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ABSTRACT Each new video encoding standard includes encoding techniques that aim to improve the
performance and quality of the previous standards. During the development of these techniques, PSNR was
used as the main distortion metric. However, the PSNR metric does not consider the subjectivity of the human
visual system, so that the performance of some coding tools is questionable from the perceptual point of view.
To further explore this point, we have developed a detailed study about the perceptual sensibility of different
HEVC video coding tools. In order to perform this study, we used some popular objective quality assessment
metrics to measure the perceptual response of every single coding tool. The conclusion of this work will help
to determine the set of HEVC coding tools that provides, in general, the best perceptual response.

INDEX TERMS HEVC, perceptual coding, transform skip, RDOQ, deblocking filter, SAO, CSF, perceptual

metrics.

I. INTRODUCTION

High Efficiency Video Coding (HEVC) is the latest video
coding standard in force developed by the Joint Collabora-
tive Team on Video Coding (JCT-VC) of the ITU-T Video
Coding Experts Group (VCEG) and the ISO/IEC Moving Pic-
ture Experts Group (MPEG) standardization organizations.
During the development of the standard, a set of working
draft specifications, including the accepted proposals, was
published. In addition, the HEVC Test Model (HM) reference
software was provided, so that the different coding techniques
proposed could be tested.

In 2013, the first version of the standard was released. New
versions of the standard and the reference software, including
the multi-view extensions (MV-HEVC), the range extensions
(RExt), and the scalability extensions (SHVC), have been
launched since then.

The main goal of the HEVC standard was to reduce the
bit rate by up to 50% while maintaining the same subjec-
tive quality as the previous H.264/AVC standard, without
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increasing the complexity of the encoder. To accomplish this
goal, the HEVC standard incorporates numerous coding tech-
niques that attempt to reduce the bit rate without increasing
the distortion. Many of these techniques are based on the
previous H.264/AVC standard, while other novel features,
such as Quad-tree partitioning or the Sample Adaptive Offset
(SAO) filter, were also included.

Some coding tools in the HEVC standard include
approaches that deal with the non-linear behavior of the
Human Visual System (HVS), in order to take into account
the subjective quality perceived by humans during the encod-
ing process. In particular, HEVC provides the SCaling List
(SCL) coding tool, which applies a non-uniform quantization
to the transformed coefficients, depending on the HVS con-
trast sensitivity associated to their frequencies. The main idea
is that higher quantization can be applied to the areas of the
scene for which the HVS is less sensitive, i.e., the Just Notice-
able Distortion (JND) concept [1]. Some studies also include
HEVC profiles to manage the luminance masking effect for
High Dynamic Range (HDR) video sequences, as in [2], [3],
where the authors apply a non-uniform quantization profile
based on the Intensity Dependent Quantization [4]; it is
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adaptively applied to each frame based on a tone-mapping
operator. An important bit rate reduction is obtained for the
same quality that was measured with the specifically designed
HDR-VPD-2 quality assessment metric [5] and also through
subjective tests.

Although the coding techniques incorporated in the HEVC
standard have proven to be capable of reducing the bit rate,
it cannot be guaranteed that they are optimized from a per-
ceptual point of view. During the development of the coding
techniques, the Peak Signal-to-Noise Ratio (PSNR) metric
was used to measure the distortion. PSNR, like Mean Square
Error (MSE), provides a quality score based on the pixel
differences between the original and reconstructed images.
It is well known that these metrics do not accurately reflect
the perceptual assessment of quality [6]-[9]. However, in the
existing literature, there seems to be conflicting evidence
about the accuracy of PSNR as a video quality metric. In [10],
the authors proved that PSNR follows a monotonic relation-
ship with subjective quality in the case of full frame rate
encoding, when the video content and the video encoder are
fixed.

So, in order to properly asses the perceptual (i.e., HVS-
like) performance of HEVC coding tools, we need to employ
quality assessment metrics that provide quality scores highly
correlated with the quality perceived by humans. By doing
this, we will ensure that the HEVC coding tools are always
evaluated to maximize the perceptual performance of the
overall encoder, avoiding, as much as possible, the deploy-
ment of cumbersome and time-consuming subjective tests.

In this study, we analyze the perceptual performance of the
several coding tools of the HEVC Test Model (HM) software,
which concerns the visual quality of a reconstructed video
sequence. We have encoded the whole set of video sequences
included in the HEVC common test conditions [11] with
different configuration setups in order to analyze their per-
ceptual response, trying to understand which encoder con-
figuration maximizes the averaged perceptual quality of the
reconstructed video sequences. So, on the one hand, we mod-
ify the encoder by changing its configuration, and on the other
hand, we use multiple sequences (different content) to obtain
this average. Therefore, under these conditions, PSNR should
not be used as a reference metric to obtain perceptually based
conclusions [12].

Each configuration setup will determine which coding
tools are enabled, so we may analyze not only their indi-
vidual contribution to the perceptual performance but also
their contribution in combination with other coding tools.
In order to measure the video quality, we use a set of well-
known image objective quality assessment metrics, as well
as the new Video Multi-method Assessment Fusion (VMAF)
quality metric developed by Netflix [13].

The main contribution of this article is based on the R/D
performance analysis of several HEVC coding tools, in order
to properly assess their impact on the perceptual quality of
the decoded video. Most of the available studies about HEVC
coding tools in the literature only work with the PSNR, but
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very few of them are interested in perceptual behavior; usu-
ally, they focus only on a specific part of the encoder. We have
exhaustively analyzed the impact of different coding tools
on the perceptual quality of the reconstructed videos, show-
ing results that differ from the results provided by PSNR.
These results may be useful for future studies in order to
configure the video encoder to maximize the perceptual R/D
performance.

The rest of the article is structured as follows. An overview
of the different HEVC coding tools under study is presented
in Section II. In Section III, the methodology used in this
study is explained. Section IV shows the experimental results,
while in Section V, we provide a brief discussion of the
obtained results. Finally, Section VI summarizes the con-
clusions of this study, and some future research lines are
pointed out.

Il. HEVC PARAMETERS

The HEVC standard includes many configuration parameters
that are used to enable or disable coding tools that improve
the reconstructed quality, reduce bit stream size, or simplify
encoder complexity.

These parameters allow us to tune the coding structure,
motion estimation, quantization, entropy coding, slice cod-
ing, deblocking filter, and rate control, among others [14].
Inside these main coding parameter blocks, the user can
enable or disable the use of any parameter, as well as create
a user-defined behavior for a given parameter. For exam-
ple, in the deblocking filter parameter block, the user can
enable or disable the loop filter and also define the use of
the loop filter across the slice boundaries (subparameter:
LFCrossSliceBoundaryFlag). However, some of these user-
defined behaviors for some coding tools (subparameters)
may affect the subjective quality. In this article, we will
focus on the general behavior of the HEVC codec when
enabling or disabling the main coding parameter inside each
parameter block.

In this work, we have selected the following configuration
parameters for evaluation, since they have a high impact on
the visual quality of the decoded video sequence: Scaling
List, Deblocking Filter, SAO Filter, Rate-Distortion Opti-
mized Quantization, and Transform Skip.

A. SCALING LIST

The HVS is not able to detect all spatial frequencies with
the same accuracy [15]. Numerous studies over the past few
decades have characterized the Contrast Sensitivity Function
(CSF) [16]-[18] as the response of our HVS to contrast
variations, showing that the human eye is least sensitive to
the highest and lowest frequencies.

This CSF is implemented in the quantification stage of
the HEVC standard and can be modified by the Scaling
List parameter, with three available options. By default,
the encoder applies a constant quantizer step size for all trans-
form coefficients (ScalinglList = 0) that does not consider
the subjectivity of the HVS. However, the HEVC standard
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(a) 8 x 8 flat quantization matrix (b) 8 x 8 weight quantization matrix

FIGURE 1. Default 8 x 8 quantization matrices for (a) ScalingList = 0 and
(b) ScalingList = 1.

FIGURE 2. Example of using deblocking filter in BlowingBubbles frame,
encoded at QP37: (a) DB disabled, (b) DB enabled.

includes pre-defined weighting matrices (ScalingList = 1)
that incorporate an implementation of the CSF. These non-
flat matrices (like the one shown at Figure 2-b) define an
additional scaling of the quantizer step, which varies with
the transformed coefficient position, i.e., the base function
frequency [19].

The results of the study carried out by [20] showed that,
on average, the use of the weight quantization matrices pro-
vides better subjective quality results.

B. DEBLOCKING FILTER

This filter reduces the effect of blocking artifacts that are
inherent in the nature of the encoder. It is used after block
reconstruction, but its implementation is done within the
coding loop, i.e., the reconstructed and filtered blocks will
be taken as reference for other blocks (in-loop filter).

Its implementation is similar to the one used in the
H.264 standard [21], but it is somewhat more sim-
plified. In HEVC, the decoder can adaptively choose
between applying two levels of the deblocking filter (nor-
mal or strong) or not applying it, depending on the adjacent
blocks and a certain threshold [22]. As an example, Figure 2
compares the use of the deblocking filter on a part of a
decoded picture. As can be seen, the grid effect disappears
when the filter is active; however, regions that should not be
filtered out are also blurred.

In [22], the authors argue that applying the deblocking
filter increases the objective and subjective quality of the
decoded video sequences.

C. SAO FILTER
The Sample Adaptive Offset (SAO) filter is a new algo-
rithm integrated in the HEVC standard. It is located after the
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deblocking filter, and together, they form the so-called in-
loop filter stage.

The main purpose of the SAO filter is to reduce distortion
in the samples. To this end, the samples are classified into
different categories, obtaining an offset for each of them.
There are two sample processing techniques, band offset and
edge offset. The algorithm will adaptively decide on the best
strategy to use. The offset value is transmitted through the bit
stream, while the classification of the samples is performed
on both the encoder and decoder sides to reduce the informa-
tion to be transmitted [23].

In [23], authors explain that using the SAO filter can pro-
vide about coding gains of 3.5% on average. To measure this
gain, they have used the Bjgntegaard-Delta Rate (BD-Rate)
metric [24], which uses the PSNR, a non-subjective metric.
Regarding the subjective quality, the authors state that, based
on experiments carried out by themselves, an improvement in
quality is generally perceived. This improvement is higher in
synthetic images, as shown in Figure 3, where SAO signifi-
cantly improves the visual quality by suppressing the ringing
artifacts near edges.

of I1SO/IEC 23001
rous editorial corred
hrifications of mathe

FIGURE 3. Example of using SAO filter in SlideEditing frame, encoded at
QP32: (a) Original uncompressed (b) SAO disabled, (c) SAO enabled.

D. RATE-DISTORTION OPTIMIZED QUANTIZATION (RDOQ)
In the video encoder, optimizing the quantification process
has a significant impact on the compression efficiency. The
HEVC standard does not specify the quantization function,
giving the encoder some flexibility in implementing it. HEVC
includes, since version 13 of the reference software, a more
sophisticated implementation of the quantization scheme
called rate-distortion optimization quantization (RDOQ).
The purpose of RDOQ is to find the optimal or suboptimal
set of quantized transform coefficients representing residual
data in an encoded block. RDOQ calculates the image dis-
tortion (introduced by the quantization of transformed coeffi-
cients) in the encoded block and the number of bits needed to
encode the corresponding quantized transform coefficients.
Based on these two values, the encoder chooses, among
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different coefficient blocks, the block which provides the
better Rate Distortion (RD) cost [25].

Note that RDOQ is an effective method in terms of increas-
ing the R/D performance. However, in [26], the authors claim
that the PSNR-based mathematical reconstruction quality
improvement attained by this technique is perceptually neg-
ligible in terms of how the human observer interprets the
perceived quality of the compressed video data.

E. TRANSFORM SKIP
The Transform Skip parameter in the HEVC standard allows
the encoder to bypass the transformation stage. In this way,
the prediction errors are coded directly in the spatial domain.
During the development of HEVC, three transform skip
modes were proposed and tested, but the standardization
committee finally decided to use a single mode, the skipping
transform in both the vertical and horizontal directions [27].
This mode was found to improve the compression of synthetic
video sequences such as remote desktop, slideshows, etc.
Finally, the HM reference software includes an additional
parameter, called TransformSkip-Fast, which enables or dis-
ables reduced testing of the transform-skipping mode deci-
sion in order to speed it up.

F. SIGN DATA HIDING

The transform coefficient coding in HEVC includes an
option, called sign data hiding or sign bit hiding, that hides
the coding of the sign flag of the first non-zero coefficient
at the parity of the absolute sum of the coefficients. If the
parity does not match the sign of the first non-zero coefficient
and there are a sufficient number of significant coefficients,
the encoder will modify the amplitude of a block coefficient
until the desired sign is obtained [28].

14371 14/3/7]0

9141110 914,110

41010 214,010

-110(11]0 1101710
(a) (b)

FIGURE 4. Modified coefficient value example in 4 x 4 transform
sub-block example for sign data hiding.

As an example, in Figure 4-a, we have a transformed sub-
block of size 4 x 4, whose absolute sum is 47. By convention,
an even value would derive a negative sign for the first
non-zero coefficient. Following the block in zig-zag order
from left to right and from top to bottom, the first non-zero
coefficient is 14, which has a positive sign. This is why the
encoder changes the value of a coefficient (Figure 4-b) so that
the absolute sum will be even. The selection of the coefficient
to be modified is determined by the Rate-Distortion criteria,
which chooses the coefficient with the lowest R/D cost.

This compression technique achieves an average BD-Rate
reduction of 0.6% for the All Intra coding mode.
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Modifying the coefficient values tends to increase the dis-
tortion, so the BD-Rate gain is obtained thanks to the rate
reduction provided by this technique and not due to a quality
increase.

IIl. METHODS AND PROCEDURES

In this work we have followed the indications established by
the Common Test Condition [11]. This document defines a
regulatory framework establishing a set of defined sequences
and several base configurations for HM. The set of test
sequences are classified in six large groups (A-F). The
classes A, B, C, and D represent video sequences with differ-
ent contents, video resolutions, frame rates, and bit depths.
Class E is focused on head and shoulders videos typically
used in video conference applications, and class F is devoted
to computer generated videos and content screen applications
(no natural video sequences).

In this work, we have focused only on the All Intra Main
(AI Main) configuration mode, and therefore, no tempo-
ral processing and analysis was performed. We have only
used the All Intra coding mode under the following criteria:
(a) As most perceptual metrics are only available for images
(not videos), the objective video quality measurement would
be more accurate when using the All Intra coding mode
since these metrics are unable to capture the motion-related
artifacts. (b) Most of the coding tools analyzed in this article
have a direct impact on the reconstruction quality as a result of
a prediction process where the residual error is quantized and
the entropy is encoded. So, with the independence of using
spatial or temporal prediction, the quality distortion is due
to the quantization of the prediction error. If two prediction
blocks (one spatial and the other temporal) produce the same
residual error, the reconstruction quality should be the same
for a given quantization value, so the quality of the prediction
and not the prediction itself (temporal or spatial) determines
the final reconstruction quality.

Table 1 defines the set of test sequences used in this article.

In order to analyze the R/D performance of the coding
tools described in the previous section, we use the Bjonte-
gaard BD-Rate metric [24], which shows the rate-distortion
performance. We followed the instructions defined in the
HEVC conformance test standard [11]; the QPs 22, 27, 32,
and 37 are used to conform the PSNR curves that allow the
computation of the BD-Rate performance. As we are using
other objective perceptual metrics like MS-SSIM and VMAF,
we decided to add one more QP (QP = 42) in order to better
fit the dynamic range response of these metrics, and as a
consequence, provide more accurate BD-Rate results.

The BD-Rate values have been obtained for each met-
ric and each coding configuration. These values show the
bit rate savings (in percentage) between two rate-distortion
curves. Due to the fact that the BD-Rate calculation was
initially developed for the PSNR metric using third degree
polynomial interpolation and four values per curve, the use
of this algorithm applied to other metrics and with five points
(QP values) per curve is not always optimal. Therefore, the
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TABLE 1. HEVC test sequences.

. Frame  Frame Bit

Class Sequence name Resolution count rate depth
Traffic 150 30 8
PeopleOnStreet 150 30 8

A" | Nebuta 2360x1600 350 60 10
SteamLocomotive 300 60 10
Kimono 240 24 8
ParkScene 240 24 8

B Cactus 1920x1080 500 50 8
BQTerrace 600 60 8
BasketballDrive 500 50 8
RaceHorses 300 30 8
BQMall 600 60 8

C | PartyScenc 832480 500 50 8
BasketballDrill 500 50 8
RaceHorses 300 30 8
BQSquare 600 60 8
D | BlowingBubbles 416x240 599 50 8
BasketballPass 500 50 8
FourPeople 600 60 8

E Johnny 1280x720 600 60 8
KristenAndSara 600 60 8
BaskeballDrillText 832x480 500 50 8

F ChinaSpeed 1024x768 500 30 8
SlideEditing 1280x720 300 30 8
SlideShow 1280x720 500 20 8

interpolation method has been replaced by the Piecewise
Cubic Hermite Interpolating Polynomial (PCHIP) [29] for
higher accuracy.

To evaluate the influence of each parameter on the per-
ceptual quality described in Section II, all test sequences
have been coded by switching these parameters on and off,
resulting in 64 configuration setups. These setups have been
run using the reference software HEVC Test Model (HM)
version 16.20 [30].

Due to the large number of measurements to be made,
the use of subjective tests such as DMOS has been ruled
out. Instead, we have proposed obtaining numerical values
from Bjgntegaard-Delta rate measurements using the follow-
ing objective quality metrics: SSIM, MS-SSIM, VIF, PSNR-
HVS-M, and VMAF.

The SSIM (Structural Similarity) [9] and the MS-SSIM
(Multi-Scale SSIM) [8] metrics are based on the hypothesis
that the HVS is highly adapted to extract structural infor-
mation from the scenes. Both metrics consider luminance,
contrast, and structure information of the scenes, whereas
MS-SSIM also considers the scale.

The VIF (Visual Information Fidelity) [31] metric uses the
Natural Scene Statistics (NSS) model along with an image
degradation model and components of the HVS to obtain the
quality information.

The PSNR-HVS-M metric [32], a modified version of
the PSNR, considers the contrast sensitivity function (CSF)
and the between-coefficient contrast masking of DCT basis
functions.

These metrics, unlike the PSNR, attempt to characterize
the subjectivity of the HVS and do not include temporal
information in their quality assessment algorithms.

The newest perceptual quality metric is the VMAF met-
ric, developed by Netflix [13]. Unlike the previous metrics,
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VMAF makes use of novel machine learning techniques to
estimate the result that would be obtained through subjective
tests. To do that, this metric has been trained with inputs
from real DMOS tests as well as three algorithms: VIF, DLM
(Detail Loss Measure) [33], and TI (Temporal Perceptual
Information) [34]. VIF measures the information fidelity loss,
while DLM and TI measure the detail loss and the amount of
motion, respectively.

Other works in the literature use VMAF: (a) in [35],
the authors proved a strong correlation between subjective
DMOS studies and the VMAF values obtained for a set of 4K
sequences, (b) in [36], the authors also show a high correla-
tion with the MOS values obtained for HD and UHD con-
tent, and (c) in [37], an analysis of different quality metrics
for multi-resolution adaptive streaming showed that VMAF
obtained the highest correlation with perceptual quality.

We have to say that the VMAF metric can be used for
just one frame or for the whole video sequence. As the rest
of the quality metrics only work at frame level, we decided
to use VMAF for each frame in order to be coherent with
the experiment setup and to avoid undesired effects when
comparing all quality metrics results.

Regarding rate-distortion curves obtained in this work,
the reference rate-distortion curve was obtained with the
default All Intra Main configuration, whose parameters are
shown in Table 2.

TABLE 2. Default values of the analyzed parameters.

Parameter | Value

QP | 22,27,32,37,42

ScalingList
LoopFilterDisable
SAO

RDOQ

RDOQTS
TransformSkip
TransformSkipFast
SignHideFlag

—_— e — O O

IV. EXPERIMENTAL RESULTS

In this section, we show the results obtained after coding
the set of test sequences when enabling and disabling the
coding tools described in Section II with respect to the default
configuration.

In order to measure the R/D performance of the differ-
ent HEVC coding tool configurations, we have used the
BD-Rate metric, as described in the previous section. The
results from Tables 3(a) to 3(f) are provided by the BD-Rate
metric, showing the R/D performance of the different coding
tool setups measured by different perceptual quality metrics
for all video sequences under evaluation (classes A to F).
Negative values in these tables correspond to BD-Rate reduc-
tions or perceptual gains, and positive values correspond to
BD-Rate increases or perceptual losses, with respect to the
default or reference values (first row in Tables 3(a) to 3(f)).
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TABLE 3. (a) Average coding performance [% BD-Rate] for Class A. (b) Average coding performance [% BD-Rate] for Class B. (c) Average coding
performance [% BD-ate] for Class C. (d) Average coding performance [% BD-Rate] for Class D. (e) Average coding performance [% BD-Rate] for Class E.

(f) Average coding performance [% BD-Rate] for Class F.

# ‘ scL ‘ SAO ‘ DB ‘ RDOQ ‘ Tisk ‘ SsIM  MsssM vMaF  vie  PSNR
HVSM
1) o0 | 1t |1 1 1 0 0 0 0 0
2| o0 1o 1 0 | —003 —0.03 006 —0.04 —0.04
3| oo T 0 1 5.6 229 1193  3.84  5.38
4] o 1| 0 0 | 554 224 1195 38 534
s| o 1] o 1 1| 026 1.03 132 —027 151
6| o 1| o 1 0 | 024 1 138 —0.31 146
7| o 1| o 0 1| 501 346 13.48  3.61  7.05
8| o 1] o 0 0 | 58 342 1351  3.57 7
ol o | o |1 1 1 | 018 021  —208 003 026
0| o | o |1 1 0o | 015 019  —203 -001 021
oo | o |1 0 1| 578 247 1002 382  5.61
2] o0 | o |1 0 0o | 573 243 1003 3.8  5.56
B3 o | o |o 1 1| o038 1.56 | =832 —047  3.05
4l o | o | o 1 0 | 035 153 | —3.27 051  2.99
5] 0 | o | o 0 1| 6ot 408 868 328  8.65
6| 0 | o | o 0 o | 595 403 869 324 859
17| 1 1| 1 1 | 038 02  —018 —0.34 —0.63
18] 1 o 1 0 | —0.44 024 —013 -038 —0.68
19| 1 1| 0 1| 428 141 1071 243 3.41
20| 1 I 0 0 | 423 138 1076 24 3.37
2 | 1 1| o 1 1| —011 o081 112 —0.62  0.85
2| 1 1| o 1 0o | —017 o077 118 —0.66  0.79
3| 1|0 0 1| 459 256 1224 218  5.01
% | 1 1| o 0 0 | 454 253 1229 215 4.96
5|1 o | 1 1 1| —019 0 —235 —034 —0.38
% | 1 0o | 1 1 0 | —025 —0.04 —229 -0.38 —0.43
7| 0o | 1 0 1| 446 1.6 878 242 3.63
2% | 1 0o | 1 0 0 1.4 157 886 239 3.59
2| 1 o | o 1 1 0 134 [ =358 —0.85 2.7
30| 1 o | o 1 0 | —0.06 120  —353 089 2.31
3|1 o | o 0 1| 468 316 745 186 6.56
2| o | o 0 0 | 463 312 752 183 6.51
(@)
[ scu [ 20 | 0w | wwoa | st | i
# | scL | sa0 | DB | RDOQ | TrSk | SSIM  MS-SSIM  VMAF  VIF
HVSM
1o [ 1 |1 1 1 0 0 0 0 0
2| 0 o] 1 0 | —0.07 006 —0.03 —0.06 —0.08
30 0 I 0 1| 527 374 1266 559 7.8
4] 0 I 0 0 | 522 3.7 1260 556  7.13
s| o 1| o 1 1| o033 1.4 124 008 212
6] 0 1| o 1 0o | 025 1.34 122 001 203
71 0 1] o 0 1| 567 535 1406 571  9.52
8| o 1] o 0 0 | 562 531 1408  5.68  0.47
ol o | o |1 1 1 0.4 049  —1.92 —0.06  0.45
0| o | o |1 I 0 | 032 043  —195 —013  0.37
| o | o |1 0 1| 568 422 1034 536 T.62
2] o0 | o |1 0 0 | 563 418 1034 533  7.56
3] o | o | o 1 1| o048 23 | —204 —02 412
4| o | o |o 1 0 0.4 223 | —208 -—027 403
s o | o | o 0 1| 578 638 9.23 523 1168
6| 0o | 0o |o 0 0 | 573 634 923 519  11.62
17| 1 1| 1 I | 072 —048  —047 —0.6 —1.06
18 | 1 I 1 0 | —o78 —052 —052 —071 —1.17
19 | 1 1| 0 1| 276 1.91 9.85 253 3.4
20 | 1 1| 0 o | 271 187 985 245  3.06
a | 1 1|0 1 1| —0a4 0.9 0.75  —0.57  0.95
2| 1| o 1 0 | —0.45 085 0.71  —0.68  0.83
3|1 1| o 0 1| 316 345 1126 258 522
% | 1 1| o 0 o | 311 341 1125 251 513
5| 1 o | 1 1 I | —0.34  —0.01 | -247 07  —0.63
% | 1 o |1 1 0 | —0.39  —005  —252 —0.82 —0.74
7 | o | 1 0 1| sar 237 759 2.33  3.56
8| 1 o | 1 0 o | 311 2.34 757 224 3.46
2| 1 o | o 1 1| —026 177 | —35 —089 292
30 | 1 o | o 1 0 | —031 173 —355 —1.01 2.8
3|1 o | o 0 1| 327 446 65 211  7.32
2| o1 o | o 0 0o | 322 a4 647 202 7.2
(b)

In these tables, we have omitted the SignHideFlag coding
tool, as it does not provide significant changes in the image
distortion (see Section IV-F). The SignHideFlag parameter is
enabled in all tests, since this is its default value.

The complete set of tables, including the SignHideFlag
parameter, for each of the classes, as well as for each spe-
cific video sequence, are available at the GATCOM research
group’s website [38].
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To make the data in the tables easier to read, we have
highlighted the cells with BD-Rate reductions as a heat map.
The higher the reduction is, the greener the cell is. Each row
corresponds to a specific permutation of the configuration
parameters; the first row, highlighted in bold, shows the
reference setup (default settings).

The first column is the permutation number, and it is
used only as a reference in the text. The next five columns
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TABLE 3. (Continued.) (a) Average coding performance [% BD-Rate] for Class A. (b) Average coding performance [% BD-Rate] for Class B. (c) Average
coding performance [% BD-ate] for Class C. (d) Average coding performance [% BD-Rate] for Class D. (e) Average coding performance [% BD-Rate] for

Class E. (f) Average coding performance [% BD-Rate] for Class F.

# ‘ SCL ‘ SAO ‘ DB ‘ RDOQ ‘ TrSk ‘ SSIM MS-SSIM  VMAF VIF }I;S/I;Il]\l/[
1 0 1 1 1 1 0 0 0 0 0
2 0 1 1 1 0 —0.23 —0.22 —0.16 —-0.18 —0.26
3 0 1 1 0 1 2.1 2.89 10.43 4.54 5
4 0 1 1 0 0 1.98 2.76 10.34 4.48 4.81
5 0 1 0 1 1 0.79 1 0.85 0.38 1.65
6 0 1 0 1 0 0.57 0.78 0.67 0.2 1.38
7 0 1 0 0 1 3.01 4.06 11.25 4.95 6.75
8 0 1 0 0 0 2.89 3.92 11.14 4.88 6.55
9 0 0 1 1 1 0.71 0.59 —1.84 0.25 0.65
10 0 0 1 1 0 0.5 0.38 —2.06 0.07 0.4
11 0 0 1 0 1 2.89 3.56 8.02 4.78 5.76
12 0 0 1 0 0 2.79 3.44 7.85 4.72 5.58
13 0 0 0 1 1 1.39 2.02 —2.71 0.72 3.77
14 0 0 0 1 0 1.17 1.8 —2.93 0.54 3.51
15 0 0 0 0 1 3.73 5.33 7.13 5.32 9.14
16 0 0 0 0 0 3.63 5.19 6.96 5.25 8.95
17 1 1 1 1 1 —0.02 —0.2 -0.32 —-0.09 —-0.22
18 1 1 1 1 0 —0.27 —0.44 —-0.55 —0.34 —0.56
19 1 1 1 0 1 0.8 1.22 7.75 2.99 2.97
20 1 1 1 0 0 0.59 0.99 7.46 2.83 2.66
21 1 1 0 1 1 0.77 0.75 0.51 0.25 1.35
22 1 1 0 1 0 0.51 0.5 0.26 —0.01 0.99
23 1 1 0 0 1 1.68 2.28 8.59 3.34 4.59
24 1 1 0 0 0 1.48 2.05 8.31 3.17 4.27
25 1 0 1 1 1 0.67 0.36 —2.24 0.14 0.37
26 1 0 1 1 0 0.42 0.13 —2.53 —-0.12 0.04
27 1 0 1 0 1 1.57 1.85 5.4 3.2 3.65
28 1 0 1 0 0 1.37 1.62 5.02 3.04 3.35
29 1 0 0 1 1 1.32 1.74 —-3.12 0.56 3.44
30 1 0 0 1 0 1.08 1.48 —3.41 0.29 3.08
31 1 0 0 0 1 2.36 3.5 4.49 3.66 6.94
32 1 0 0 0 0 2.16 3.26 4.12 3.5 6.63
()
PSNR
# ‘ SCL ‘ SAO ‘ DB ‘ RDOQ ‘ TrSk ‘ SSIM MS-SSIM VMAF VIF HVSM
1 0 1 1 1 1 0 0 0 0 0
2 0 1 1 1 0 —0.12 —0.21 —0.22 —-0.2 —0.28
3 0 1 1 0 1 —0.42 0.97 10.54 4.34 4.77
4 0 1 1 0 0 —0.45 0.78 10.4 4.25 4.55
5 0 1 0 1 1 1.76 0.38 0.6 0.06 0.92
6 0 1 0 1 0 1.61 0.15 0.33 —-0.15 0.63
7 0 1 0 0 1 1.56 1.48 11.05 4.44 5.8
8 0 1 0 0 0 1.51 1.27 10.91 4.35 5.55
9 0 0 1 1 1 0.41 0.1 —1.94 0.09 0.28
10 0 0 1 1 0 0.29 —0.12 —2.27 —-0.1 0
11 0 0 1 0 1 0.04 1.12 8.25 4.45 5.14
12 0 0 1 0 0 0.04 0.94 7.97 4.36 4.9
13 0 0 0 1 1 3.19 0.71 —2.68 0.22 2.27
14 0 0 0 1 0 3.05 0.47 -3 0.02 1.97
15 0 0 0 0 1 3.25 1.99 7.49 4.63 7.32
16 0 0 0 0 0 3.25 1.8 7.22 4.54 7.08
17 1 1 1 1 1 0.87 0.01 —0.33 —-0.03 —-0.19
18 1 1 1 1 0 0.71 —0.27 —0.54 —0.28 —0.52
19 1 1 1 0 1 0.67 —0.12 8.07 2.95 2.97
20 1 1 1 0 0 0.67 -0.3 7.82 2.82 2.69
21 1 1 0 1 1 2.56 0.34 0.24 —-0.01 0.64
22 1 1 0 1 0 2.39 0.06 0.01 —0.27 0.29
23 1 1 0 0 1 2.53 0.31 8.62 2.98 3.84
24 1 1 0 0 0 2.5 0.12 8.37 2.85 3.54
25 1 0 1 1 1 1.28 0.07 —2.38 0.04 0.06
26 1 0 1 1 0 1.13 —0.21 —2.7 —-0.21 -0.27
27 1 0 1 0 1 1.1 —0.01 5.8 3.03 3.28
28 1 0 1 0 0 1.13 —0.17 5.43 2.91 3.01
29 1 0 0 1 1 4.02 0.63 —3.11 0.12 1.97
30 1 0 0 1 0 3.86 0.35 —3.43 —0.14 1.62
31 1 0 0 0 1 4.19 0.76 5.05 3.13 5.34
32 1 0 0 0 0 4.21 0.58 4.67 3.01 5.05
(d)

correspond to the enabling/disabling status of the following
coding tools: SCL corresponds to ScalingList; SAO corre-
sponds to SAO filter; DB corresponds to the inverse logic
of the LoopFilterDisable parameter, that is, disabling DB
means disabling the Deblocking filter; RDOQ includes both
the RDOQ and RDOQTS coding tools; and TrSk includes
both TransformSkip and TransformSkipFast.

The values scored by the metrics are not normalized,
so each metric provides results in a different scale. However,
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we express the results in terms of the BD-Rate performance
metric (percentage of rate reduction/increase), so we can
compare results, hiding the real scale of each metric.

We have also performed a time profile of every single
coding tool analyzed in this study to determine their average
coding complexity. Considering both evaluation metrics,
the perceptual R/D and the coding complexity, we may pro-
pose the proper coding tool configuration that better percep-
tual results provide with a balanced coding complexity.
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TABLE 3. (Continued.) (a) Average coding performance [% BD-Rate] for Class A. (b) Average coding performance [% BD-Rate] for Class B. (c) Average
coding performance [% BD-ate] for Class C. (d) Average coding performance [% BD-Rate] for Class D. (e) Average coding performance [% BD-Rate] for

Class E. (f) Average coding performance [% BD-Rate] for Class F.

# ‘ scL ‘ SAO ‘ DB ‘ RDOQ ‘ Tisk ‘ ssiM  MsssM - vMaF  vie PSR

HVSM
1) o0 | 1 |1 1 1 0 0 0 0 0
2| o0 1| 1 0 | —0.06 —0.06 —0.08 —0.07 —0.1
3] 0 | 0 1| 298 226 8.85  3.46 465
4] 0 T 0 0o | 28 219 872 341 456
s| o 1] oo 1 1| 214 224 128 042 27
6| o 1] o 1 o | 208 217 12 035 259
7] 0 1| o 0 1| 539 476 1031 3.86 7.6
s8] o 1| o 0 0 5.3 469 1018 381  7.37
ol o | o |1 1 1| 059 o074  —214 028  0.68
0| o | o |1 1 o | 053 067  —223 021 058
il oo | o |1 0 1| 364 3.1 64 360 531
2] o0 | o |1 0 0 | 354  3.02 6.20 363 522
B3 o | 0o | o i 1| 335 38  —2.61 075  4.96
| o | o | o 1 0 | 320 373  —269 067 485
5 0 | 0o | o 0 I | 677 657 594 415 087
6| 0 | 0o | o 0 0 | 667 649 584 400  9.77
17| 1 oo 1 1| —059 —044  —025 —043 —0.77
18] 1 I I 0 | —0.64 —049 -034 05 —0.85
19| 1 I 0 1 15 1.16 75 225 277
20 | 1 1o 0 0 | 143 111 742 221 271
2 | 1 1] o 1 1| 153 177 1 003  1.86
2| 1 |o 1 0 | 1as 172 091 —011 177
3| 1] oo 0 1| 3.6 3.6 8.9 2.6 547
% |1 1] oo 0 o | 378 355 882 255 539
501 | o |1 1 1 0 03  —253 —018 —0.11
2% | 1 0o | 1 1 0 | —005 025 | —263 -025 0.2
7 | 0o | 1 0 1| 216 199 495 246 341
8| 1 o | 1 0 0 | 209 195 4.8 242 3.34
2 | 1 0o | o 1 I | 273 333 —299 026 4.1
0 1| 0 |o 1 o | 268 327  -309 018 4
3|1 0o | o 0 1| 522 538 449 286  T.82
2| o1 0o | o 0 0 | 514 532 442 281 774

(©

PSNR
# ‘ scL ‘ SA0 ‘ DB ‘ RDOQ ‘ Trsk ‘ SSIM  MSSSIM  VMAF  VIF FUNK
10 [ 1 |1 1 1 0 0 0 0 0
2| o 1| 1 0 3.9 4.68 338 552 4.29
3|0 L 0 1| 233 111 539 22 258
4] 0 1o 0 0 | 665 621 1024 923  7.43
s o 1| o I 1| oL 1.3 032  —048 1.5
6| o 1| o 1 0o | 513 611 373 58 59
7| o 1| oo 0 1| 353 2.56 574 246 417
s o 1| o 0 o | 791 7.74 106 9.5  9.09
o o | o |1 i 1| 136 1.56 0.7 095 172
0| o | o |1 1 0 | 543 659 315 795 58
oo | o |1 0 1 3.7 277 643 393 4.29
2] o | o |1 0 0 | 808 806 1004 1167  8.86
B3 o | o | o I 1| 256 319 027 126 4.07
oo | o | o 1 0o | 677 838 275 829 831
15| o | o | o 0 1| 502 461 509 425 6.76
6] 0o | 0o | o 0 0 | 952 1006 964 1202 1151
17| 1 o I 1| 029 011  —025 —0.82 —0.2
18] 1 o I 0 | 355  4.63 32 539 4.06
19 | 1 Pl 0 1| 106 037 418 135 145
20| 1 | 0 0 5.4 554 899 838  6.26
2 | 1 1| o 1 1 0.8 1.18 0.05 058 131
2| 1| o I 0 | 476  6.03 355 564 563
3|1 1] o 0 1| 225 1.8 454 159 2.8
u |1 1| o 0 0 | 666 7.05 945 864  7.86
5| 1 0o | 1 1 1| 104 1.46 042  0.84 148
% | 1 o | 1 i 0o | 507 655 280 777 554
7| 1 o | 1 0 1| 239 1.96 52 303 3.09
28| 1 o | 1 0 0 | 682 744 881 1076 7.61
2 | 1 o | o 1 1| 224 305 0 112 378
0| 1 0o | o i 0 | 641 8.3 2.49 808  8.01
3|1 0o | o 0 1| 368 377 477 332 55
2|1 o | o 0 0 | 824  9u2 842 1109 10.21

®

In the following subsections, we will describe the results
obtained showing the perceptual behavior of each coding
tool under study, and in the next section, an analysis and
discussion of these results will be provided.

A. SCALING LIST
When activating the ScalingList coding tool, a non-uniform
quantization based on the contrast sensitivity function (CSF)
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is applied in the encoder quantization process. By default,
it is disabled, so we have analyzed the perceptual influence
of enabling it.

The results show that enabling the Scaling List parameter
is perceptually beneficial for almost all settings and percep-
tual metrics. This can be seen by comparing rows 1 to 16
(SCL disabled) with rows 17 to 32 (SCL enabled) of the
result tables, where the second group of coding settings
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generally has a lower BD-Rate value than the first group.
Taking into account the base configuration (row 1), just
by enabling only the ScalingList coding tool, all percep-
tual metrics report BD-Rate reductions for all test video
sequence classes. Regarding SCL coding complexity, when
it is enabled the average encoding time increases between
3.47% and 8.44%, depending on the applied quantiza-
tion (QP), as shown in Table 4.

From the results in Tables 3(a) to 3(f), we can extract the
following main results: (a) when enabling the SCL coding
tool (no matter the status of the rest of the coding tools),
we obtain average BD-Rate reductions with all objective
quality metrics and video classes (from 0.7% with SSIM
to 1.4% with PSNR-HVS); (b) when combining the SCL
and RDOQ coding tools, the BD-Rate saving increases an
additional 0.9% on average for all objective video quality
metrics, so both coding tools complement each other in terms
of R/D performance; (c) an exception should be noticed with
class D video sequences and the SSIM metric, where enabling
the SCL coding tool shows an average BD-Rate increase of
0.9%. (d) The best result was provided by the VMAF metric,
scoring an average BD-Rate reduction of 3.58% when both
in-loop filters are disabled (SAO and DB) and RDOQ is
enabled in class A video sequences.

B. DEBLOCKING FILTER

The deblocking filter minimizes the blocking effect produced
by the block partitioning of images during the encoding
process. By disabling this filter, the blocking artifacts become
visible as the QP value increases.

TABLE 4. Average relative CPU encoding time increase/decrease [%],
when enabling/disabling a single coding tool from the default encoder
configuration (negative values mean time savings).

QP22 QP27 QP32 QP37

SCL on 7.41 8.44 6.57 5.18 3.47 6.21
SAOoff | —0.3 —0.21 -0.53  —-0.37  —0.58 —0.4
DBoff | —0.22 —0.18 —0.41 —-0.24  —-0.26 —0.26
RDOQ off | —=16.56 —10.77 —6.4 —1.89 1.5 —6.82
TrSkp off | —15.78 —14.83 —14.24 -13.29 -—13.22 -14.27
SBHoff | —3.25 —-2.72 —-217 —-149 -1.03 —-2.13

QP 42 ‘ Avg.

As can be seen in Tables 3(a) to 3(f), better percep-
tual performance is provided when the DB coding tool is
enabled, independently of the status of the rest of coding
tools. This general behavior is observed in all video classes
with all the objective quality metrics. The average BD-Rate
improvement when enabling DB depends on every objec-
tive quality metric and also on the video class. For exam-
ple, the SSIM, MS-SSIM, and PSNR-HVS metrics always
report average BD-Rate savings of 1.2%, 1.5%, and 2.4%,
respectively. However, VMATF (in all video classes) and VIF
(in classes A and B) report BD-Rate savings when disabling
the DB and SAO coding tools (between 0.4% and 1.1%
BD-Rate savings). With respect to coding complexity, when
DB filter is disabled, an average 0.3% reduction of the encod-
ing time is observed, as shown in Table 4.
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C. SAO FILTER
The SAO filter is a technique that attempts to minimize the
distortion that is mainly introduced by the quantization step.

We find that in most cases, the perceptual metrics get
higher BD-Rate values when disabling the SAO filter. This
perceptual worsening is more significant in the synthetic
video sequences (class F).

However, the VMAF metric gets better (lower) BD-Rate
values for all video classes; it obtains even better results
than the results obtained by the default configuration when
the SAO filter is disabled, especially if the DB filter is also
disabled. The BD-Rate reductions range from 1.8% to 4.4%;
the best results occur when both in-loop filters are disabled.
When working with class F videos, the VMAF BD-Rate
reductions are very low when the SAO filter is disabled; they
are always under 1%.

The VIF metric shows a similar behavior to VMAF when
working with video classes A and B, achieving up to 0.5%
BD-Rate savings when SAO is disabled (0.2% on average).

Finally, as with the deblocking filter, when disabling this
filter no significant impact on coding complexity is observed,
showing also an average encoding time reduction of 0.5%,
as shown in Table 4.

D. RATE-DISTORTION OPTIMIZED QUANTIZATION (RDOQ)
The RDOQ algorithm achieves an estimated optimal quanti-
zation value that minimizes the Rate-Distortion cost. In this
analysis, we have also disabled the RDOQTS parameter,
which deactivates the RDOQ calculation for blocks marked
as Transform Skip.

Although the PSNR metric is used by the RDOQ algorithm
to measure distortion, looking at the results, we can see
that disabling RDOQ parameters implies a deterioration of
BD-Rate values for most of the perceptual metrics and video
sequence classes. The benefits of enabling RDOQ are more
remarkable for the VMAF metric, where on average, 9.8%
BD-Rate savings are achieved by enabling the RDOQ coding
tool.

When disabling the RDOQ tool, the coding complexity
varies depending on the quantization parameter. The highest
encoding time reductions are obtained when low quantization
values are used (15.78% reduction at QP=22), as shown
in Table 4. As the QP value increases, the encoding time
savings are progressively reduced.

E. TRANSFORM SKIP
The TransformSkip and TransformSkipFast parameters are
enabled by default, since they are able to obtain great
BD-Rate savings for artificial or synthetic videos (those
belonging to class F).

In Table 3(f), corresponding to synthetic or artificial video
sequences, we can observe that disabling transform skip
parameters causes a significant deterioration of BD-Rate
values: all perceptual metrics get BD-Rate increases ranging
from 3.6% to 7%.

If we analyze the other video classes, we can see that all
of them have slight BD-Rate reductions when disabling the
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transform skip parameters; these reductions are mostly close
to 0% and are never higher than 0.4%.

When disabling the TransformSkip tool, the average
encoding time is significantly affected. As stated in
Section II-E, disabling this tool reduces the encoding time
by almost 15%, as shown in Table 4.

F. SIGN DATA HIDING
The SignHideFlag coding tool, which is activated by default,
enables a data compression technique called Sign Data Hid-
ing that provides an average reduction of 0.6% in BD-Rate,
regardless of the rest of the settings, as seen in Section II-F.
This coding tool produces a relatively high reduction in
rate compared with the very low distortion that it produces,
i.e., the perceived quality reported by the perceptual metrics
remains almost the same, but the rate is reduced much more.

TABLE 5. Average coding performance [% BD-Rate] by disabling Sign
Data Hiding to default configuration.

PSNR
Class | SSIM  MS-SSIM  VMAF VIF HVSM
Class A 0.93 1.18 0.79 1.18 1.12
Class B 0.84 0.95 0.77 1.04 0.94
Class C 0.88 0.83 0.74 0.84 0.9
Class D 1.02 1 0.68 0.89 0.99
Class E 0.52 0.59 0.6 0.68 0.68
Class F 1.05 1.03 0.67 —0.12 1.08
Average | 0.87 0.93 0.71 0.75 0.95

Table 5 shows the BD-Rate values obtained by disabling
this parameter in the default configuration. As can be seen,
by disabling this algorithm, an average BD-Rate increase
from 0.71% to 0.95% is achieved.

Since this technique barely distorts the images, we have
not included the column corresponding to this parameter in
the results tables. Instead, it has been kept in its default state
(enabled). The complete tables, including the results of the
analysis of the SignDataHiding coding tool, will be available
on the GATCOM research group website [38].

V. DISCUSSION

As shown in the previous section, there are coding tools that
are perceptually ranked in the same way using all objective
quality metrics in every video sequence class, and other
coding tools have different behaviors depending on the video
classes and/or the objective quality metric used. So, in this
section, we will discuss and analyze in detail the results of the
encoding tools, taking into account the relationships among
them, the metrics and classes, and the reported perceptual
behavior.

As stated previously, enabling the Transform Skip param-
eter works better in the sequences of class F, whereas for
the rest of the classes, disabling it slightly increases the
perceptual report given by almost all metrics. So, for classes
A to E, we can simplify the analysis of the rest of coding
tools by disabling Transform Skip and only enabling it when
working with videos of class F.

When enabling the Scaling List (SCL) coding tool, we can
see that a better perceptual response is reported by almost
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all metrics, achieving average BD-Rate savings of 0.9%. The
behavior of the SCL coding tool is the one expected, since it
is well known in the literature that the use of a CSF-based
quantizer, implemented by the HEVC through the scaling
list coding tool, improves the subjective quality of decoded
video [20].

When disabling the RDOQ coding tool, all objective qual-
ity metrics show significative BD-Rate increases in all video
classes. The average increment of BD-Rate provided in that
case, for all metrics and video sequences, is about 4.16%,
rising up to 11.5% for VMAF when working with class A.
Therefore, we do not recommend deactivating the RDOQ
parameter in any case. As there is for every general rule, there
is an exception. In this case, the SSIM metric perceives an
average BD-Rate reduction of 0.08% in sequences of class D;
this goes up to 0.4% when disabling SCL and enabling both
in-loop filters, again showing the inability of SSIM to prop-
erly score the class D video sequences when compared with
the rest of the objective quality metrics.

From the previous analysis, we have shown that in order
to provide a better perceptual quality performance for all
objective metrics and video sequence classes, we have to
(a) enable the SCL and RDOQ coding tools and (b) only
enable the TrSk when working with class F video sequences
(artificial or synthetic contents).

So, from now on, we will consider that the SCL and RDOQ
coding tools are always enabled, and the TrSk is only enabled
for class F video sequences. Under this assumption, we will
analyze the behavior of the in-loop filters. In Table 6, we show
the BD-Rate results of the SAO and DB configurations for
each video class, keeping in mind that the rest of the cod-
ing tools are enabled/disabled as mentioned above. We have
highlighted the maximum average BD-Rate savings of each
quality metric and video class.

As can be seen, the general behavior of in-loop filters has
two opposite positions: (a) the SSIM, MS-SSIM, and PSNR-
VHS quality metrics provide the best perceptual results in
all video classes when both filters are enabled, showing
maximum BD-Rate savings of 0.28%, 0.35%, and 0.66%,
respectively, and (b) VMAF (classes A to E) and VIF
(classes A and B) say just the opposite, showing maximum
BD-Rate savings of 3.40% and 0.95%, respectively, when
both in-loop filters are disabled. However, it is worth saying
that (a) when working with class F videos, there is a con-
sensus between all metrics in enabling both in-loop filters to
maximize the BD-Rate savings, (b) the VIF metric changes
its scoring, suggesting that the best configuration for video
classes C, D, and E is the one that enables both in-loop
filters, joining the group formed by the SSIMM, MS-SSIM,
and PSNR-VHS metrics, and (c) with respect to the VMAF
metric, we have noticed that it is able to report average
BD-Rate savings of 2.53% when only the DB filter is enabled
and 0.45% when both filters are enabled.

Although all the objective quality metrics are designed to
assess the quality in a way as close as possible to the way
that the HVS does, each one uses a different approximation.
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TABLE 6. BD-Rate evaluation of in-loop filters, with SCL=RDOQ=1 and
TrSk=0 (=1 for class F).

MS- PSNR-
SAO DB| SSIM SSIM VMAF VIF HVSM
Class A
1 1 0,44 -0,24 -0,13 0,38 0,68
1 0 0,17 0,77 1,18 0,66 0,79
0 1 0,25 0,04 2,29 0,38 -0,43
0 0 0,06 1,29 -3,53 0,89 2,31
Class B
1 1 0,78 -0,52 -0,52 0,71 -1,17
1 0 0,45 0,85 0,71 0,68 0,83
0 1 0,39 -0,05 2,52 0,82 -0,74
0 0 0,31 1,73 3,55 1,01 2,80
Class C
1 1 0,27 -0,44 -0,55 0,34 -0,56
1 0 0,51 0,50 0,26 0,01 0,99
0 1 0,42 0,13 -2,53 0,12 0,04
0 0 1,08 1,48 -3,41 0,29 3,08
Class D
1 1 0,71 -0,27 0,54 0,28 -0,52
1 0 2,39 0,06 0,01 0,27 0,29
0 1 1,13 0,21 -2,70 0,21 -0,27
0 0 3,86 0,35 -3,43 0,14 1,62
Class E
1 1 -0,64 -0,49 -0,34 0,50 -0,85
1 0 1,48 1,72 0,91 0,11 1,77
0 1 0,05 0,25 -2,63 0,25 -0,20
0 0 2,68 3,27 3,09 0,18 4,00
Class F
1 1 -0,29 -0,11 -0,25 -0,82 -0,20
1 0 0,80 1,18 0,05 -0,58 1,31
0 1 1,04 1,46 0,42 0,84 1,48
0 0 2,24 3,05 0,00 1,12 3,78

Some of them perform the subband decomposition inspired
by complex HVS models, while others extract structural
information from the viewing field or even use the spatio-
temporal statistical patterns found in signals captured from
the visual field for which the HVS is adapted. Therefore,
as we can see in this study, we obtain different quality assess-
ments depending on the metric. In cases where all metrics
report BD-Rate variations in the same direction, the con-
clusion is straightforward, but when the metrics’ reports are
opposite, a subjective test to validate the results is suggested.

In order to advance a preliminary subjective evaluation that
sheds light on the metrics controversy around the in-loop
filters’ behavior, we have performed a simple subjective test
with one class A video sequence. Class A has the highest
BD-Rate differences (3.4%) found between the two options:
enabling or disabling both in-loop filters (see Table 6).
We have chosen a frame of a video sequence where the dif-
ference between the VMAF R/D curves of the two options is
maximum. We have found that frame 22 of the Traffic_2560x
1600_30 video sequence shows a 5.25% BD-Rate reduction
when disabling both filters, taking as reference the configu-
ration with the filters enabled. We have observed just notice-
able perceptual differences at QPs 37 and 42 with respect
to the original frame. These artifacts are more noticeable
when the in-loop filters are disabled. In Figure 5, we show
a cropped area of frame 22 (encoded with QP = 42), where
the blocking artifacts are clearly visible when disabling both
filters.

We have to mention that the results given by the VMAF
are not biased by the image content or by the frame size,
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(a) Original

(b) With in-loop filters

(c) Without in-loop filters

FIGURE 5. Comparison of cropped section of frame 22 of sequence Traffic
(2560 x 1660) encoded with QP = 42, at 8.5Mbps.

as its results are consistent through different frame sizes and
content. A good correlation with the DMOS and MOS values
of the VMAF has been reported [35]-[37], showing that it
can be considered a robust metric. Notice that although the
behavior shown in Figure 5 seems to say that the VMAF
metric does not correctly assess the perceived quality when
both filters are disabled, it shows good results when only the
DB filter is enabled. Although this observation does not mean
that in-loop filters should always be enabled, a more detailed
and carefully designed subjective evaluation test should be
performed to determine the best in-loop filter configuration
for the A to E video sequence classes.

Finally, another performance metric we may use to assess
the most proper coding tool configuration is their contribution
to the overall HEVC coding complexity. In Table 4 we have
shown the time profiling results of each individual coding
tool under study, showing their impact on the overall HEVC
encoding complexity.

If we enable all coding tools but the TrSk (the best R/D
perceptual configuration) the corresponding HEVC overall
complexity will be reduced in an 14.27%, on average, when
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compared to the default HEVC configuration. If we decide to
also disable the in-loop filters, SAO and DB, we will get an
additional coding time reduction of 0.66%.

VI. CONCLUSION

In this article, we have analyzed how the HEVC coding con-

figuration parameters impact the perceptual rate-distortion.

To do so, we have used the whole video sequence set defined

in the HEVC common test conditions reference and obtained

the Bjgntegaard Delta Rate (BD-Rate) measurements for a set
of perceptual metrics widely used by the research community.

Then, we analyzed how each HEVC coding tool impacts

the perceptual BD-Rate and how this relates to other coding

tools.

After analyzing the results provided by the set of HEVC
coding tools under evaluation, we have arrived at the follow-
ing conclusions:

a) The coding tools with the highest impact on the overall
perceptual quality performance are RDOQ and SCL for
all metrics reported in this study, so they should be always
enabled.

b) TrSk should be enabled when working with class F videos
(artificial, synthetic video contents), as significant per-
ceptual gains are reported. However, for the rest of the
video classes, it is slightly better to disable this coding
tool. By disabling TrSk, the overall coding time is reduced
by 15%.

¢) The in-loop filters, SAO and DB, show opposite behaviors
when working with video classes A to E, where

i) one set of metrics (SSIM, MS-SSIM, and PSNR-
HVS) implies that both filters should be enabled to
maximize the perceptual BD-Rate savings,

ii) VMAF implies that both filters should always be
disabled, and

iii) VIF shows the same results as VMAF for
classes A and B, but for classes C, D, and E, it goes
in the same direction as the other metrics.

The recommended HEVC coding tools configuration that
will maximize the perceptual R/D should enable both SCL
and RDOQ and disable TrSk (enabling it only with class
F videos). As discussed in the previous section, there is no
agreement with respect to the in-loop filters (SAO and DB).
Three alternatives exist: (a) enable both filters, (b) disable
them, and (c) only enable DB filter. The encoding complexity
of both filters is low; therefore, their complexity does not help
so much to take a firm decision. So, to determine the best
option, we need to design specific subjective tests, taking into
account the target video classes, to decide which one should
be used.

The data presented in this article is intended to help
other researchers to determine the best encoder configuration,
depending on the type of sequence to be coded, to maxi-
mize the perceptual rate-distortion performance, taking into
account the coding tools complexity. Also, it can be useful to
choose the most appropriate perceptual metric to be used in
the design of subjective tests.

VOLUME 9, 2021

As future work, we plan to extend this study by including
more HEVC coding tools and perform exhaustive subjective
tests to determine the perceptual-based settings that should be
configured in the HEVC encoder to maximize the R/D quality
performance.
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