section, when the
APS algorithm is applied to a single population (of size 𝑁𝐴 = 600 and
𝐵 = 1000 respectively).

To better compare the final performance of these strategies, we
ave computed their hypervolume (HV), which is an indicator that
valuates the solution sets in terms of both convergence and diversity
uality (Zitzler et al., 2003). So, the larger the value the better the

omputed Pareto front from a multiobjective perspective. We have
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Fig. 5. Expected return and risk corresponding to the portfolios in the first (gray points) and last (red points) generations of the GAPS algorithm for the multi-start strategies A2,

2 and B3.
p

Fig. 6. Approximates of the Pareto front generated by the GAPS algorithm in each of
the 5 strategies considered.

calculated the HV using a reference point which is worse than any point
in the objective space. The coordinates of this nadir point are ER =
0.126 and risk = 1.156. The HV values corresponding to the 5 strategies
are: HV𝐴1 = 0.378, HV𝐴2 = 0.376, HV𝐵1 = 0.403, HV𝐵2 = 0.377, and
HV𝐵3 = 0.403. These values together with Fig. 6 show the robustness
of the results obtained with the proposed procedure.
7

5.3. Investment results: A comparative analysis

Finally, we describe in this section some features of the efficient
portfolios provided by the GAPS algorithm and evaluate their ex-post
performance.

For each strategy considered, Table 1 summarizes the number of
efficient portfolios that are contained in the last upper bound, the
range of the expected return and risk, the number of stocks (out of
the 𝑛 = 74 healthcare stocks considered) that compose those portfolios,
and a match matrix indicating the number of assets that simultaneously
appear in both strategies. It is worth emphasizing that there are 6
assets that are included in all strategies, with weights ranging between
60% and 75% in all portfolios. This proves that the different strategies
coincide in the detection of the main investment assets.

We select now 3 efficient portfolios from each strategy, which cor-
respond to a risk profile low (standard deviation below 0.7), moderate
(standard deviation between 0.7 and 1) and high (standard deviation
greater than 1). For the low and high profiles, we have chosen the
ortfolios with lowest and highest risk, respectively. For the moderate

profile, the selected portfolios have both intermediate risk and expected
return values. In almost all cases, efficient portfolios generated by the
GAPS algorithm are made up of 9 assets, the maximum cardinality
allowed. Table 2 shows the risk and expected return for these 15
selected portfolios at time 𝑇 + 1 (April 29, 2021). As can be seen,
strategy B1 provides slightly higher returns for a similar risk. Table 2
also shows the corresponding percentage of profit for the next 3 days,
which allows us to evaluate their ex-post performance. This percentage
has been calculated as the percentage change in the value of the
portfolio with respect to time 𝑇 (when the investment takes place),

using new data on the price of the assets that make up the portfolio.
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Table 1
Summary of some features of the efficient portfolios provided by the GAPS algorithm.

Strategy # of efficient portfolios Range of expected return Range of risk # of assets Matching assets

A2 B1 B2 B3

A1 13 [0.00, 1.05] [0.60, 1.17] 30 24 20 20 22
A2 10 [0.08, 1.02] [0.61, 1.11] 31 – 18 22 21

B1 14 [0.13, 1.12] [0.59, 1.16] 25 – – 21 15
B2 10 [0.13, 1.03] [0.60, 1.29] 30 – – – 17
B3 11 [0.14, 1.04] [0.60, 1.18] 28 – – – –
Table 2
Expected return and risk together with ex-post behavior of efficient portfolios provided
by the GAPS algorithm for 3 risk profiles.

Risk profile Strategy Risk Expected return Percentage return

30/04 03/05 04/05

A1 1.17 1.05 0.68 2.02 2.43
A2 1.11 1.02 0.58 1.38 1.97

High B1 1.16 1.12 0.79 2.18 1.61
B2 1.29 1.03 1.21 3.54 3.44
B3 1.18 1.04 0.30 1.61 1.72

A1 0.76 0.58 −0.30 0.78 1.52
A2 0.72 0.53 −0.13 0.98 0.73

Moderate B1 0.77 0.62 0.13 1.14 0.78
B2 0.80 0.66 0.07 1.19 0.42
B3 0.75 0.61 −0.12 0.90 1.14

A1 0.60 0.00 0.59 1.75 1.87
A2 0.61 0.08 0.45 1.68 1.69

Low B1 0.59 0.13 0.63 1.78 1.65
B2 0.60 0.13 0.78 2.04 1.90
B3 0.60 0.14 0.40 1.64 1.46

Naive portfolio −0.48 0.01 −0.57
Dow Jones −0.54 0.16 0.21

For comparative purposes, the return of the Dow Jones Index and a
naive portfolio (where the proportion of the capital allocated to each
of the 𝑛 = 74 assets is 𝑥𝑖 = 1∕74) on those days is also indicated. These
esults prove the good ex-post investment performance of the GAPS
lgorithm, which provides efficient portfolios with larger percentage
f profit than the Dow Jones Index. Finally, it is worth noting that
ortfolios corresponding to a risk profile high are preferable, the best
esults being those associated with strategy B2.

. Conclusions

In this paper we have proposed a new method for portfolio selection
hat is based on the analysis of the time series corresponding to the
alue of given portfolios. For each particular portfolio, the series repre-
enting its value is computed using the time series of historical prices of
he different assets. One of the main advantages of this approach is that
ossible correlations between the price movements of the individual
ssets will be implicitly incorporated into the portfolio value. So, there
s no need to either assume independency to facilitate the analysis or
stimate a covariance matrix.

Relatively easy to implement forecasting procedures can then be ap-
lied to model and predict these time series. Here we have implemented
n alternative formulation of the damped trend model. The formulation
f the model as a linear heteroscedastic model eases the joint estimation
f the initial conditions and the smoothing parameters. This forecasting
odel allows us to predict the vector of future values of the time series

orresponding to the value of the given portfolios. The mean vector
nd the covariance matrix of the predictive distribution can be used
o derive the expected return and risk of each portfolio considered.
n particular, a non-linear bi-objective optimization problem is defined
sing the estimated mean and variance of the portfolio’s value at future
ime point 𝑇 + ℎ, where the value of ℎ is specified by the investor.
8

This optimization problem allows us to take into account the multi-
dimensional nature of the portfolio selection problem. Efficient port-
folios of restricted cardinality are then found by applying a multi-
objective genetic algorithm, the GAPS algorithm. As shown in the case
study, this algorithm provides robust results in the different strategies
considered regarding the number of populations and their sizes.

It is worth emphasizing that we have found here efficient portfolios
when ℎ = 1. However, the optimization problem can be extended to
incorporate additional objectives corresponding to different investment
horizons. Similarly, objectives of interest alternative to the mean and
the variance can also be derived from the predictive distribution of the
portfolio’s value and incorporated into the optimization problem.
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