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Summary 19 

Spiking is a useful approach to improve the accuracy of regional or national 20 

spectroscopic calibrations when they are used to predict at local scales. To do this, a 21 

small subset of local samples (spiking subset) is added to recalibrate the regional or 22 

national calibration. If the spiking subset is small in comparison with the size of the 23 

initial calibration set, then the spiking subset could have little noticeable effect and only 24 

a small improvement can be expected. For these reasons, we hypothesised that the 25 

accuracy of the spiked calibrations can be improved when the statistical relevance of the 26 

spiking subset is given extra-weight. We also hypothesised that the spiking subset 27 

selection and the initial calibration size were relevant, and could affect the accuracy of 28 

the recalibrated models. To test these hypotheses, we evaluated different strategies to 29 

select the best spiking subset, with and without extra-weighting, to spike three initial 30 

calibrations of different sizes. These calibrations were used to predict the soil organic 31 

carbon (SOC) content in samples from four target sites. Our results confirmed that 32 

spiking improved the prediction accuracy of the initial calibrations. We observed 33 

differences in accuracy depending on the spiking subset used. The best results were 34 

obtained when the spiking subset contained local samples evenly distributed in the 35 

spectral space, regardless of the initial calibration’s characteristics. The accuracy was 36 

significantly improved when the spiking subset was extra-weighted. For medium- and 37 

large-sized initial calibrations, the improvement due to extra-weighting was larger than 38 

that caused by the increase in spiking subset size. This result is interesting because 39 

extra-weighting the spiking subset is an inexpensive task. Similar accuracies were 40 

obtained using small- and large-sized initial calibrations, suggesting that incipient 41 

spectral libraries could be useful if the spiking subset is properly selected and extra-42 

weighted. When small-sized spiking subsets were used, the predictions results were 43 

Page 2 of 45European Journal of Soil Science



For Peer Review

 

 3

more accurate than those obtained with ‘geographically local’ models. Overall, our 44 

results indicate that we can minimise the efforts needed to effectively use near-infrared 45 

(NIR) spectroscopy for SOC assessment at local scales. 46 

 47 

Keywords: SOC assessment, soil sensing, near infrared spectroscopy, spiking, 48 

extra-weighting. 49 

 50 

Introduction 51 

Using near-infrared (NIR) spectroscopy to estimate soil properties is rapid, non-52 

destructive and relatively inexpensive compared to conventional laboratory analyses, 53 

particularly when processing many samples. For NIR spectra to be quantitatively useful, 54 

we need to develop and use a soil spectral database or library to derive spectroscopic 55 

models (calibrations) that relate the spectra to analytical data, e.g. soil organic carbon 56 

(SOC). When assessing soil properties at a local scale, we can develop site-specific or 57 

‘geographically local’ calibrations (Wetterlind et al., 2010) that are generally very 58 

accurate because smaller areas tend to be less variable in terms of the dependent 59 

variable (Stenberg et al., 2010), and the samples used to develop the calibration and 60 

those used for prediction share similar characteristics, such as mineralogy and organic 61 

matter quality (Reeves et al., 1999; Janik et al., 2007; Guerrero et al., 2010; Wetterlind 62 

et al., 2010). A disadvantage of these models is that they are only valid for the local 63 

area, which could be an expensive strategy when evaluating multiple areas. Another 64 

option is to use regional, national or global calibrations, but they should represent the 65 

variability of the soils being analysed. This has caused a trend to develop larger-scale 66 

calibrations with a very large number of samples to ensure that the local samples fall 67 

Page 3 of 45 European Journal of Soil Science



For Peer Review

 

 4

within the model’s domain (Shepherd & Walsh, 2002; Brown et al., 2006; Viscarra 68 

Rossel, 2009; Grinand et al., 2012; Viscarra Rossel & Webster, 2012), although this 69 

cannot be guaranteed because soils have such variable characteristics, even at a regional 70 

scale. Furthermore, a set of samples comprising a large-scale calibration should be 71 

considered heterogeneous, but the local samples could be considered as a homogeneous 72 

set that is located in a small area of the overall calibration domain. This could be the 73 

reason for inaccurate (biased) results observed by some authors when using regional 74 

and national calibrations to make predictions at local scales (Brown et al., 2005; Brown, 75 

2007; Janik et al., 2007; Christy, 2008; Sankey et al., 2008; Guerrero et al., 2010; 76 

Stenberg et al., 2010; Wetterlind & Stenberg, 2010), even when the local samples fall 77 

within the model domain and are not recognised as outliers. This could also explain 78 

why better results are obtained with local (spectrum-specific) models (Genot et al., 79 

2011; Gogé et al., 2012), where a subset of library samples that are similar to the 80 

unknown sample is used to construct the calibration (Pérez-Marín et al., 2007). 81 

However, local methods are expensive because a large spectral library is needed to find 82 

sufficient similar samples for the calibrations. 83 

Spiking is an alternative method proposed to improve the accuracy of regional or 84 

national calibrations for use at local scales (Viscarra Rossel et al., 2009; Guerrero et al., 85 

2010; Stenberg et al., 2010; Wetterlind & Stenberg, 2010; Kuang & Mouazen, 2013). 86 

Spiking—sometimes referred to as ‘augmentation’ (Brown et al., 2006; Brown, 2007; 87 

Sankey et al., 2008) and other names—involves three main steps (Janik et al., 2007). 88 

First, analyse a few samples from the target site in the laboratory using the reference 89 

method; then add these samples to the initial calibration matrix; and then recalibrate the 90 

model. This procedure usually increases the accuracy of the predictions in the rest of the 91 

samples from the target site (Brown et al., 2005; Sankey et al., 2008; Wetterlind & 92 
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Stenberg, 2010). The higher the number of local samples in the spiking subset, the 93 

higher the accuracy in the prediction set (Brown, 2007; Guerrero et al., 2010), but a 94 

large spiking subset decreases the advantages of NIR spectroscopy as a quick and low-95 

cost analytical method. To increase the relative proportion of the spiking subset, 96 

Guerrero et al. (2010) suggested decreasing the number of samples in the initial 97 

calibration set because they obtained higher accuracies when small-sized calibrations 98 

were spiked, where the spiking subset had a larger influence. However, the selection of 99 

a small number of calibration samples can reduce the amount of important information 100 

for modelling, and lead to less robust calibrations. For this reason, we proposed an 101 

alternative approach to increase the relevance of the spiking subset in the NIR 102 

calibrations. The approach is to increase the statistical weight of the spiking subset by 103 

adding several copies of the subset to the calibration matrix. These extra-weighted 104 

samples are more important than other samples used to form the statistical model 105 

(Capron et al. 2005; Stork & Kowalski 1999), which forces the calibration to better fit 106 

the extra-weighted samples. If these samples were similar to the overall prediction set, 107 

the model should provide more accurate predictions. We also evaluated different 108 

strategies to select the best spiking subset. Since each local sample is different to the 109 

others, we hypothesised that the selection of a spiking subset would influence the 110 

accuracy of the spiked models, and the selection would be more influential if fewer 111 

samples were used for spiking. 112 

The spiking approach tries to gain benefits from a previously developed or initial 113 

large-scale calibration set. It is reasonable to assume that results obtained could be 114 

affected by the characteristics of the initial calibration, as some authors observed 115 

(Guerrero et al., 2010; Wetterlind & Stenberg, 2010). For this reason, we included 116 

different initial calibrations in this study and evaluated their influence on the spiking 117 
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process. Our first objective was to evaluate how local samples should be selected as a 118 

spiking subset for optimal spiking. To do this, we compared thirteen different strategies 119 

to select the samples for the spiking subset. Our second objective was to evaluate 120 

whether an extra-weighted spiking subset increased the prediction accuracy. In addition, 121 

we compared geographically local models that used three different sized spiking 122 

subsets. We selected SOC as the soil property for prediction, and we used the 123 

coefficient of determination (R
2
), root mean square error of prediction (RMSEP), 124 

standard error of prediction (SEP) and ratio of performance to deviance (RPD) to 125 

evaluate the prediction performance for four different target sites. 126 

2. Material and methods 127 

2.1. National samples and initial calibrations 128 

A national soil library (n = 2836) of soils from different sites across Spain 129 

(predominantly southeastern Spain) was randomly split into three subsets. These subsets 130 

were used to create three initial calibrations of different sizes, representing three 131 

different stages or efforts to develop the spectral library: small (IC#1; n = 192), medium 132 

(IC#2; n = 365) and large (IC#3; n = 2279). The soils in the soil library were collected 133 

under forest and agricultural land uses. Most of these soils developed over sedimentary 134 

(mostly calcareous) lithologies. The soil samples were air-dried and sieved (< 2 mm), 135 

and the NIR spectra (12 000–3800 cm
-1

) were obtained by FT–NIR diffuse reflectance 136 

spectroscopy (MPA, Bruker Optik GmbH, Germany). The scale of the spectra was 137 

transformed to nanometers (830–2630 nm), and re-sampled to 1 nm resolution. The 138 

SOC concentration (%) was determined using the Walkley & Black (1934) method. The 139 

different initial calibrations, relating the SOC to the NIR spectra, were constructed 140 
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using partial least squares (PLS) regression (PLS-1 algorithm) (see section 2.6 for 141 

details). Key characteristics of the initial calibrations are shown in Table 1. 142 

2.2. Target sites 143 

We selected four independent target sites from four regions with spectral characteristics 144 

that differed from each other and from those observed in the initial calibrations 145 

(Figure 1; Appendix 1). Each target site is a relatively small area of dense sampling, 146 

from several hectares to a few square kilometres in size. A different number of local 147 

samples were collected at each target site (Table 2). One site was located in Sweden 148 

(TS1), two in Spain (TS2, TS3) and one in the United Kingdom (TS4). As with the 149 

initial calibration samples, the soil samples from the target sites were air-dried and 150 

sieved (< 2 mm), and the NIR spectra and SOC content were obtained. Most of the 151 

spectra were collected using a FT–NIR (MPA, Bruker Optik GmbH, Germany), except 152 

the TS1 samples, which were scanned using a vis–NIR (ASD FieldSpec Pro Fr, USA). 153 

The scale of the FT–NIR spectra was transformed from cm
-1

 to nanometers, and re-154 

sampled to 1 nm. For details about FT–NIR and vis–NIR scanning, see Guerrero et al. 155 

(2010) and Wetterlind & Stenberg (2010), respectively.  156 

2.3. Calibration types 157 

Different types of calibrations relating SOC and NIR spectra were obtained using PLS 158 

as a regression method (see section 2.6), and were used to predict the SOC contents in 159 

the target site samples. 160 

Initial calibrations: three different-sized initial calibrations (IC#1, IC#2 and IC#3, 161 

described in section 2.1) that did not contain any samples from the target sites; 162 

referred to as unspiked initial calibrations (Figure 2a; section 2.6). 163 
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Spiked calibrations: the three initial calibrations modified by adding a spiking subset 164 

(n = 8) (Figure 2b). We used 13 different spiking subsets to spike each of the initial 165 

calibrations (see section 2.4). In each initial calibration, we obtained 13 subtypes of 166 

spiked calibrations, and we repeated this procedure for each of the four target sites.  167 

Spiked calibrations with extra-weighting: in each of the different spiked calibrations, 168 

the spiking subset was extra-weighted. To do this, we added 24 copies of each 169 

spiking subset sample to the calibration set (Figure 2c), and then recalibrated the 170 

model (see section 2.6). Each of the eight spiking subset samples appears 25 times 171 

in the calibration matrix, becoming 24 times more influential than the soil library 172 

samples because we have modified their leverage (Stork & Kowalski, 1999). We 173 

selected 24 copies because the leverage of the target site samples followed an 174 

asymptotic pattern after the addition of 15–20 copies (data not shown). 175 

2.4. Strategies to select the spiking subset from the target site samples 176 

For each target site, we used 13 strategies to select the different types of spiking subsets. 177 

We hypothesised that each strategy had different advantages. The strategies were 178 

designed and grouped on the basis of (i) the SOC values of target site samples, (ii) the 179 

spectral characteristics of the target site samples and (iii) the spectral relationships 180 

between the initial calibrations and the target site samples using the Mahalanobis 181 

distance values. The first group of five strategies was designed on the basis of the SOC 182 

content of target site samples. These strategies have a strictly theoretical value for 183 

interpreting some results because the SOC contents of the target site samples would be 184 

unknown in a real scenario, and thus these strategies would not be useful in practice.   185 

Strategy 1 (OC low): select eight target site samples with the lowest SOC values (left 186 

tail of SOC histogram). Samples with low SOC contents will show more clearly the 187 
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spectral features of the inorganic constituents, which are the most important factors 188 

impeding the use of a calibration from one site to another. Moreover, these samples 189 

could be useful to correct the bias in target site samples with low SOC contents. 190 

Strategy 2 (OC high): select eight target site samples with the highest SOC values (right 191 

tail of SOC histogram). These samples mask the inorganic spectral features, and 192 

clearly show the SOC spectral features in the local samples. Moreover, these 193 

samples can be useful to correct bias in target site samples with high SOC contents. 194 

Strategy 3 (OC tails): select four samples with the lowest SOC values (from the left tail 195 

of the SOC histogram) and four with the highest SOC values (from the right tail). 196 

These samples can be useful to correct bias because the low and high SOC contents 197 

are well established. Since low and high values are well described, the offset should 198 

be also corrected. 199 

Strategy 4 (OC centre): select eight target site samples with SOC values around the 200 

median SOC value of the set.  201 

Strategy 5 (OC distrib): select eight target site samples at regular intervals over the 202 

entire range of SOC values (samples evenly distributed across the SOC values). 203 

These samples should also be adequate for bias and offset correction.  204 

To apply the three strategies in the second group, we performed a principal 205 

component analysis (PCA) of the target site samples (NIR spectra pre-processed with 206 

Savitzsky–Golay first derivative). The scores of the first, second and third principal 207 

components (i.e. the first three) are represented in a scatter-plot. 208 

Strategy 6 (PC periph): select eight target site samples located at the periphery of the 209 

principal component spectral space defined by the first three principal components. 210 
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Strategy 7 (PC centre): select eight target site samples located at the centre of the 211 

principal component spectral space defined by the first three principal components. 212 

These are the most similar samples to the mean spectrum of the target site spectra. 213 

Strategy 8 (PC distrib): select eight target site samples evenly distributed across the 214 

principal component spectral space defined by the first three principal components. 215 

This is the most intuitive strategy to uniformly cover the spectral diversity. This 216 

selection was made using the ‘Automatic selection subset’ option in OPUS 217 

(version 6.5 software; BrukerOptik GmbH, Ettlingen, Germany), which selects 218 

samples in a similar fashion to the Kennard–Stone algorithm (Kennard & Stone, 219 

1969).  220 

The third group of five strategies was based on the Mahalanobis distance values of 221 

the target site samples. The Mahalanobis distance values were calculated with respect to 222 

the unspiked initial calibrations. Each target site sample had a different Mahalanobis 223 

distance depending on the initial calibration used (i.e. IC#1, IC#2 or IC#3). 224 

Strategy 9 (MD low): select eight target site samples with the lowest Mahalanobis 225 

distance values (left tail of Mahalanobis distance histogram). These target site 226 

samples are the closest to the initial calibration samples and the overall target site 227 

samples, and could become a ‘bridge’ between both sets. 228 

Strategy 10 (MD high): select eight target site samples with the highest Mahalanobis 229 

distance values (right tail of Mahalanobis distance histogram). These samples are 230 

the first recognised as outliers. In some schemes of calibration maintenance 231 

(Shepherd & Walsh; 2002), it has been suggested the addition of this type of 232 

samples when calibrations must be updated. These target site samples are the most 233 

effective decreasing the Mahalanobis distance of the overall target site set (Capron 234 

et al., 2005).  235 
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Strategy 11 (MD tails): select four target site samples with the lowest Mahalanobis 236 

values and four with the highest Mahalanobis distance values.  237 

Strategy 12 (MD centre): select eight target site samples with Mahalanobis distance 238 

values around the median Mahalanobis distance value. 239 

Strategy 13 (MD distrib): select eight target site samples at regular intervals over the 240 

entire range of Mahalanobis distance values (samples evenly distributed across the 241 

Mahalanobis distance values).  242 

2.5 Experimental design and statistical analysis 243 

For this study, a repeated measures factorial design was established. The between-244 

subject factors were ‘initial calibration’, with three levels (i.e. three initial calibrations 245 

of different sizes, IC#1, IC#2 and IC#3) and ‘strategy’, with 13 levels (i.e. 13 spiking 246 

subset selection strategies). The within-subject factor was ‘extra-weighting’, with two 247 

levels (i.e. without and with extra-weighting). For each combination of factors, we 248 

calculated the R
2
, RMSEP, SEP and RPD to compare the actual SOC content of the 249 

target site samples with the SOC predicted by the different calibrations. This design was 250 

applied separately to the four target sites. The prediction performance parameters 251 

obtained in each target site were considered as replicates. We used RMSEP to inform us 252 

about accuracy and SEP about precision. The RPD (the ratio between the standard 253 

deviation of the prediction set and the RMSEP) allowed us to compare the accuracy 254 

obtained in prediction sets with different standard deviations.  255 

The differences in RMSEP, SEP and RPD were analysed using a repeated measures 256 

ANOVA. We excluded the strategies based on the SOC values (strategies 1–5) from the 257 

statistical analysis because they are not useful in practice. In this way, the repeated 258 

measures ANOVA was performed using eight levels of spiking subset selection strategy 259 
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and three levels of initial calibration as the between-subject factors, and two levels of 260 

extra-weighting as the within-subject factor. Homocedasticity and normality was 261 

checked using Levene and Kolmogorov–Smirnov tests, respectively; the original 262 

variables were transformed to meet with the ANOVA assumptions when appropriate. 263 

The R
2
 was excluded from this statistical analysis because it did not meet the 264 

assumptions. The assumption of sphericity was not violated when using the Mauchly's 265 

test of sphericity. The software IBM SPSS Statistics version 20 (IBM, Armonk, NY) 266 

was used for statistical analyses. We also obtained predictions using the unspiked initial 267 

calibrations, but these results were not included in the statistical analysis.  268 

2.6. Development of calibrations with PLS-regression 269 

The models relating the NIR spectra with the SOC contents in soils were obtained with 270 

PLS-regression (PLS-1 algorithm; OPUS version 6.5 software; BrukerOptik GmbH, 271 

Ettlingen, Germany). We selected the number of PLS-vectors through leave-one-out 272 

cross-validation. Before calibration, the SOC contents were transformed by the square 273 

root but predicted SOC data were back-transformed before we compared them with 274 

actual SOC and calculated the prediction performance parameters. NIR-spectra were 275 

transformed by the first derivative (Savitzsky–Golay, 25 points). The number of PLS-276 

vectors in the spiked calibrations was set to the same number as in the corresponding 277 

initial calibration. In TS1, we used the spectral range 1000–2500 nm to meet a common 278 

range with a similar noise to the spectra collected with the FT-NIR instrument. 279 

2.7. Additional comparisons: extra-weighting effect versus the increase of the spiking 280 

subsets size and versus geographically local models  281 

These comparisons were made only with spiking subsets selected by the ‘PC distrib’ 282 

strategy, which was one of the most effective selection strategies in terms of increasing 283 
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accuracy. We compared the extra-weighting effect against the increase of the spiking 284 

subsets size. To do this, we spiked the three initial calibrations with 8, 16 and 285 

32 spiking subset samples selected by the ‘PC distrib’ strategy. Similar to the procedure 286 

described in section 2.3, we obtained spiked calibrations by adding 24 copies of the 287 

spiking subset (denoted as EW_24). For each target site, we used these calibrations to 288 

predict the SOC contents in the target site samples. In all cases, the 32 spiking subset 289 

samples were not used in the RMSEP computation, to allow a fair comparison of 290 

accuracy regardless of the size of the spiking subset. The RMSEP values were analysed 291 

with a repeated measures ANOVA, where two levels of extra-weighting (with and 292 

without extra-weighted) acted as the within-subject factor, and three levels of the 293 

spiking subsets size (8, 16 and 32 samples) acted as the between-subject factor. Due to 294 

the large differences between the sizes of the initial calibrations, we also used a 295 

different approach to calculate the number of copies to add, which was the ratio 296 

between the initial calibration size and the spiking subset size. In this way, more copies 297 

are added when the initial calibration size is larger or when the spiking subset size is 298 

smaller. The extra-weighting effect obtained using the initial calibration-to-spiking 299 

subset ratio (denoted as EW_ratio) was evaluated using repeated measures ANOVA, as 300 

for the EW_24 approach. The data used in these statistical analyses did not violate the 301 

ANOVA assumptions (homocedasticity and normality) or the condition of sphericity. 302 

For each target site, three geographically local or site-specific models were constructed 303 

using the 8, 16 and 32 spiking subsets selected by the ‘PC distrib’ strategy.  304 

3. Results 305 

3.1. Effect of spiking (without extra-weighted) 306 
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The predictions obtained with the unspiked initial calibrations for each target site were 307 

inaccurate, with large prediction errors (Figure 3). For the 12 cases (three initial 308 

calibrations applied to four target sites), the RPD values ranged from < 0.10 to 1.44, 309 

which clearly indicated poor predictions. Figure 4 shows the R
2
, RMSEP, SEP and RPD 310 

values obtained with the unspiked and spiked calibrations, where each value shown is 311 

the mean value of those obtained for the four target sites. The unspiked IC#1 provided 312 

very low quality predictions, with R
2 

= 0.33 ± 0.34 (mean ± standard deviation) and 313 

RPD = 0.52 ± 0.21 (Figure 4a). Once spiked, we observed a drastic and positive change 314 

in all the parameters related to the quality of predictions (Figure 4a), and bias was 315 

substantially decreased. There were differences in accuracy for the spiked calibrations 316 

depending on the strategy used to select the spiking subset. For example, the RMSEP 317 

values obtained with the IC#1 spiked using the ‘OC low’(worst) and ‘PC distrib’(best) 318 

strategies were 0.70 ± 0.16% and 0.37 ± 0.15% SOC, respectively, both of which were 319 

clearly better than the RMSEP for the unspiked IC#1 of 1.86 ± 1.77% SOC (Figure 4a). 320 

Similarly, spiking of IC#2 (Figure 4b) caused a noticeable improvement in prediction 321 

accuracy, mostly due to improvement of bias. Interestingly, the worst (‘OC low’) and 322 

best (‘PC distrib’) strategies for IC#2 were the same as those observed for IC#1. A 323 

substantial improvement in accuracy was also obtained when IC#3 was spiked, due to a 324 

strong decrease in bias (Figure 4c). In this case, the worst and best strategies (in terms 325 

of accuracy) were not the same as for IC#1 and IC#2. In general, the best accuracies 326 

were obtained using IC#1 (the calibration with the smallest size) and the worst 327 

accuracies were obtained with IC#3 (the calibration with the largest size). To illustrate 328 

the effect of spiking with different spiking subsets, individual results for the four target 329 

sites obtained with the ‘MD centre’ and ‘PC distrib’ selection strategies are shown in 330 

Figure 3.  331 
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3.2. Effect of extra-weighting on the spiking subset selection strategies 332 

The addition of several copies of the spiking subset (i.e. extra-weighting) in the spiked 333 

calibrations caused a significant improvement (P < 0.001) in the RMSEP, SEP and RPD 334 

(Table 3). The effect of extra-weighting on these parameters was similar across the 335 

spiking subset selection strategies (extra-weighting × strategy, P > 0.05; Table 3), and 336 

also similar in the three different initial calibrations evaluated (extra-weighting × initial 337 

calibration, P > 0.05; Table 3), although the extra-weighting effect on the R
2
 was 338 

greater in IC#3 (Figure 4).  339 

We observed that accuracy differed depending on the strategy used to select the 340 

spiking subset (Figure 4). Indeed, all the parameters evaluated showed significant 341 

differences across the strategies (Table 3). The differences between strategies were 342 

similar in the three initial calibrations evaluated, as suggested by the non-significant 343 

interaction between the ‘strategy’ and the ‘initial calibration’ (P > 0.05; Table 3). In two 344 

strategies (‘OC low’ and ‘OC high’), extra-weighting had a negative effect through an 345 

increase in bias (Figure 4). The ‘OC low’ strategy was worst for IC#2 and IC#3, and 346 

second worst for IC#1. When extra-weighting was applied, ‘PC distrib’ was the best 347 

performing strategy in the three initial calibrations, and clearly improved the accuracy 348 

due to decrease in bias, but also due to a decrease in SEP (Figure 3 & Figure 4). In IC#1 349 

and IC#2, the combined use of the spiking subset (‘PC distrib’) and extra-weighting 350 

increased the RPD by 1.5 units compared to the unspiked initial calibrations, allowing 351 

RPD values to exceed 2 (Figure 4). The results obtained with the ‘MD centre’ and ‘PC 352 

distrib’ strategies (without and with extra-weighting) for each target site illustrate the 353 

extra-weighting effects (Figure 3).  354 

3.3. Increase of spiking subsets size versus extra-weighting, and comparison with 355 

geographically local models 356 
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We compared the effects of increasing the spiking subset size with extra-weighting for 357 

the ‘PC distrib’ selection strategy. There was a positive effect on the accuracy when the 358 

spiking subset size was increased (Figure 5), although this effect was not significant 359 

(P > 0.05; Table 4). Regardless of the spiking subset size, there was a significant 360 

improvement in the accuracy when the spiking subsets were extra-weighted (P < 0.001, 361 

Table 4). These results were similar for the two approaches followed to select the 362 

number of copies to add for extra-weighted (Table 4, Figure 5). It is worth highlighting 363 

that in IC#2 and IC#3, the improvement of the accuracy due to extra-weighting was 364 

clearly higher than the duplication of the spiking subset size (Figure 5), and even higher 365 

than the quadruplication of the spiking subset size in IC#3 (Figure 5). The extra-366 

weighting effect in IC#1 was smaller because spiking was enough to cause the 367 

saturation of the improvement, mainly due to it smaller size. When the spiking subset 368 

was not extra-weighted (black bars in Figure 5), the best results were obtained with the 369 

small-sized initial calibration (IC#1), and results obtained with IC#2 and IC#3 were less 370 

accurate than those obtained with the geographically local models. Once the spiking 371 

subset was extra-weighted, the differences between initial calibrations practically 372 

disappeared, especially when the number of copies added was selected according to the 373 

ratio of the initial calibration to the spiking subset (EW_ratio; light grey bars in 374 

Figure 5). When this approach was used for extra-weighting (EW_ratio), the spiked 375 

initial calibrations were more accurate than the geographically local models. When a 376 

large number of local samples (32) were considered as spiking subset size (SS = 32), 377 

and also as ‘n’ of the geographically local models (n = 32), scarce differences between 378 

both approaches were observed, except for the reduced robustness obtained with the 379 

geographically local models (Figure 5).  380 

 381 
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4. Discussion 382 

4.1. Effect of spiking 383 

The predictions obtained using the unspiked initial calibrations had a low accuracy. The 384 

bias was the main problem, representing more than 50% of the error, as some authors 385 

observed (e.g. Bellon-Maurel & McBratney, 2011). These results were expected, and 386 

clearly demonstrate how we cannot safely used calibrations do not cover the 387 

characteristics of the target sites. As for any model, the spectroscopic calibrations are 388 

valid only for samples with similar characteristics as those used in the calibration 389 

(Viscarra Rossel et al., 2008). For these reasons, there is a trend to develop large 390 

spectral libraries (Shepherd & Walsh, 2002; Brown et al., 2006; Viscarra Rossel, 2009; 391 

Grinand et al., 2012; Viscarra Rossel & Webster, 2012). But the accuracy of the 392 

calibrations improved drastically when only eight local samples were added to spike the 393 

initial calibrations. Once the calibrations contained relevant information for the target 394 

site, the predictions became more accurate. The improved accuracy was mostly due to 395 

the decrease in bias, in accordance with previous studies (e.g. Stork & Kowalski, 1999; 396 

Bricklemyer & Brown, 2010; Guerrero et al., 2010; Stenberg et al., 2010; Wetterlind & 397 

Stenberg, 2010), but also by an improvement in precision. Many factors affect soil 398 

genesis, and soils present an extraordinary variation in composition and characteristics 399 

compared with other environmental materials. This makes it difficult to construct a 400 

calibration containing the immense variation found in soils, even at a regional scale 401 

(Sudduth & Hummel, 1996; Sankey et al., 2008; Minasny et al., 2009; Reeves & Smith, 402 

2009). In this way, a large calibration does not guarantee accurate predictions. In fact, 403 

several authors observed inaccurate predictions when calibrations were used in samples 404 

from independent sites (Christy, 2008; D’Acqui et al., 2010; Wetterlind & Stenberg, 405 

2010; Bellon-Maurel & McBratney, 2011). Thus, trying to include all the soil’s 406 

Page 17 of 45 European Journal of Soil Science



For Peer Review

 

 18 

variation is an immense and probably unnecessary effort. Spiking could be an attractive 407 

and economical alternative, avoiding the need for large spectral libraries, since we 408 

observed the best results when the small-sized initial calibration was spiked. As 409 

Guerrero et al. (2010) observed, the new information added (i.e. the spiking subset) was 410 

more influential on a small-sized initial calibration than on a large-sized one, which 411 

explains why better predictions were obtained after spiking the small-sized initial 412 

calibration (IC#1). 413 

4.2. Effects of extra-weighting on the spiking subset selection strategies 414 

To directly increase the significance or relevance of the added information, several 415 

copies of the spiking subset were included in the spiked initial calibrations. The addition 416 

of several copies increased their weight and influence on the model (Stork & Kowalski, 417 

1999). Under these circumstances, the calibration was forced to fit preferentially to 418 

these samples. Consequently, if the extra-weighted samples are representative of the 419 

overall prediction set (i.e. the target site), then the calibration must provide reliable 420 

predictions for that set. Indeed, extra-weighting caused a significant improvement 421 

(P < 0.001) on all the parameters related to the quality of predictions. It is interesting to 422 

highlight that the effects on the precision (SEP) and accuracy (RMSEP) were similar for 423 

the three initial calibrations evaluated, suggesting a robustness of that pattern, since the 424 

three initial calibrations were different to each other. So, extra-weighting is a simple, 425 

fast and inexpensive task that we recommend when spiking calibrations. The extra-426 

weighting caused a strong decrease in the leverage of the spiking subset (Stork & 427 

Kowalski, 1999; Capron et al., 2005). Consequently, the extra-weighting could be 428 

considered as a manipulation of the spectral space, since it causes a displacement of the 429 

calibration centroid toward the extra-weighted samples. In this sense, the extra-430 

weighting is a frequent approach used in samples that are added for updating 431 
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calibrations to new conditions, especially when their number is relatively low in 432 

comparison with the overall calibration set (Stork & Kowalski, 1999), as in our 433 

scenarios (especially in IC#2 and IC#3).  434 

The improvement in the RMSEP, SEP and RPD was dependent on the strategy used 435 

to select the spiking subset, as Capron et al. (2005) also observed. The differences 436 

found between strategies were similar in the three initial calibrations used, as revealed 437 

by the non-significant interaction (P > 0.05) between the ‘strategy’ and ‘initial 438 

calibration’ factors. These results suggest that the effects exerted by the added samples 439 

(spiking subset) are not totally controlled by the characteristics of the initial calibration. 440 

The soil samples within a local set are different from each other, the information 441 

provided by each sample is different (Naes, 1987; Isaksson & Naes, 1990; Shetty et al., 442 

2012), and consequently, the improvement in the accuracy of the spiked calibration 443 

should also vary. In this sense, using an inadequate spiking subset could be one of the 444 

reasons explaining why some authors have found a scarce effect of spiking 445 

(Bricklemyer & Brown, 2010; Guerrero et al., 2010). Thus, the identification of a 446 

successful strategy to select the most adequate spiking subset is clearly relevant. For 447 

these reasons, we evaluated strategies aimed to cover a wide range of different types of 448 

spiking subset. Since large bias values have been the most common problem observed 449 

(Stork & Kowalski, 1999; Janik et al., 2007; Bellon-Maurel & McBratney, 2011), we 450 

suspected that using a spiking subset containing strategic SOC values could be adequate 451 

to improve the bias, and consequently the accuracy. In fact, we observed that the ‘OC 452 

tails’ and ‘OC distrib’ selection strategies offered better predictions than the ‘OC 453 

centre’, ‘OC high’ and ‘OC low’ strategies, since they were adding information in 454 

several strategic spaces related with the bias, slope and offset. But it is important to note 455 
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that the strategies based on the SOC values are not useful in practice, and they were 456 

included in the experiment for conceptual evaluation and comparison.  457 

The calibrations spiked with samples evenly distributed in the principal component 458 

spectral space (‘PC distrib’) gave better predictions than those spiked with samples 459 

evenly distributed along the concentration values (‘OC distrib’). Both strategies select 460 

different local samples because the SOC content is not uniquely responsible for the 461 

spectral variation within a target site. Compared to texture and mineralogy composition, 462 

SOC typically has a fairly small influence on spectra (Stenberg et al., 1995; Islam et al., 463 

2005; Stenberg et al., 2010). This result is interesting since only the spectral 464 

information is available in a real situation (Kusumo et al., 2008; Mora & Schimleck, 465 

2008). The predictions obtained with calibrations spiked with a spiking subset selected 466 

using the ‘PC centre’ strategy were less accurate than those selected with ‘PC periph’. 467 

The samples selected with the ‘PC centre’ strategy are those more similar to the mean 468 

spectrum of the target site. In contrast, those selected with ‘PC periph’ are more 469 

dissimilar to the mean spectrum, but they represent greater diversity. The strategies that 470 

included most of the spectral diversity were ‘PC distrib’ and ‘PC periph’, and they were 471 

two successful strategies, especially the latter. Indeed, there are several methods for 472 

optimal sample selection based on spectral characteristics (Naes, 1987; Puchwein, 1988; 473 

Isaksson & Naes, 1990; Shenk & Westerhaus, 1991; Kusumo et al., 2008) but two of 474 

the most commonly used are the Kennard–Stone algorithm (Kennard & Stone, 1969; 475 

Mora & Schimleck, 2008; Shetty et al., 2012), which covers the experimental region 476 

uniformly (as in ‘PC distrib’), and the D-optimal procedure (Olsson et al., 2004; 477 

Rodionova & Pomerantsev, 2007; Brandmaier et al., 2012), which selects objects 478 

located on the periphery (most extreme) of the experimental region (as in ‘PC periph’).  479 
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There were scarce differences between the selections made using the Mahalanobis 480 

distance. The values of Mahalanobis distance were extremely high, and all the local 481 

samples were always classified as outliers. Consequently, these sets are not sensitive to 482 

the Mahalanobis distance criterion. This criterion would probably be relevant when 483 

samples from the target sites are more similar to those comprising the initial calibration 484 

(Puchwein, 1988; Capron et al., 2005).  485 

4.3. Increase of spiking subset size versus extra-weighting, and comparison with 486 

geographically local models 487 

When the ‘PC distrib’ strategy was used to select the spiking subset, extra-weighting 488 

was preferred over the increase in spiking subset size. This was a very interesting result, 489 

since extra-weighting caused a significant improvement inaccuracy without any 490 

analytical effort. In contrast, the increase of the spiking subset size implies efforts in 491 

terms of time and money, and the improvement of the RMSEP was not statistically 492 

significant. The non-significant improvement of the RMSEP was probably due to the 493 

high efficiency of the ‘PC distrib’ strategy to select the most representative samples. 494 

Consequently, a further addition of samples would prove scarcely useful, since the new 495 

added samples would be redundant (in comparison with the first ones selected). These 496 

results agree with those obtained by other authors (Naes, 1987; Puchwein, 1988; 497 

Isaksson & Næs, 1990; Capron et al., 2005; D'Acqui et al., 2010; Grinand et al., 2012; 498 

Shetty et al., 2012), where only a small subset of samples properly selected can offer a 499 

similar accuracy than a larger set. In this context, extra-weighting the spiking subset is 500 

an efficient approach, which can avoid the need of large-sized spiking subsets.  501 

The influence of spiking was greater in the small-sized initial calibrations than in 502 

the large-sized ones (Guerrero et al., 2010). When the extra-weighting was made using 503 

the same number of copies regardless of the initial calibration size (EW_24), this 504 
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pattern was still present, but clearly to a lesser degree. When the extra-weighting was 505 

based on the initial calibration to spiking subset ratio (EW_ratio), more copies were 506 

included in the large-sized initial calibration (IC#3) than in the smaller-sized initial 507 

calibrations (IC#1 and IC#2). However, even under these conditions, the results 508 

obtained for the three initial calibrations were similar. This result was very interesting 509 

because it suggests that small-sized initial calibrations could offer a similar accuracy 510 

than large-sized initial calibrations. Consequently, this approach can be considered as a 511 

strong alternative to the need to develop large spectral libraries. In addition, in those 512 

circumstances where only a few local samples can be analysed by the reference method 513 

(i.e. 8–16 samples), this approach offered more accurate results than the geographically 514 

local (or site-specific) models. When a larger number of local samples were analysed 515 

(32 local samples), small differences in accuracy were observed between both 516 

approaches, although the geographically local models were less robust, indicating the 517 

difficulty to develop consistent spectroscopic calibrations when the number of samples 518 

is low.  519 

More studies are needed to evaluate if extra-weighting can outperform local models 520 

(spectrum-specific models), where a dedicated model is calibrated for an individual 521 

unknown sample (Pérez-Marín et al., 2007), or other approaches where a partition of 522 

the spectral information is used (Viscarra Rossel & Webster, 2012). It is interesting to 523 

highlight that local methods (spectrum-specific) can be used only when the spectral 524 

library contains similar samples to the target site samples, which is not the case for sets 525 

evaluated in this paper. In contrast, spiking with a properly selected spiking subset, 526 

together with extra-weighting, can overcome this problem, allowing the extrapolation of 527 

the initial calibrations applicability.  528 

 529 
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Conclusions 530 

The addition of a small spiking subset (eight local samples) to spike the calibrations 531 

improved the accuracy of the SOC predictions. There were, however, important 532 

differences in accuracy, which were dependent on the strategy used to select the spiking 533 

subset. The best results were obtained when the calibrations were spiked with local 534 

samples that were evenly distributed across the space defined by the first three principal 535 

components (spiking subset selected with the ‘PC distrib’ strategy). In addition, extra-536 

weighting was an effective way to improve the accuracy of the spiked calibrations. 537 

Extra-weighting of the spiking subset accentuates the spiking effect, giving an 538 

acceptable level of accuracy when predictions of SOC are needed at local scale, and 539 

when using small-sized spiking subsets. Large-sized calibrations are probably not 540 

needed when these approaches are considered, since similar results were obtained with 541 

the small- and large-sized calibrations, and it suggests that incipient spectral libraries 542 

could be useful if they are properly spiked and extra-weighted. Consequently, extra-543 

weighting is a simple, fast and inexpensive task that we highly recommend when 544 

calibrations are spiked, and can avoid the need to develop geographically local models. 545 

Overall, our results indicate that the efforts needed to use NIR spectroscopy for SOC 546 

assessment at local scales can be minimised. 547 
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FIGURE CAPTIONS 683 

 684 

Figure 1 Projections of the NIR spectra from the target sites (TS) into the principal 685 

component space defined by the first two principal components, in each initial 686 

calibration (IC). Grey stars denote the national samples of the initial calibrations and 687 

black dots denote target site samples. 688 

 689 

Figure 2 Schematic description of the experimental setup: a) initial calibration (IC) 690 

unspiked, constructed only with national samples (NS); b) initial calibration spiked with 691 

a spiking subset (SS) selected by strategy #1; c) initial calibration spiked with spiking 692 

subset selected by strategy #1, where an extra-weighting was applied to the spiking 693 

subset. This scheme only shows one of the 13 strategies of spiking subset selection and 694 

one of the three initial calibrations. This scheme was used with four different target sites 695 

(TS). Dashed and double lines denote spiking and the use of the calibration for 696 

obtaining predictions (ŷ), respectively. 697 

 698 

Figure 3a Representative illustration of predictions obtained in each target site (TS) 699 

with the different calibrations conducted. Left: predictions obtained with the unspiked 700 

IC#1 (white stars; dotted line). Centre: predictions obtained with IC#1 spiked with the 701 

spiking subset selected with the ‘MD centre’ strategy (white circles, dashed line) and 702 

spiking subset extra-weighted (EW) (black circles, solid line). Right: predictions 703 

obtained with IC#1 spiked with the spiking subset selected with the ‘PC distrib’ strategy 704 

(white circles, dashed line) and spiking subset extra-weighted (black circles, solid line). 705 

 706 
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Figure 3b Representative illustration of predictions obtained in each target site (TS) 707 

with the different calibrations conducted. Left: predictions obtained with the unspiked 708 

IC#2 (white stars; dotted line). Centre: predictions obtained with IC#2 spiked with the 709 

spiking subset selected with the ‘MD centre’ strategy (white circles, dashed line) and 710 

spiking subset extra-weighted (EW) (black circles, solid line). Right: predictions 711 

obtained with IC#2 spiked with the spiking subset selected with the ‘PC distrib’ strategy 712 

(white circles, dashed line) and spiking subset extra-weighted (black circles, solid line). 713 

 714 

Figure 3c Representative illustration of predictions obtained in each target site (TS) 715 

with the different calibrations conducted. Left: predictions obtained with the unspiked 716 

IC#3 (white stars; dotted line). Centre: predictions obtained with IC#3 spiked with the 717 

spiking subset selected with the ‘MD centre’ strategy (white circles, dashed line) and 718 

spiking subset extra-weighted (EW) (black circles, solid line). Right: predictions 719 

obtained with IC#3 spiked with the spiking subset selected with the ‘PC distrib’ strategy 720 

(white circles, dashed line) and spiking subset extra-weighted (black circles, solid line). 721 

 722 

Figure 4 Predictions obtained with unspiked and spiked calibrations (without and with 723 

extra-weight) using the 13 different strategies to select the spiking subset. Strategies in 724 

spiked calibrations (with and without extra-weighting) are arranged by RMSEP. a) 725 

IC#1; b) IC#2; c) IC#3. In all cases, n = 4 (from the four target sites studied). The two 726 

horizontal dark grey lines are displaying values of RMSEP = 0.4% soil organic carbon 727 

(SOC) and RMSEP = 0.8% SOC to facilitate visual comparisons.  728 

 729 
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Figure 5 Values of the root mean square error of prediction (RMSEP) obtained with the 731 

three initial calibrations (IC) spiked with a spiking subset (SS) of size 8 (SS8), 16 732 

(SS16) and 32 (SS32), without extra-weight (black bars), and with extra-weight (EW; 733 

grey bars). Dark-grey bars are used when 24 copies of the spiking subset were added for 734 

extra-weighting (EW_24), and light-grey bars are used when the numbers of copies 735 

were added in proportion of the initial calibration to spiking subset ratio (EW_ratio). 736 

White bars and horizontal lines were used to show the RMSEP obtained with 737 

geographically local models, constructed uniquely with 8 (horizontal dotted line), 16 738 

(horizontal dashed line) or 32 local samples (horizontal solid line). In all the cases, the 739 

local samples were selected by the ‘PC distrib’ strategy. In all the cases n = 4 (from four 740 

target sites). The error bars are denoting one standard deviation. 741 

 742 
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Figure 2 749 
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TABLES 785 

 786 

Table 1 Characteristics of the three subsets used for the development of the different Initial 787 

Calibrations (ICs), and the coefficient of determination (R
2
) and root mean square error (RMSE) 788 

obtained in the cross-validations (RMSECV). All the results refer to soil organic carbon (in %).  789 

 790 

 IC #1 IC #2 IC #3 

n 192 365 2279 

Minimum 0.32 0.32 0.10 

Maximum 8.97 14.49 14.62 

Mean 2.35 5.07 1.54 

Standard deviation 1.87 3.59 2.14 

Skewness 1.05 0.41 3.20 

R2 0.95 0.96 0.93 

RMSECV 0.40 0.67 0.54 

 791 

 792 
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Table 2 Characteristics of the four target sites used. Data refer in all cases to soil organic carbon (SOC; %). 793 

 794 

 Target site 1 Target site 2 Target site 3 Target site 4 

Coordinates 55º41’N, 13º19’E 38º32’N, 0º49’W 37º09’N, 2º35’W 52º00’N, 0º26’W 

Site (country) Sjöstorp (Sweden) Sax (Spain) Gergal (Spain) Silsoe (UK) 

Parent material Sandy till (25%) and 

sedimentary clay with 

elements of chalk (75%) 

Gypsum Mica schists Mudstone 

Method SOC LOI
a
 (900ºC) Elemental Analyser Walkley & Black LOI (900ºC) 

Spectral range / nm 1000-2500 834-2650 834-2650 834-2650 

n 125 95 60 104 

Minimum 1.20 0.47 0.07 1.21 

Maximum  3.87 4.04 6.70 3.41 

Mean 1.83 1.80 1.23 2.20 

Standard deviation 0.50 0.71 1.05 0.60 

 a
 LOI: loss on ignition 795 

 796 
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Table 3 Results of the repeated measures ANOVA to evaluate the effects of extra-weighting, initial calibration and strategy on the different prediction 798 

performance parameters: root mean square error of prediction (RMSEP), standard error of prediction (SEP) and ratio of performance to deviance (RPD).  799 

 800 

Variable  Source Sum of squares Degrees of freedom Mean square F P 

RMSEPa Between-subjects Initial Calibration (IC) 0.605 2 0.302 11.84 0.0000 

 Between-subjects Strategy 0.701 7 0.100 3.918 0.0011 

 Between-subjects IC × Strategy 0.078 14 0.005 0.220 0.9985 

 Between-subjects Error 1.840 72 0.025   

 Within-subjects Extra-weighting (EW) 0.668 1 0.668 81.90 0.0000 

 Within-subjects EW × IC 0.015 2 0.007 0.956 0.3890 

 Within-subjects EW × Strategy 0.045 7 0.006 0.794 0.5940 

 Within-subjects EW × IC × Strategy 0.085 14 0.006 0.751 0.7165 

 Within-subjects Error (EW) 0.587 72 0.008   

SEP
b
 Between-subjects IC 1.872 2 0.936 6.593 0.0023 

 Between-subjects Strategy 3.760 7 0.537 3.782 0.0015 

 Between-subjects IC × Strategy 0.420 14 0.030 0.211 0.9988 

 Between-subjects Error 10.22 72 0.142   

 Within-subjects EW 2.125 1 2.125 60.76 0.0000 

 Within-subjects EW × IC 0.126 2 0.063 1.801 0.1725 

 Within-subjects EW × Strategy 0.235 7 0.033 0.959 0.4673 

 Within-subjects EW × IC × Strategy 0.306 14 0.021 0.626 0.8346 

 Within-subjects Error (EW) 2.518 72 0.035   

RPD
b
 Between-subjects IC 3.209 2 1.604 7.372 0.0012 

 Between-subjects Strategy 3.716 7 0.531 2.439 0.0266 

 Between-subjects IC × Strategy 0.417 14 0.029 0.137 0.9999 

 Between-subjects Error 15.67 72 0.217   

 Within-subjects EW 3.543 1 3.543 81.90 0.0000 

 Within-subjects EW × IC 0.082 2 0.041 0.956 0.3890 

 Within-subjects EW × Strategy 0.240 7 0.034 0.794 0.5940 

 Within-subjects EW × IC × Strategy 0.454 14 0.032 0.751 0.7165 

 Within-subjects Error (EW) 3.114 72 0.043   
a
 Log transformed 801 

b
 Ln transformed 802 

803 

Page 43 of 45 European Journal of Soil Science



For Peer Review

 

 44

Table 4. Results of the repeated measures ANOVAs to evaluate the effects of the spiking subset size (SS-size), and those of the extra-weighting (EW) on the 804 

root mean square error of prediction (RMSEP) obtained with spiked calibrations. (a) Results obtained when 24 copies where used for EW (EW_24). (b) 805 

Results obtained when the number of copies to add for EW was equal to the ratio between the IC size and the SS size (EW_ratio). 806 

 807 

  Source Sum of squares Degrees of freedom Mean square F P 

(a) Between-subjects SS-size 0.0696 2 0.0348 2.328 0.1133 

 Between-subjects Error 0.4936 33 0.0149   

 Within-subjects EW_24  0.1341 1 0.1341 21.28 0.0000 

 Within-subjects EW_24 × SS-size 0.0087 2 0.0043 0.695 0.5058 

 Within-subjects Error 0.2079 33 0.0063   

(b) Between-subjects SS-size 0.0649 2 0.0324 3.117 0.0575 

 Between-subjects Error 0.3437 33 0.0104   

 Within-subjects EW_ratio 0.1578 1 0.1578 18.45 0.0001 

 Within-subjects EW_ratio × SS-size 0.0119 2 0.0059 0.695 0.5058 

 Within-subjects Error 0.2821 33 0.0085   

 808 

 809 
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Supplementary content: Appendix I. Representative NIR spectra of the national 

samples included in the initial calibrations (top), and two representative NIR spectra of 

each of the four target sites (bottom). 
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