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9 Abstract

10 Near infrared (NIR) spectroscopy is a potential technique for the quantification of the 

11 temperature reached (TR) in burned soils. Due to spatial variation, inaccurate predictions can 

12 result from calibrating a model with heat-sensitive compounds that are not present in the 

13 samples of the burned area. Therefore, we investigated how to develop robust models. The 

14 progressive augmentation of the model size successively enhanced the precision, while the 

15 increase of the calibration set’s variability gradually improved the accuracy through decreases 

16 in bias. The increase in calibration set variability enhances the probability of calibration using 

17 only the most common heat-sensitive compounds, facilitating reliable predictions of TR 

18 regardless of the spatial variation. On the other hand, models calibrated with heated aliquots 

19 from a unique sample, even from a composite sample, should be totally avoided because, 

20 regardless of their apparent utility, they are prone to inaccurate predictions.  

21

22 Keywords: wildfire effects; heat-sensitive compounds; fire intensity; NIR spectroscopy; 

23 robust models; postfire assessment
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25 1. Introduction

26 Fire is an important process in several terrestrial ecosystems throughout the world. 

27 The immediate fire effects on soil properties are mainly related with the fire severity, where 

28 the TR in soil is a crucial parameter (Neary et al., 1999; Vieira et al., 2015). Despite its 

29 importance, soil heating or TR in soil is a parameter neither measured by post-fire assessment 

30 teams, such as the Burned Area Emergency Response (BAER), nor by researchers, mostly 

31 due to the lack of a standard, easy, cheap, rapid and accurate method (Fernández and Vega et 

32 al., 2016; Parson et al., 2010). Some of the existing methods are subjective (Vega et al., 

33 2013), complex and expensive (Merino et al., 2014, 2015; Neris et al., 2014; Santín et al., 

34 2016; Verdes and Salgado, 2011), have moderate accuracy (Melquiades and Thomaz, 2016; 

35 Pérez and Moreno, 1998), or need several indicators to derive wide classes or levels, such as 

36 the soil burn severity index (Jain et al. 2008; Morgan et al., 2014; Parsons et al., 2010). To fill 

37 this gap, Guerrero et al. (2007) proposed the use of near infrared (NIR) reflectance 

38 spectroscopy as a potential technique for the quantification of TR in burned soils. The 

39 approach suggested by Guerrero et al. (2007) is based on two basic premises: i) the NIR 

40 spectrum of a soil sample contains information about the organic matter (quantity and 

41 quality), clay (quantity and quality), minerals (such as carbonates and iron oxides) and water 

42 content (Nocita et al., 2015; Stenberg et al., 2010; Viscarra Rossel and Behrens, 2010; 

43 Viscarra Rossel et al., 2016); and ii) these components have different sensitivity to thermal 

44 shocks (DeBano et al., 1998; Knicker, 2007; Neary et al., 1999; Raison, 1979; Santín et al., 

45 2016). Consequently, each temperature causes a group of changes in soil properties, leaving a 

46 typical fingerprint in the NIR spectra (Guerrero et al., 2007; Lugassi et al., 2010, 2014). 

47 Therefore, in this approach, the NIR spectrum is used as an integrative measurement of soil 

48 properties, which can be modified by the temperature (i.e., heat-sensitive compounds). 

49 However, as in other empirical approaches using NIR, a model is needed to relate the TR with 
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50 its fingerprint in the NIR spectrum. For the development of such a model, soil samples are 

51 heated at known temperatures, which are used as standards (i.e., as calibration set) to calibrate 

52 the model. Hence, once the model has been calibrated (using chemometrics), the TR can be 

53 efficiently measured in very large numbers of samples because the NIR spectrum of a soil 

54 sample is obtained in seconds, easily and without the need of chemical reagents (avoiding the 

55 generation of toxic wastes in laboratories). To obtain high resolution maps of TR, which can 

56 serve to locate prior intervention areas in burned sites, it is necessary to measure this 

57 parameter (TR) in hundreds or even thousands of soil samples (Parsons et al., 2010; Jain et 

58 al., 2012). Additionally, the TR can provide relevant information for a better description of 

59 fire effects at very fine scale and to enhance the understanding of fire ecology, such as for the 

60 in situ analysis of fire-mediated germination patterns (Keeley et al., 2008; Lentile et al., 2007; 

61 Pausas et al., 2003).

62 The assessment of TR using NIR in a wildfire-affected area implies the collection of 

63 burned samples in those target points where TR is needed (for instance, for mapping) but also 

64 the collection of unburned soil samples to calibrate the model (Guerrero et al., 2007). As a 

65 consequence of the short-scale natural variation of the soil properties, a sample located at an 

66 arbitrary position (regardless if burned or not) may present its particular composition of heat-

67 sensitive compounds, and this composition can differ with respect to other samples located at 

68 different positions. Two issues are imposed by the presence of spatial variation, which, 

69 through its design, a suitable model should overcome. The first is the impossibility of 

70 constructing a model using samples with similar composition to those to be predicted (except 

71 for planned events, such as prescribed fires). This limitation may exert a negative effect on 

72 prediction accuracy because the model might be fitted with heat-sensitive compounds that 

73 might not be the same as those present in samples located in the wildfire-affected area. The 

74 second implication is that the wildfire will affect samples with different heat-sensitive 
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75 compounds; therefore, the model should be able to properly predict samples with different 

76 spectral responses. For these reasons, we found it interesting to investigate how we can 

77 develop robust models able to overcome such problems linked to the natural short-scale 

78 spatial variation. The calibration set characteristics play an important role in model 

79 performance. If the calibration set is composed by several different samples, only common 

80 heat-sensitive compounds (i.e., common spectral changes) should be used to fit the model. 

81 Consequently, accurate predictions are expected in those samples where the common heat-

82 sensitive compounds are present. Therefore, the higher the variability included, the larger the 

83 commonality of the predictors, and the wider the model applicability. Thus, we hypothesised 

84 that increasing the calibration set variability should result in a progressive improvement of the 

85 predictions accuracy. To test the hypothesis, different model types were constructed and were 

86 then used to predict TR. The quality of the predictions was analysed with the coefficient of 

87 determination (R2), root mean square error of prediction (RMSEP), bias, standard error of 

88 prediction (SEP) and ratio of performance to deviance (RPD). The study was repeated in three 

89 sites located in Alicante province (Spain).

90

91 2. Materials and methods

92 2.1. Sites 

93 This study was performed using forest soil samples collected in three different sites 

94 located in Alicante province (Spain): Aitana, Maigmó and Pinoso. These sites were 

95 approximately 30 km apart from each other. The vegetation of these sites is composed of 

96 Pinus halepensis Mill., as the dominant species in the tree stratum, the understory vegetation 

97 being dominated by species such as Quercus coccifera L., Rosmarinus officinalis L., 

98 Juniperus oxycedrus L., Stipa tenacissima L. and Brachypodium retusum (Pers.) P. Beauv. 

99 The main characteristics of the three study sites are given in Table 1.
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100

101 2.2. Sample collection

102 In each site, five microplots (1 m2) were randomly selected in a small area of 

103 approximately 2500 m2. The minimum and maximum distance between microplots was 5 and 

104 50 m, respectively. In each microplot, a topsoil sample (0–5 cm depth) of approximately three 

105 kilograms was collected. These microplot-scale soil samples (hereafter MPS) collected in 

106 Aitana site were identified as A1, A2, A3, A4 and A5. Those MPS collected in Maigmó were 

107 identified as M1, M2, M3, M4 and M5. Similarly, the MPS collected in the Pinoso site were 

108 identified as P1, P2, P3, P4 and P5. In each site, an additional “composite sample” was 

109 obtained by bulking several subsamples collected at different points across the whole area; 

110 these composite samples were identified as Ac, Mc and Pc for Aitana, Maigmó and Pinoso, 

111 respectively.

112

113 2.3. Obtaining standards (laboratory-heated samples)

114 Once in the laboratory, the 18 samples (15 MPS + 3 composite samples) were air-

115 dried for two weeks (at 25°C) and sieved to <2 mm. These 18 samples were the “sources of 

116 standards.” Twenty-four aliquots of approximately 10 g were obtained from each sample. 

117 These aliquots were heated in a muffle furnace at 24 different combinations of temperatures 

118 (70°C, 100°C, 200°C, 300°C, 400°C, 500°C, 600°C and 700°C) and exposure times (10, 20 

119 and 40 minutes). In this way, a set of 24 heated aliquots was obtained from each MPS sample 

120 (also from each composite sample). A total of 432 heated aliquots (24 heating combinations 

121 per sample × 6 samples [5 MPS + 1 composite] × 3 sites) were obtained, which were used as 

122 standards for the models (see section 2.6). Each aliquot was introduced in the pre-heated 

123 furnace as a 1-mm layer in order to guarantee homogeneous heating (Guerrero, 2010). During 

124 the heating, to register the exact TR, the temperature of the aliquot was monitored and 
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125 recorded every 10 seconds using a thermocouple (Guerrero et al., 2007). 

126

127 2.4. Obtaining the NIR spectra of the heated aliquots

128 Once cooled, the NIR spectra (12000–3800 cm-1) of the 432 heated aliquots were 

129 obtained using a FT-NIR diffuse reflectance spectrophotometer (MPA Bruker, Germany). 

130 Further details about the scanning can be found in Guerrero et al. (2007). The x-scale of the 

131 spectra was transformed to nanometres (834–2630 nm) and resampled to 1 nm. All the spectra 

132 were transformed to absorbance, and then were pre-processed with the first derivative 

133 (Savitzky–Golay, 25 points) and vector normalization. (Standard Normal Variate). The 

134 absorbance spectra of the 432 heated aliquots can be found as supplementary content. The 

135 OPUS spectroscopic software (OPUS version 6.5 software; BrukerOptik GmbH, Ettlingen, 

136 Germany) was used for spectral pre-processing. 

137

138 2.5. Regression method 

139 We have constructed different types of models relating the TR with the NIR spectra 

140 (see section 2.6). In all cases, the aliquots heated in laboratory (see section 2.3) were used as 

141 the “standards” to calibrate the models. All models were calibrated with partial least squares 

142 (PLS) as the multivariate regression method, using the OPUS spectroscopic software (OPUS 

143 version 6.5 software; BrukerOptik GmbH, Ettlingen, Germany). The leave-one-out cross-

144 validation was used to decide the number of PLS vectors to be included in models on the 

145 basis of the root mean square error of cross-validation (RMSECV) in a scree plot. 

146

147 2.6. Model types

148 Ten different model types were constructed in this study. The models differed in the 

149 size of the calibration set, and in the variability included. In this study, the size is the number 
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150 of standards (i.e., number of heated aliquots) used to calibrate the model, and the variability is 

151 the number of different samples used as source(s) of heated aliquots. The “label” of the model 

152 type provides information on the size and the variability (Table 2). For instance, the label 

153 72s–v3 denotes a model calibrated with 72 heated aliquots (72 standards) which were 

154 obtained from three different samples (three MPS have been used as sources of heated 

155 aliquots). At each site, ten different model types were constructed as follows (Table 2):

156 1) Models 24s–v1: these models were calibrated with 24 heated aliquots (24 standards) 

157 obtained from one MPS. In each site, five models were constructed (models #1 to #5; Table 

158 2).  

159 2) Models 48s–v2: these models were calibrated with 48 heated aliquots (48 standards) 

160 obtained from two MPS. In each site, ten models were constructed (#6 to #15; Table 2).  

161 3) Models 72s–v3: these models were calibrated with 72 heated aliquots (72 standards) 

162 obtained from three MPS. In each site, ten models were constructed (#16 to #25; Table 2). 

163 4) Models 96s–v4: models calibrated with 96 heated aliquots (96 standards) obtained from 

164 four MPS. In each site, five models were constructed (#26 to #30; Table 2). 

165 5) Models 24s–v2: models were calibrated with 24 standards selected from two MPS. In each 

166 site, ten models were constructed (#31 to #40; Table 2). 

167 6) Models 24s–v3: models calibrated with 24 standards selected from three MPS. In each site, 

168 ten models were constructed (#41 to #50; Table 2). 

169 7) Models 24s–v4: models calibrated with 24 standards selected from four MPS. In each site, 

170 five models were constructed (#51 to #55; Table 2). 

171 8) Models 48s–v4: models calibrated with 48 standards selected from four MPS. In each site, 

172 five models were constructed (#56 to #60; Table 2). 

173 9) Models 72s–v4: models calibrated with 72 standards selected from four MPS. In each site, 

174 five models were constructed (#61 to #65; Table 2). 
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175 10) Models 24s–v1c: models calibrated with the 24 heated aliquots (24 standards) obtained 

176 from the composite sample. In each site, one model was constructed (model #66; Table 2). 

177

178 A total of 66 models were constructed for each site (Table 2). The description of the 

179 MPS used for each of model can be found in Tables S1, S2 and S3 for Aitana, Maigmó and 

180 Pinoso site, respectively. In some cases (those marked with an asterisk in Table 2), the 

181 required model size is smaller than the total number of available spectra. In these cases, a 

182 principal component analysis (PCA) was performed with the NIR spectra of the available 

183 spectra. Then, the Kennard–Stone algorithm was used to select the desired number of spectra. 

184 The selected spectra were those whose scores were evenly distributed across the space defined 

185 by the first three principal components. For instance, a model 48s–v4 (as an example) is a 

186 model calibrated with 48 heated aliquots (48 standards), which were obtained from four 

187 different samples. Since four MPS were used as sources of heated aliquots, a total of 96 

188 spectra were available. Thus, a PCA was conducted with the 96 spectra, but only 48 spectra 

189 were used to calibrate the model. These 48 spectra were selected with the Kennard–Stone 

190 algorithm. The minimum variability would have been reached when all the standards used to 

191 calibrate the model had been derived from a unique MPS sample (such as in models 24s–v1). 

192 The maximum variability would have been reached when each standard included in the 

193 calibration set has been obtained from a different sample (i.e., only one heated aliquot per 

194 MPS sample). Such maximum variability has not been evaluated in this study, as the 

195 maximum number of different MPS used as sources of heated aliquots was four (Table 2).

196

197 2.7 Predictions and data analysis

198 The previously described models were used to predict the TR. Several prediction 

199 performance parameters were computed to analyse the quality of the predictions: 
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200 determination coefficient (R2), root mean square error of prediction (RMSEP), standard error 

201 of prediction (SEP), bias and ratio of performance to deviance (RPD).), which is the standard 

202 deviation of the prediction set divided by the RMSEP (Stenberg et al., 2010; Bellon-Maurel et 

203 al., 2010). The RMSEP was used to measure the accuracy, and the SEP was used to measure 

204 the precision (Bellon-Maurel et al., 2010; Næs et al., 2002). 

205 These prediction performance parameters were computed using predictions obtained 

206 in 24 heated aliquots from a MPS not used to calibrate the model. Therefore, the setup 

207 provided independent predictions, similar to a MPS-hold-out cross-validation or leave-one-

208 MPS-out cross-validation. In this way (although with some limitations), the approach tried to 

209 mimic a realistic scenario, where the samples used to construct the models, and those to be 

210 predicted, are irremediably located on different plots, since the former would be located in the 

211 unburned area and the latter in the burned area.

212 A complete identification of the MPS used as prediction set in each case can be found 

213 in Tables S1, S2 and S3 (indicated by a cross in the right side of the tables). At each site, the 

214 66 models were used 145 times, and therefore, 145 different values of R2, RMSEP, SEP, bias 

215 and RPD were obtained for each site (see supplementary Tables S1, S2 and S3). In each site, 

216 those values of R2, RMSEP, SEP, bias and RPD obtained with the same model type were 

217 considered as replicates and were therefore averaged by model type. Since the bias can be 

218 positive or negative, in order to get a meaningful average, we used its absolute value.

219 The prediction performance parameters, once averaged by model type, were arranged 

220 in four groups, to facilitate the analysis of the results (Table 2). To facilitate the description 

221 and meaning of groups and its comparisons, some results included in the Group i have also 

222 been included in Group ii (24s–v1) and Group iii (96s–v4), as follows:

223 – Group i: this group contains results from models that differed in both the variability

224 (number of MPS used as source of standards) and model size (number of standards included 
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225 in the calibration set; Table 2).

226 – Group ii: this group contains results from models that differed only in variability because 

227 the model size was constant (Table 2).

228 – Group iii: this group contains results from models that differed only in size because the 

229 variability was constant (Table 2).

230 – Group iv: this group contains results obtained from the model calibrated with the composite 

231 sample (Table 2). 

232

233 3. Results 

234 3.1. Changes in soils and NIR spectra

235 The colour of the soil samples was modified as a consequence of heating. Due to the 

236 carbonization of the soil organic matter, a progressive darkening was observed when the 

237 exposure temperature was increased (up 450°C). As a consequence of such darkening, the 

238 baseline of the NIR spectra (absorbance) was increased, especially at shorter wavelengths 

239 close to the visible spectral range (see supplementary figures Figs. S1-S27). The dark colour 

240 abruptly disappeared when the temperature was above ∼450°C, mainly due to the combustion 

241 of the organic compounds. The transformation of some iron oxides into hematite was an 

242 additional change in the NIR spectra (approximately 890–892 nm; Fig. 1a) and in soil colour, 

243 causing sample reddening (Ketterings and Bigham, 2000; Torrent and Barrón, 2002; Terefe et 

244 al., 2005; Ulery and Graham, 1993), which was especially evident at high temperatures 

245 (>500°C). 

246 While changes at naked eye are the basis of visual estimators of fire severity (Pérez 

247 and Moreno, 1998; Vega et al., 2013), the NIR spectra can provide further additional 

248 information about the changes in soil properties, since NIR spectroscopy has been used to 

249 quantify a large number of soil properties, which in turn are affected by temperature (Santín et 
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250 al., 2016; Stenberg et al., 2010). Other important changes in the NIR spectra were those 

251 observed in features located approximately 1414 nm (Fig. 1b), 1920 nm (Fig. 1c) and 2210 

252 nm (Fig. 1d), related with adsorbed and free water –OH (at 1414 nm and 1920 nm) and clay –

253 OH (at 1414 nm and 2210 nm). These spectral features tended to decrease with the increase in 

254 TR, mostly due to dehydration and dehydroxylation processes but, as other authors have 

255 observed (Guerrero et al., 2007; Lugassi et al., 2010, 2014), also due to the combustion of the 

256 organic matter. A detailed discussion of changes in soil properties can be found in Certini 

257 (2005), and a detailed discussion of changes in the NIR spectra can be found in Lugassi et al. 

258 (2014). 

259

260 3.2. Calibrations

261 All the above mentioned changes, and others, facilitated the calibration of models to 

262 quantify TR. Therefore, we could surmise that several heat-sensitive compounds were 

263 involved in the calibrations. Despite the large differences between calibration sets, the 198 

264 models showed high R2 values (ranging from 0.92 to 0.99), and low RMSECV (RMSE of 

265 cross-validation) values, ranging from 21°C to 58°C (data not shown). These values of R2 and 

266 RMSECV obtained in the cross-validations were similar to those from previous studies 

267 (Guerrero et al., 2007; Guerrero, 2010; Maia et al., 2012). Fig. 2 shows the cross-validation 

268 results of four randomly selected models, as a representative illustration of the 198 models 

269 calibrated for this study. These results indicate the great capacity of NIR spectroscopy to 

270 measure some of the soil properties that change with temperature (i.e., heat-sensitive 

271 compounds). Apparently, they all seem to be useful to predict TR. 

272

273 3.3. Predictions
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274 The 435 values of RMSEP obtained with the different 198 models ranged from 14.3°C 

275 to 99.7°C. Three out of these 435 cases are shown in Fig. 3, as representative predictions 

276 obtained with three different types of models. Fig. 4 shows the RMSEP obtained with the 

277 models included in Group i, which were models constructed with all the heated aliquots from 

278 one (24s–v1), two (48s–v2), three (72s–v3) and four MPS (96s–v4). The grey bars in Fig. 4 

279 represent the RMSEP values averaged by model type (separately for each study site), whereas 

280 the dots and triangles are used to show the minimum and the maximum RMSEP observed for 

281 each model type, respectively. For the Aitana site (Fig. 4a), the RMSEP of predictions 

282 obtained with the 20 models labelled as 24s–v1 ranged from 31.2°C to 60.2°C, with an 

283 average of 40.9°C. In Maigmó (Fig. 4b), these 20 RMSEP values were slightly lower than in 

284 Aitana, and ranged from 18.6°C to 44.9°C, with an average of 31.2°C. In Pinoso, the 20 

285 RMSEP values obtained with models 24s–v1 were slightly higher than the other study sites, 

286 and ranged from 24.8°C to 99.7°C, with an average of 49.4°C (Fig. 4c). Regardless of the site 

287 considered, the progressive increase of the calibration set variability (i.e., number of MPS) 

288 and size (i.e., number of standards) coincided with the gradual decline of RMSEP (Fig. 4). 

289 Other prediction performance parameters (such as R2, SEP, etc.) also indicated an 

290 improvement of predictions with the increase in variability and size of the calibration sets. 

291 Since similar patterns were observed for the three study sites (data not shown), the values of 

292 the three sites were pooled together, and averaged by model type (Fig. 5). Once averaged by 

293 model type, the RMSEP dropped progressively from 40.5°C in models 24s–v1 to 29.6°C in 

294 models 96s–v4 (Fig. 5a). A similar gradual change was also observed for the other prediction 

295 performance parameters, such as the R2, SEP, bias and RPD (Fig. 5). For instance, RPD was 

296 6.2 in models 24s–v1, and it increased to RPD 8.1 in models 96s–v4 (Fig. 5b). The 

297 improvement of the predictions might be attributed to the higher variability included in the 

298 calibration set, which was four times higher in models 96s–v4 than in models 24s–v1, 
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299 although such improvement could also be attributed to the calibration set size, which was also 

300 four times higher. To discern whether the calibration set variability affects accuracy, we 

301 constructed another group of models (Group ii) where the number of MPS varied while the 

302 model size was constant at 24 in all cases (Table 2). For the average of the three sites, the 

303 RMSEP decreased from 40.5°C in 24s–v1 to 35.7°C in 24s–v4, confirming the positive effect 

304 of the increase in the calibration set variability on accuracy (Fig. 5a). The decrease in bias 

305 from 15.1°C in 24s–v1 to 8.2°C in 24s–v4 was the main contributor to the RMSEP reduction 

306 observed in Group ii, because SEP only decreased by 2°C (Fig. 5a). The increase of the 

307 calibration set size was the additional factor explaining the progressive decrease of RMSEP 

308 observed in the models from Group i (Fig. 4 and Fig. 5). Nevertheless, the size effect was 

309 clearly observed when the RMSEP was compared for the models included in Group iii (Table 

310 2), where the size was the unique difference between them. For that group of models (Group 

311 iii), the decrease in RMSEP from 35.7°C in 24s–v4 to 29.6°C in 96s–v4 is mostly attributable 

312 to an improvement in precision (lower SEP) because the bias remained fairly stable (only 

313 decreased less than 1°C), whereas the SEP decreased by approximately 6.5°C (Fig. 5a).

314 The less accurate predictions were obtained with models constructed with the heated 

315 aliquots from the composite sample (model type labelled 24s–v1c). On average across the 

316 three sites, the bias was 22°C, explaining a substantial portion of the RMSEP (47.6°C). These 

317 errors were clearly higher than those obtained with models of similar size, such as models 

318 24s–v4. Furthermore, these errors were also higher than those obtained with models having a 

319 similar degree of variability (i.e., same number of MPS) such as the models 24s–v1. 

320 The R2 values shown in Fig. 5b should be interpreted with some caution since they are 

321 somehow affected by the approach used to compute results. In this study, the prediction 

322 performance parameters (such as R2) have been computed using the predictions obtained in 

323 sets of 24 heated aliquots, which belong to the same MPS (see tables S1, S2 and S3). 
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324 Consequently, the prediction performance parameters have been obtained at MPS scale (and 

325 were then averaged by model type). At MPS scale, biased predictions do not affect the R2. 

326 This can be seen in Figs. 6a to 6d. Fig. 6a shows TR predictions obtained in 24 heated 

327 aliquots from one randomly selected MPS. The cases shown in Figs. 6b, 6c and 6d are the 

328 same predictions shown in Fig. 6a but after the manipulation of the predicted values in order 

329 to have differently biased predictions. In Fig. 6b, 100°C was added to each predicted value 

330 shown in Fig. 6a; in Fig. 6c, 50°C was subtracted from each predicted value; in Fig. 6d, each 

331 predicted value was multiplied by 0.5 (divided by two). In all cases (Figs. 6a to 6d), the R2 is 

332 the same (R2=0.99) regardless of the bias (due to slope or due to offset). If we compute the 

333 mean value of these four cases, the R2 is 0.99 despite the different bias in each case. However, 

334 under realistic conditions, the evaluation of the burned area implies making predictions from 

335 samples collected at several positions. If the model predictions have a different bias 

336 depending on the sample composition (which may vary with position), then we must expect 

337 patterns as those shown in Figs. 6e and 6f, where due to differences in bias, such 

338 heterogeneity in the prediction set results in much lower R2 values. Figs. 6e and 6f contain a 

339 random selection of 24 cases from those shown in Figs. 6a to 6d, and simulate two prediction 

340 sets composed by samples with different bias. In these cases (Figs. 6e and 6f), the different 

341 values of bias (by slope or by offset) were negatively affecting the R2. In these examples, the 

342 values were R2=0.72 and R2=0.63, resulting in a mean R2=0.675, which clearly contrasts with 

343 the R2=0.99, obtained as a mean of four values of R2 obtained at MPS scale. To have a direct 

344 measure of such discrepancy, we also computed the R2 after pooling predictions from the 

345 different MPS, mimicking prediction sets composed by samples that can have a different bias. 

346 For that, predictions from two illustrative model types were selected: 1) predictions obtained 

347 with models 24s–v1c (Fig. 6g), which was the worst option in terms of bias (highest bias in 

348 Fig. 5a); 2) predictions obtained with models 96s–v4 (Fig. 6h), which was the best option in 
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349 terms of bias (lowest bias in Fig. 5a). A small discrepancy between the approaches was 

350 observed when the predictions were obtained with models 96s–v4 (low bias; Fig. 6h), with 

351 R2=0.981 when the R2 was computed once predictions were pooled (Fig. 6h) and R2=0.985 

352 when R2 was computed as an average of values obtained at MPS scale (Fig. 5b). As expected, 

353 a larger discrepancy was observed when predictions were obtained with models 24s–v1c 

354 (high bias; Fig. 6g), with R2=0.954 when predictions were pooled (Fig. 6g) while R2=0.971 

355 when it was computed as an average of the five cases (Fig. 5b). Regardless of the approach, 

356 the R2 values were high because the bias values were not very large—clearly lower than those 

357 shown in Figs. 6b or 6d. Moreover, the wide range included in the prediction sets also 

358 contributed to the high R2 values (Davies and Fearn, 2006). Despite their absolute values, the 

359 R2 values shown in Fig. 5b were in concordance with other performance parameters and 

360 therefore support the same conclusions about the importance of the calibration set size and 

361 variability. It is worth highlighting that other prediction performance parameters, such as 

362 RMSEP, in contrast to R2, are minimally affected by the way results were computed because 

363 RMSEP is a parameter related to the residuals, given that it is linked to each predicted value.

364

365 4. Discussion

366 Soil contains heat-sensitive compounds, which can be can be measured with NIR 

367 spectroscopy, allowing the development of models to quantify the TR. However, the 

368 composition of soils, including its heat-sensitive compounds, varies with space, even at short 

369 distances. Therefore, each sample might possess its particular composition of heat-sensitive 

370 compounds and that can exert an important effect on prediction reliability. We have observed 

371 an effect of the calibration set variability on accuracy, which highlights important issues about 

372 how adequate calibration sets should be developed to manage the spatial variation effects. To 

373 facilitate the explanation of mechanisms connecting the calibration set variability with the 
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374 robustness of predictions, we discuss the results with the help of a schematic representation of 

375 spectra, models and predictions (Fig. 7), since a direct analysis of the b–coefficients of PLS–

376 models is not straightforward. Such simplification enhances the illustration and understanding 

377 of mechanisms involved. A schematic representation of the NIR spectra of three MPS and one 

378 composite sample is shown in Fig. 7a: a black circle denotes the wavelength () where the 

379 spectral feature of a heat-sensitive compound appears, and a grey circle denotes its absence in 

380 the sample. Fig. 7b contains the schematic representation of seven models calibrated with 

381 aliquots from samples shown in Fig. 7a. The black arrows denote those wavelengths included 

382 in the models, which depend on the heat-sensitive compounds present in the calibration set. 

383 Thus, a black arrow at n denotes where the b–coefficient has a large contribution in 

384 predicting TR. As consequence of heating, some compounds trend to disappear, decreasing 

385 their spectral features as temperature increases, such those related with –OH loss by 

386 dehydroxilation (and organic matter combustion, in general). However, other compounds can 

387 be generated by heating, such as certain iron oxides (as hematite), and thus they appear as 

388 new spectral features as the temperature increases. Consequently, the sign of b–coefficients 

389 could be negative or positive, being denoted as down or up arrows, respectively. 

390 The first case shown at the top of Fig. 7b (case i) represents an example of a model 

391 whose calibration set had minimal variability (variability=1) because all the heated aliquots 

392 included in the calibration set had been obtained from the same sample (MPS1). Therefore, 

393 this is a sample-specific model. This model had been fitted only on the basis on changes 

394 produced in the heat-sensitive compounds present in that sample (those located at 3 and 4; 

395 see black dots in Fig. 7a). As consequence, this model will predict TR using two b–

396 coefficients located at 3 and 4 (see black arrows at 3 and 4 in Fig. 7b, case i). The second 

397 and third models shown in Fig. 7b (cases ii and iii) are also examples of models constructed 

398 with heated aliquots obtained from a unique sample (MPS2 for case ii; MPS3 for case iii), 
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399 therefore, these are also sample-specific models (variability=1). Since each MPS sample 

400 would have had a different composition (Fig. 7a), we would therefore expect that the models 

401 were based on the different wavelengths from each sample, as shown in Fig. 7b for cases i to 

402 iii. The models shown in cases iv and v of Figure 7b represent models constructed with heated 

403 aliquots from two MPS samples (i.e., variability=2). While these two MPS samples might 

404 have had a different composition, only the common changes (common heat-sensitive 

405 compounds) were used to fit the model. Similarly, when three MPS were used as the source of 

406 the aliquots (Fig. 7b, case vii), three different sets of heat-sensitive compounds might have 

407 been be present in the calibration set, but the model was fitted only with the common changes 

408 (i.e., common heat-sensitive compounds, as in that located at 3). Thus, the increase in the 

409 number of MPS used as sources of standards (i.e., the increase of the calibration set 

410 variability) forces the calibration of models on the basis of the most common heat-sensitive 

411 compounds. It is worth mentioning that a model based on the most common heat-sensitive 

412 compounds could also have been obtained with only two samples (MPS1 and MPS2), as 

413 illustrated in Fig. 7b iv. However, two samples might not be enough, as in the case shown in 

414 Fig. 7b v, explaining why a gradual augmentation in calibration set variability progressively 

415 increases the chance to fit a model based only on the most common heat-sensitive 

416 compounds. Fig. 7b clearly illustrates that several different models can be obtained with the 

417 samples from a given site. Apparently, all of them seem to be useful since they relate NIR and 

418 TR; however, most of them would have restricted applicability.

419 Figs. 7c to 7f represent the predictions obtained in MPS1, MPS2 and MPS3 from four 

420 different models. The model used in each case is described by its b–coefficients (black 

421 arrows). When the model is used in each of the three samples, a pass or fail symbol is added 

422 to denote unbiased or biased predictions, respectively. We can expect accurate predictions 

423 when the sample used for prediction has the same heat-sensitive compounds as the predictors 
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424 in the model. For instance, Model 1 (shown in Fig. 7c) predicts TR using the changes in the 

425 heat-sensitive compounds located at 1 and 3 (black arrows). Thus, accurate predictions are 

426 expected when Model 1 is used for sample MPS2 (Fig. 7c). Conversely, biased predictions 

427 are expected when Model 1 (Fig. 7c) is used for samples MPS1 and MPS3 because these 

428 samples lack the heat-sensitive compound located at 1. Since the contribution of 1 to the 

429 prediction is missing, then we would expect negatively biased predictions in MPS1 and MPS3 

430 (a 50% underestimation assuming a similar contribution from both heat-sensitive 

431 compounds). However, Figs. 7d and 7e show how we can obtain accurate predictions from 

432 samples that contain a different composition of heat-sensitive compounds. This is the case for 

433 Model 2 when used for sample MPS2 (Fig. 7d). The presence of an additional heat-sensitive 

434 compound in MPS2 (the one located at 3) does not distort the predictions obtained with 

435 Model 2, because this model does not consider the changes in wavelength 3 when predicting 

436 TR. Whereas Model 2 can predict without bias only for one sample (MPS2; Fig. 7d), Model 3 

437 can do so for three samples (Fig. 7e). The reason is that Model 3 (Fig. 7e) predicts TR with 

438 the heat-sensitive compound located at 3, which is the most common. Therefore, a model 

439 such as this can predict without bias in a wide number of different samples. The unique 

440 requirement is the presence of that heat-sensitive compound, which most of the samples 

441 would contain since it is a very common compound. Therefore, the better identification of the 

442 most common heat-sensitive compounds might be the link which explains why the 

443 progressive augmentation of the calibration set variability successively improved prediction 

444 accuracy. 

445 In agreement with this supposed mechanism, a high variability in the calibration set 

446 would allow obtaining reliable (not biased) predictions in dissimilar samples as well (Fig. 7e), 

447 overcoming the restriction of predictions based only on similar samples. Consequently, it 

448 increases the spatial applicability of the models, since they would not only be restricted to 
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449 adjacent sites, where similar samples would be expected. A high variability does not 

450 completely exclude the possibility of bias in predictions, although this would be expected 

451 only for those samples where the most common heat-sensitive compound is absent. Especially 

452 if the collection of unburned samples used as sources of aliquots is sufficiently representative 

453 of the unburned area, this should be a minor proportion of the total samples. Additionally, in 

454 turn, the unburned area would also have to be representative of the burned area. Under these 

455 conditions, a calibration set constituted by a number of different samples could be considered 

456 a site-specific model.

457 This theory also explains why the most biased predictions were obtained with the 24s–

458 v1c models. For an arbitrary study site, all the heated aliquots used for the model 24s–v1c 

459 were obtained from the composite sample; therefore, it can considered as a sample-specific 

460 model. The composite sample, as a bulked mixture of several subsamples, should contain 

461 most of the heat-sensitive compounds (Fig. 7a). As a consequence, all these compounds 

462 would probably have contributed to the calibration of the model (Fig. 7b, case vi). Thus, this 

463 model (such as Model 4, Fig. 7f) should produce biased predictions in those samples where at 

464 least one of the heat-sensitive compounds is absent. The observed results fully support this 

465 theory, since the most biased predictions were obtained with models 24s–v1c. Clearly, any 

466 attempt to include site variability through the use of a composite sample is not recommended. 

467 A composite sample would describe a representative fingerprint of heat on soil properties, but 

468 this would not be useful to obtain robust models because they would be prone to produce 

469 biased predictions in many samples. Therefore, the development of models using a composite 

470 sample should be totally avoided. This result might explain why, when using predictions from 

471 this type of model, some authors did not observe the expected relationships between changes 

472 in soil properties and temperature (Maia et al., 2012; Mataix-Solera et al., 2013). 

473 The number of heated aliquots (model size) also had an impact on the accuracy. 
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474 Whereas the number of MPS decreased the bias, the number of heated aliquots increased the 

475 accuracy through the improvement of precision (i.e., the decrease of SEP). A high number of 

476 heated aliquots in the calibration set of a model should better describe the heat effect on the 

477 heat-sensitive compounds. Consequently, it enhances the quantification of the b–coefficient 

478 values of the implied heat-sensitive compounds, improving the calibration of models, which is 

479 a basic premise for obtaining accurate predictions. Clearly, the best option is the development 

480 of models with a large number of heated aliquots from several samples. The importance of the 

481 variability and the number of samples used for calibration has been already demonstrated by 

482 many authors with other soil properties (Brown, 2007; Shepherd and Walsh, 2002).  

483 Very accurate predictions have been obtained in this study, even when the worst 

484 models were used, which were those calibrated with low variability (such as those 24s–v1 and 

485 24s–v1c). This is probably due to the very small size of the area (2500 m2) where the five 

486 MPS were sampled in each site. Thus, these samples were separated by short distances (less 

487 than 50 m; see section 2.2), and consequently, they were quite similar to each other. Hence, it 

488 is reasonable to expect a substantially lower accuracy when this model type is used under 

489 realistic conditions, where larger distances (and larger dissimilarity) may exist between 

490 burned and unburned samples. Thus, we should also expect a larger difference in the accuracy 

491 of predictions obtained with models calibrated with low and high variability.

492 This study provides valuable information about factors affecting the reliability of 

493 models. Most of these results are very interesting because they have a direct impact on how to 

494 design the calibration set, which even affects the collection of the unburned samples to be 

495 used as sources of aliquots, and the built of a calibration set for site-specific models. 

496 Nevertheless, more studies are needed to understand the limitations and capabilities of NIR 

497 spectroscopy to predict TR and how to construct models in a more efficient way. For instance, 

498 the transferability of models across sites and scales is an important issue because it may 
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499 facilitate a faster development of models, which may substantially decrease the time needed 

500 to evaluate wildfire-affected sites. Dedicated experiments should be designed for that 

501 purpose, especially because some of the results obtained in previous studies (Guerrero et al., 

502 2007) have suggested its feasibility. These authors constructed several hundred different 

503 models using soil samples from four sites. These models differed from each other in their 

504 basic characteristics such as rank (number of PLS vectors), spectral range included and pre-

505 processing (normalization, derivatives, etc.). Then, a few of these models (but not all of them) 

506 were able to predict TR in samples from a new independent site (as left-out site). Similar 

507 results were observed when repeated with each of the five sites as a prediction set. Thus, the 

508 results undoubtedly demonstrated the presence of common heat-sensitive compounds in soils 

509 from five different sites in Alicante province (southeast Spain). Anyway, it should be noted 

510 that although independent sites were used in Guerrero et al. (2007), the identification of the 

511 best model (correct design) was based on the results from the leave-out site and thus not an 

512 independent selection. Therefore, these results should not be considered as the expected 

513 accuracy for a true independent prediction, since hundreds of models (varying in its design) 

514 can be fitted, but not all of them would produce accurate predictions. Nonetheless, the results 

515 shown in Guerrero et al. (2007) were useful to illustrate the potential of NIR to predict TR. 

516 For that reason, the results of the present study have an additional value because they provide 

517 the first measure of the accuracy obtained by independent predictions. 

518 The improvement of the ability to obtain more realistic standards (mimicking naturally 

519 burned soils) is also a step needed in the way towards the use of NIR as a thermometer. For 

520 instance, the convenience to built models including standards generated under different 

521 oxygen limitation levels should be also evaluated in future studies. Oxygen limitation level 

522 during heating could be an important variable since it controls the type of thermal changes in 

523 soil organic matter during heating (from combustion to pyrolysis), and it may represent one of 
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524 the most important difference between naturally burned soils respect to the artificial 

525 standards, which act as their surrogates to calibrate models.  

526

527 5. Conclusions

528 The models to predict TR through NIR are calibrated with standards generated by 

529 heating soil samples at known temperatures under controlled conditions in the laboratory. 

530 When all the standards are obtained from a unique sample, the variability of the calibration set 

531 is minimal. In this case, the model is calibrated with the heat-sensitive compounds present in 

532 the sample. However, due to spatial variation, these compounds can differ in samples located 

533 at distant positions. Therefore, each sample-specific model may be based on a particular, 

534 unique and singular group of predictors, which are virtually different in each model. Thereby, 

535 we can fit a very large number of different models, although the applicability might be 

536 restricted to similar samples. On the other hand, when the calibration set includes standards 

537 from different samples (i.e., high variability), then the model is fitted only with the common 

538 heat-sensitive compounds. If the number of different samples is high enough to cover the site 

539 variability, then the model can be considered site-specific. In contrast with a sample-specific 

540 model, a site-specific model can predict without bias in a large number of different samples, 

541 being able to overcome the negative effects of the spatial variation. Despite their apparent 

542 utility, models calibrated with low variability or those based on a composite sample should be 

543 avoided since they might be not useful. In addition, the model size (number of standards) is 

544 also an important factor to consider during the calibration of models. While the increase in 

545 variability improved prediction accuracy (lower RMSEP) by a decrease in bias, the increase 

546 of model size did so through the enhancement of precision (i.e., decrease of SEP). 

547
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684 Figures captions

685

686 Figure 1. Four spectral regions (a-d) displaying in detail the NIR spectra (absorbance after first 

687 derivative) of a soil sample, before heating (black colour, thin line) and after exposition to 700°C for 

688 20 minutes (red colour, thick line). 

689

690

691 Figure 2. Measured vs predicted TR values obtained during the cross-validation (leave-one-out) of 

692 four randomly selected models: a) model #5 (type 24s–v1) from Maigmó site; b) model #61 (type 72s–

693 v4) from Aitana site; c) model #27 (type 96s–v4) from Pinoso site; d) model #57 (type 48s–v4) from 

694 Aitana site. See more details in Table 2, and supplementary content (Tables S1, S2 and S3). The black 

695 line denotes the 1:1, and the grey dashed line is the linear regression. 

696

697

698 Figure 3. Representative predictions obtained with three models: a) predictions obtained in A5 with 

699 model #1, which was constructed with 24 heated aliquots from A1 and is therefore labelled 24s–v1; b) 

700 predictions obtained in A5 with model #35, which was constructed with 24 heated aliquots from A2 

701 and A3 and is therefore labelled 24s–v2; c) predictions obtained in A2 with the model #62, which was 

702 constructed with 72 heated aliquots from A1, A3, A4 and A5 and is therefore labelled 72–v4. The 

703 black line denotes the 1:1, and the grey dashed line is the linear regression. 

704

705

706 Figure 4. Values of the root mean square error of prediction (RMSEP) obtained with different model 

707 types in Aitana site (a), Maigmo site (b) and Pinoso site (c). The grey bars denote the mean value, 

708 whereas dots and triangles are used for minimum and maximum values respectively. Please note that 

709 the scale of the y-axis varies for each site. 

710
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711

712

713 Figure 5. Prediction performance parameters obtained with the different model types (results of the 

714 three studies were averaged): a) RMSEP, SEP and bias; b) R2 and RPD. The first number in the model 

715 type label (24, 48, 72 or 96) denotes the number of heated aliquots (=number of spectra) used to 

716 calibrate the model (i.e., model size). The number after –v denotes the variability, which is the number 

717 of micro-plot scale soil (MPS) sample(s) used as source(s) of aliquots.

718

719

720 Figure 6. Measured vs predicted TR values: a) original data; b) 100ºC was added to original predicted 

721 values; c) 50ºC was subtracted to original predicted values; d) original predicted values divided by two 

722 (×0.5); e) random selection of 24 cases shown in panels a to d; f) random selection of 24 cases shown 

723 in panels a to d; g) predictions obtained with models 24s–v1c (three sites pooled); h) predictions 

724 obtained with models 96s–v4 (three sites pooled).

725

726

727 Figure 7. Panel 7a contains the schematic representation of four NIR spectra (stacked), where black 

728 and grey circles denote presence and absence, respectively, of the heat-sensitive compounds at four 

729 wavelengths. The black arrows in panel 7b represent wavelengths selected in seven stacked models 

730 (relevant b–coefficients), depending on the composition of heat-sensitive compounds present in the 

731 MPS used as source(s) of aliquots. The sign of b–coefficients could be negative or positive, being 

732 denoted as down or up arrow, respectively. The panels 7c to 7f represents predictions obtained with 

733 four models (Models 1 to 4) applied to MPS1, MPS2 and MPS3, and the fail and pass symbols denote 

734 biased and unbiased predictions, respectively. 



Highlights:
 NIR used to predict the temperature reached with different model types
 The higher the variability included in the calibration set, the better the accuracy
 High variability helps to fit with commonest thermosensible compounds
 Model size improves accuracy by enhancing precision (SEP)
 Calibration set should avoid low variability and composite sample
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9 Abstract

10 Near infrared (NIR) spectroscopy is a potential technique for the quantification of the 

11 temperature reached (TR) in burned soils. Due to spatial variation, inaccurate predictions can 

12 result from calibrating a model with heat-sensitive compounds that are not present in the 

13 samples of the burned area. Therefore, we investigated how to develop robust models. The 

14 progressive augmentation of the model size successively enhanced the precision, while the 

15 increase of the calibration set’s variability gradually improved the accuracy through decreases 

16 in bias. The increase in calibration set variability enhances the probability of calibration using 

17 only the most common heat-sensitive compounds, facilitating reliable predictions of TR 

18 regardless of the spatial variation. On the other hand, models calibrated with heated aliquots 

19 from a unique sample, even from a composite sample, should be totally avoided because, 

20 regardless of their apparent utility, they are prone to inaccurate predictions.  

21

22 Keywords: wildfire effects; heat-sensitive compounds; fire intensity; NIR spectroscopy; 

23 robust models; postfire assessment
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25 1. Introduction

26 Fire is an important process in several terrestrial ecosystems throughout the world. 

27 The immediate fire effects on soil properties are mainly related with the fire severity, where 

28 the TR in soil is a crucial parameter (Neary et al., 1999; Vieira et al., 2015). Despite its 

29 importance, soil heating or TR in soil is a parameter neither measured by post-fire assessment 

30 teams, such as the Burned Area Emergency Response (BAER), nor by researchers, mostly 

31 due to the lack of a standard, easy, cheap, rapid and accurate method (Fernández and Vega et 

32 al., 2016; Parson et al., 2010). Some of the existing methods are subjective (Vega et al., 

33 2013), complex and expensive (Merino et al., 2014, 2015; Neris et al., 2014; Santín et al., 

34 2016; Verdes and Salgado, 2011), have moderate accuracy (Melquiades and Thomaz, 2016; 

35 Pérez and Moreno, 1998), or need several indicators to derive wide classes or levels, such as 

36 the soil burn severity index (Jain et al. 2008; Morgan et al., 2014; Parsons et al., 2010). To fill 

37 this gap, Guerrero et al. (2007) proposed the use of near infrared (NIR) reflectance 

38 spectroscopy as a potential technique for the quantification of TR in burned soils. The 

39 approach suggested by Guerrero et al. (2007) is based on two basic premises: i) the NIR 

40 spectrum of a soil sample contains information about the organic matter (quantity and 

41 quality), clay (quantity and quality), minerals (such as carbonates and iron oxides) and water 

42 content (Nocita et al., 2015; Stenberg et al., 2010; Viscarra Rossel and Behrens, 2010; 

43 Viscarra Rossel et al., 2016); and ii) these components have different sensitivity to thermal 

44 shocks (DeBano et al., 1998; Knicker, 2007; Neary et al., 1999; Raison, 1979; Santín et al., 

45 2016). Consequently, each temperature causes a group of changes in soil properties, leaving a 

46 typical fingerprint in the NIR spectra (Guerrero et al., 2007; Lugassi et al., 2010, 2014). 

47 Therefore, in this approach, the NIR spectrum is used as an integrative measurement of soil 

48 properties, which can be modified by the temperature (i.e., heat-sensitive compounds). 

49 However, as in other empirical approaches using NIR, a model is needed to relate the TR with 
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50 its fingerprint in the NIR spectrum. For the development of such a model, soil samples are 

51 heated at known temperatures, which are used as standards (i.e., as calibration set) to calibrate 

52 the model. Hence, once the model has been calibrated (using chemometrics), the TR can be 

53 efficiently measured in very large numbers of samples because the NIR spectrum of a soil 

54 sample is obtained in seconds, easily and without the need of chemical reagents (avoiding the 

55 generation of toxic wastes in laboratories). To obtain high resolution maps of TR, which can 

56 serve to locate prior intervention areas in burned sites, it is necessary to measure this 

57 parameter (TR) in hundreds or even thousands of soil samples (Parsons et al., 2010; Jain et 

58 al., 2012). Additionally, the TR can provide relevant information for a better description of 

59 fire effects at very fine scale and to enhance the understanding of fire ecology, such as for the 

60 in situ analysis of fire-mediated germination patterns (Keeley et al., 2008; Lentile et al., 2007; 

61 Pausas et al., 2003).

62 The assessment of TR using NIR in a wildfire-affected area implies the collection of 

63 burned samples in those target points where TR is needed (for instance, for mapping) but also 

64 the collection of unburned soil samples to calibrate the model (Guerrero et al., 2007). As a 

65 consequence of the short-scale natural variation of the soil properties, a sample located at an 

66 arbitrary position (regardless if burned or not) may present its particular composition of heat-

67 sensitive compounds, and this composition can differ with respect to other samples located at 

68 different positions. Two issues are imposed by the presence of spatial variation, which, 

69 through its design, a suitable model should overcome. The first is the impossibility of 

70 constructing a model using samples with similar composition to those to be predicted (except 

71 for planned events, such as prescribed fires). This limitation may exert a negative effect on 

72 prediction accuracy because the model might be fitted with heat-sensitive compounds that 

73 might not be the same as those present in samples located in the wildfire-affected area. The 

74 second implication is that the wildfire will affect samples with different heat-sensitive 
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75 compounds; therefore, the model should be able to properly predict samples with different 

76 spectral responses. For these reasons, we found it interesting to investigate how we can 

77 develop robust models able to overcome such problems linked to the natural short-scale 

78 spatial variation. The calibration set characteristics play an important role in model 

79 performance. If the calibration set is composed by several different samples, only common 

80 heat-sensitive compounds (i.e., common spectral changes) should be used to fit the model. 

81 Consequently, accurate predictions are expected in those samples where the common heat-

82 sensitive compounds are present. Therefore, the higher the variability included, the larger the 

83 commonality of the predictors, and the wider the model applicability. Thus, we hypothesised 

84 that increasing the calibration set variability should result in a progressive improvement of the 

85 predictions accuracy. To test the hypothesis, different model types were constructed and were 

86 then used to predict TR.

87

88 2. Materials and methods

89 2.1. Sites 

90 This study was performed using forest soil samples collected in three different sites 

91 located in Alicante province (Spain): Aitana, Maigmó and Pinoso. These sites were 

92 approximately 30 km apart from each other. The vegetation of these sites is composed of 

93 Pinus halepensis Mill., as the dominant species in the tree stratum, the understory vegetation 

94 being dominated by species such as Quercus coccifera L., Rosmarinus officinalis L., 

95 Juniperus oxycedrus L., Stipa tenacissima L. and Brachypodium retusum (Pers.) P. Beauv. 

96 The main characteristics of the three study sites are given in Table 1.

97

98 2.2. Sample collection

99 In each site, five microplots (1 m2) were randomly selected in a small area of 
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100 approximately 2500 m2. The minimum and maximum distance between microplots was 5 and 

101 50 m, respectively. In each microplot, a topsoil sample (0–5 cm depth) of approximately three 

102 kilograms was collected. These microplot-scale soil samples (hereafter MPS) collected in 

103 Aitana site were identified as A1, A2, A3, A4 and A5. Those MPS collected in Maigmó were 

104 identified as M1, M2, M3, M4 and M5. Similarly, the MPS collected in the Pinoso site were 

105 identified as P1, P2, P3, P4 and P5. In each site, an additional “composite sample” was 

106 obtained by bulking several subsamples collected at different points across the whole area; 

107 these composite samples were identified as Ac, Mc and Pc for Aitana, Maigmó and Pinoso, 

108 respectively.

109

110 2.3. Obtaining standards (laboratory-heated samples)

111 Once in the laboratory, the 18 samples (15 MPS + 3 composite samples) were air-

112 dried for two weeks (at 25°C) and sieved to <2 mm. These 18 samples were the “sources of 

113 standards.” Twenty-four aliquots of approximately 10 g were obtained from each sample. 

114 These aliquots were heated in a muffle furnace at 24 different combinations of temperatures 

115 (70°C, 100°C, 200°C, 300°C, 400°C, 500°C, 600°C and 700°C) and exposure times (10, 20 

116 and 40 minutes). In this way, a set of 24 heated aliquots was obtained from each MPS sample 

117 (also from each composite sample). A total of 432 heated aliquots (24 heating combinations 

118 per sample × 6 samples [5 MPS + 1 composite] × 3 sites) were obtained, which were used as 

119 standards for the models (see section 2.6). Each aliquot was introduced in the pre-heated 

120 furnace as a 1-mm layer in order to guarantee homogeneous heating (Guerrero, 2010). During 

121 the heating, to register the exact TR, the temperature of the aliquot was monitored and 

122 recorded every 10 seconds using a thermocouple (Guerrero et al., 2007). 

123

124 2.4. Obtaining the NIR spectra of the heated aliquots
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125 Once cooled, the NIR spectra (12000–3800 cm-1) of the 432 heated aliquots were 

126 obtained using a FT-NIR diffuse reflectance spectrophotometer (MPA Bruker, Germany). 

127 Further details about the scanning can be found in Guerrero et al. (2007). The x-scale of the 

128 spectra was transformed to nanometres (834–2630 nm) and resampled to 1 nm. All the spectra 

129 were transformed to absorbance, and then were pre-processed with the first derivative 

130 (Savitzky–Golay, 25 points) and vector normalization (Standard Normal Variate). The 

131 absorbance spectra of the 432 heated aliquots can be found as supplementary content. The 

132 OPUS spectroscopic software (OPUS version 6.5 software; BrukerOptik GmbH, Ettlingen, 

133 Germany) was used for spectral pre-processing. 

134

135 2.5. Regression method 

136 We have constructed different types of models relating the TR with the NIR spectra 

137 (see section 2.6). In all cases, the aliquots heated in laboratory (see section 2.3) were used as 

138 the “standards” to calibrate the models. All models were calibrated with partial least squares 

139 (PLS) as the multivariate regression method, using the OPUS spectroscopic software (OPUS 

140 version 6.5 software; BrukerOptik GmbH, Ettlingen, Germany). The leave-one-out cross-

141 validation was used to decide the number of PLS vectors to be included in models on the 

142 basis of the root mean square error of cross-validation (RMSECV) in a scree plot. 

143

144 2.6. Model types

145 Ten different model types were constructed in this study. The models differed in the 

146 size of the calibration set, and in the variability included. In this study, the size is the number 

147 of standards (i.e., number of heated aliquots) used to calibrate the model, and the variability is 

148 the number of different samples used as source(s) of heated aliquots. The “label” of the model 

149 type provides information on the size and the variability (Table 2). For instance, the label 
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150 72s–v3 denotes a model calibrated with 72 heated aliquots (72 standards) which were 

151 obtained from three different samples (three MPS have been used as sources of heated 

152 aliquots). At each site, ten different model types were constructed as follows (Table 2):

153 1) Models 24s–v1: these models were calibrated with 24 heated aliquots (24 standards)

154 obtained from one MPS. In each site, five models were constructed (models #1 to #5; Table 

155 2).  

156 2) Models 48s–v2: these models were calibrated with 48 heated aliquots (48 standards)

157 obtained from two MPS. In each site, ten models were constructed (#6 to #15; Table 2).  

158 3) Models 72s–v3: these models were calibrated with 72 heated aliquots (72 standards)

159 obtained from three MPS. In each site, ten models were constructed (#16 to #25; Table 2). 

160 4) Models 96s–v4: models calibrated with 96 heated aliquots (96 standards) obtained from

161 four MPS. In each site, five models were constructed (#26 to #30; Table 2). 

162 5) Models 24s–v2: models were calibrated with 24 standards selected from two MPS. In each

163 site, ten models were constructed (#31 to #40; Table 2). 

164 6) Models 24s–v3: models calibrated with 24 standards selected from three MPS. In each site,

165 ten models were constructed (#41 to #50; Table 2). 

166 7) Models 24s–v4: models calibrated with 24 standards selected from four MPS. In each site,

167 five models were constructed (#51 to #55; Table 2). 

168 8) Models 48s–v4: models calibrated with 48 standards selected from four MPS. In each site,

169 five models were constructed (#56 to #60; Table 2). 

170 9) Models 72s–v4: models calibrated with 72 standards selected from four MPS. In each site,

171 five models were constructed (#61 to #65; Table 2). 

172 10) Models 24s–v1c: models calibrated with the 24 heated aliquots (24 standards) obtained

173 from the composite sample. In each site, one model was constructed (model #66; Table 2). 

174
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175 A total of 66 models were constructed for each site (Table 2). The description of the 

176 MPS used for each of model can be found in Tables S1, S2 and S3 for Aitana, Maigmó and 

177 Pinoso site, respectively. In some cases (those marked with an asterisk in Table 2), the 

178 required model size is smaller than the total number of available spectra. In these cases, a 

179 principal component analysis (PCA) was performed with the NIR spectra of the available 

180 spectra. Then, the Kennard–Stone algorithm was used to select the desired number of spectra. 

181 The selected spectra were those whose scores were evenly distributed across the space defined 

182 by the first three principal components. For instance, a model 48s–v4 (as an example) is a 

183 model calibrated with 48 heated aliquots (48 standards), which were obtained from four 

184 different samples. Since four MPS were used as sources of heated aliquots, a total of 96 

185 spectra were available. Thus, a PCA was conducted with the 96 spectra, but only 48 spectra 

186 were used to calibrate the model. These 48 spectra were selected with the Kennard–Stone 

187 algorithm. The minimum variability would have been reached when all the standards used to 

188 calibrate the model had been derived from a unique MPS sample (such as in models 24s–v1). 

189 The maximum variability would have been reached when each standard included in the 

190 calibration set has been obtained from a different sample (i.e., only one heated aliquot per 

191 MPS sample). Such maximum variability has not been evaluated in this study, as the 

192 maximum number of different MPS used as sources of heated aliquots was four (Table 2).

193

194 2.7 Predictions and data analysis

195 The previously described models were used to predict the TR. Several prediction 

196 performance parameters were computed to analyse the quality of the predictions: 

197 determination coefficient (R2), root mean square error of prediction (RMSEP), standard error 

198 of prediction (SEP), bias and ratio of performance to deviance (RPD), which is the standard 

199 deviation of the prediction set divided by the RMSEP (Stenberg et al., 2010; Bellon-Maurel et 
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200 al., 2010). The RMSEP was used to measure the accuracy, and the SEP was used to measure 

201 the precision (Bellon-Maurel et al., 2010; Næs et al., 2002). 

202 These prediction performance parameters were computed using predictions obtained 

203 in 24 heated aliquots from a MPS not used to calibrate the model. Therefore, the setup 

204 provided independent predictions, similar to a MPS-hold-out cross-validation or leave-one-

205 MPS-out cross-validation. In this way (although with some limitations), the approach tried to 

206 mimic a realistic scenario, where the samples used to construct the models, and those to be 

207 predicted, are irremediably located on different plots, since the former would be located in the 

208 unburned area and the latter in the burned area.

209 A complete identification of the MPS used as prediction set in each case can be found 

210 in Tables S1, S2 and S3 (indicated by a cross in the right side of the tables). At each site, the 

211 66 models were used 145 times, and therefore, 145 different values of R2, RMSEP, SEP, bias 

212 and RPD were obtained for each site (see supplementary Tables S1, S2 and S3). In each site, 

213 those values of R2, RMSEP, SEP, bias and RPD obtained with the same model type were 

214 considered as replicates and were therefore averaged by model type. Since the bias can be 

215 positive or negative, in order to get a meaningful average, we used its absolute value.

216 The prediction performance parameters, once averaged by model type, were arranged 

217 in four groups, to facilitate the analysis of the results (Table 2). To facilitate the description 

218 and meaning of groups and its comparisons, some results included in the Group i have also 

219 been included in Group ii (24s–v1) and Group iii (96s–v4), as follows:

220 – Group i: this group contains results from models that differed in both the variability 

221 (number of MPS used as source of standards) and model size (number of standards included 

222 in the calibration set; Table 2).

223 – Group ii: this group contains results from models that differed only in variability because 

224 the model size was constant (Table 2).
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225 – Group iii: this group contains results from models that differed only in size because the 

226 variability was constant (Table 2).

227 – Group iv: this group contains results obtained from the model calibrated with the composite 

228 sample (Table 2). 

229

230 3. Results 

231 3.1. Changes in soils and NIR spectra

232 The colour of the soil samples was modified as a consequence of heating. Due to the 

233 carbonization of the soil organic matter, a progressive darkening was observed when the 

234 exposure temperature was increased (up 450°C). As a consequence of such darkening, the 

235 baseline of the NIR spectra (absorbance) was increased, especially at shorter wavelengths 

236 close to the visible spectral range (see supplementary figures Figs. S1-S27). The dark colour 

237 abruptly disappeared when the temperature was above ∼450°C, mainly due to the combustion 

238 of the organic compounds. The transformation of some iron oxides into hematite was an 

239 additional change in the NIR spectra (approximately 890–892 nm; Fig. 1a) and in soil colour, 

240 causing sample reddening (Ketterings and Bigham, 2000; Torrent and Barrón, 2002; Terefe et 

241 al., 2005; Ulery and Graham, 1993), which was especially evident at high temperatures 

242 (>500°C). 

243 While changes at naked eye are the basis of visual estimators of fire severity (Pérez 

244 and Moreno, 1998; Vega et al., 2013), the NIR spectra can provide further additional 

245 information about the changes in soil properties, since NIR spectroscopy has been used to 

246 quantify a large number of soil properties, which in turn are affected by temperature (Santín et 

247 al., 2016; Stenberg et al., 2010). Other important changes in the NIR spectra were those 

248 observed in features located approximately 1414 nm (Fig. 1b), 1920 nm (Fig. 1c) and 2210 

249 nm (Fig. 1d), related with adsorbed and free water –OH (at 1414 nm and 1920 nm) and clay –
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250 OH (at 1414 nm and 2210 nm). These spectral features tended to decrease with the increase in 

251 TR, mostly due to dehydration and dehydroxylation processes but, as other authors have 

252 observed (Guerrero et al., 2007; Lugassi et al., 2010, 2014), also due to the combustion of the 

253 organic matter. A detailed discussion of changes in soil properties can be found in Certini 

254 (2005), and a detailed discussion of changes in the NIR spectra can be found in Lugassi et al. 

255 (2014). 

256

257 3.2. Calibrations

258 All the above mentioned changes, and others, facilitated the calibration of models to 

259 quantify TR. Therefore, we could surmise that several heat-sensitive compounds were 

260 involved in the calibrations. Despite the large differences between calibration sets, the 198 

261 models showed high R2 values (ranging from 0.92 to 0.99), and low RMSECV (RMSE of 

262 cross-validation) values, ranging from 21°C to 58°C (data not shown). These values of R2 and 

263 RMSECV obtained in the cross-validations were similar to those from previous studies 

264 (Guerrero et al., 2007; Guerrero, 2010; Maia et al., 2012). Fig. 2 shows the cross-validation 

265 results of four randomly selected models, as a representative illustration of the 198 models 

266 calibrated for this study. These results indicate the great capacity of NIR spectroscopy to 

267 measure some of the soil properties that change with temperature (i.e., heat-sensitive 

268 compounds). Apparently, they all seem to be useful to predict TR. 

269

270 3.3. Predictions

271 The 435 values of RMSEP obtained with the different 198 models ranged from 14.3°C 

272 to 99.7°C. Three out of these 435 cases are shown in Fig. 3, as representative predictions 

273 obtained with three different types of models. Fig. 4 shows the RMSEP obtained with the 

274 models included in Group i, which were models constructed with all the heated aliquots from 
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275 one (24s–v1), two (48s–v2), three (72s–v3) and four MPS (96s–v4). The grey bars in Fig. 4 

276 represent the RMSEP values averaged by model type (separately for each study site), whereas 

277 the dots and triangles are used to show the minimum and the maximum RMSEP observed for 

278 each model type, respectively. For the Aitana site (Fig. 4a), the RMSEP of predictions 

279 obtained with the 20 models labelled as 24s–v1 ranged from 31.2°C to 60.2°C, with an 

280 average of 40.9°C. In Maigmó (Fig. 4b), these 20 RMSEP values were slightly lower than in 

281 Aitana, and ranged from 18.6°C to 44.9°C, with an average of 31.2°C. In Pinoso, the 20 

282 RMSEP values obtained with models 24s–v1 were slightly higher than the other study sites, 

283 and ranged from 24.8°C to 99.7°C, with an average of 49.4°C (Fig. 4c). Regardless of the site 

284 considered, the progressive increase of the calibration set variability (i.e., number of MPS) 

285 and size (i.e., number of standards) coincided with the gradual decline of RMSEP (Fig. 4). 

286 Other prediction performance parameters (such as R2, SEP, etc.) also indicated an 

287 improvement of predictions with the increase in variability and size of the calibration sets. 

288 Since similar patterns were observed for the three study sites (data not shown), the values of 

289 the three sites were pooled together, and averaged by model type (Fig. 5). Once averaged by 

290 model type, the RMSEP dropped progressively from 40.5°C in models 24s–v1 to 29.6°C in 

291 models 96s–v4 (Fig. 5a). A similar gradual change was also observed for the other prediction 

292 performance parameters, such as the R2, SEP, bias and RPD (Fig. 5). For instance, RPD was 

293 6.2 in models 24s–v1, and it increased to RPD 8.1 in models 96s–v4 (Fig. 5b). The 

294 improvement of the predictions might be attributed to the higher variability included in the 

295 calibration set, which was four times higher in models 96s–v4 than in models 24s–v1, 

296 although such improvement could also be attributed to the calibration set size, which was also 

297 four times higher. To discern whether the calibration set variability affects accuracy, we 

298 constructed another group of models (Group ii) where the number of MPS varied while the 

299 model size was constant at 24 in all cases (Table 2). For the average of the three sites, the 
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300 RMSEP decreased from 40.5°C in 24s–v1 to 35.7°C in 24s–v4, confirming the positive effect 

301 of the increase in the calibration set variability on accuracy (Fig. 5a). The decrease in bias 

302 from 15.1°C in 24s–v1 to 8.2°C in 24s–v4 was the main contributor to the RMSEP reduction 

303 observed in Group ii, because SEP only decreased by 2°C (Fig. 5a). The increase of the 

304 calibration set size was the additional factor explaining the progressive decrease of RMSEP 

305 observed in the models from Group i (Fig. 4 and Fig. 5). Nevertheless, the size effect was 

306 clearly observed when the RMSEP was compared for the models included in Group iii (Table 

307 2), where the size was the unique difference between them. For that group of models (Group 

308 iii), the decrease in RMSEP from 35.7°C in 24s–v4 to 29.6°C in 96s–v4 is mostly attributable 

309 to an improvement in precision (lower SEP) because the bias remained fairly stable (only 

310 decreased less than 1°C), whereas the SEP decreased by approximately 6.5°C (Fig. 5a).

311 The less accurate predictions were obtained with models constructed with the heated 

312 aliquots from the composite sample (model type labelled 24s–v1c). On average across the 

313 three sites, the bias was 22°C, explaining a substantial portion of the RMSEP (47.6°C). These 

314 errors were clearly higher than those obtained with models of similar size, such as models 

315 24s–v4. Furthermore, these errors were also higher than those obtained with models having a 

316 similar degree of variability (i.e., same number of MPS) such as the models 24s–v1. 

317 The R2 values shown in Fig. 5b should be interpreted with some caution since they are 

318 somehow affected by the approach used to compute results. In this study, the prediction 

319 performance parameters (such as R2) have been computed using the predictions obtained in 

320 sets of 24 heated aliquots, which belong to the same MPS (see tables S1, S2 and S3). 

321 Consequently, the prediction performance parameters have been obtained at MPS scale (and 

322 were then averaged by model type). At MPS scale, biased predictions do not affect the R2. 

323 This can be seen in Figs. 6a to 6d. Fig. 6a shows TR predictions obtained in 24 heated 

324 aliquots from one randomly selected MPS. The cases shown in Figs. 6b, 6c and 6d are the 
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325 same predictions shown in Fig. 6a but after the manipulation of the predicted values in order 

326 to have differently biased predictions. In Fig. 6b, 100°C was added to each predicted value 

327 shown in Fig. 6a; in Fig. 6c, 50°C was subtracted from each predicted value; in Fig. 6d, each 

328 predicted value was multiplied by 0.5 (divided by two). In all cases (Figs. 6a to 6d), the R2 is 

329 the same (R2=0.99) regardless of the bias (due to slope or due to offset). If we compute the 

330 mean value of these four cases, the R2 is 0.99 despite the different bias in each case. However, 

331 under realistic conditions, the evaluation of the burned area implies making predictions from 

332 samples collected at several positions. If the model predictions have a different bias 

333 depending on the sample composition (which may vary with position), then we must expect 

334 patterns as those shown in Figs. 6e and 6f, where due to differences in bias, such 

335 heterogeneity in the prediction set results in much lower R2 values. Figs. 6e and 6f contain a 

336 random selection of 24 cases from those shown in Figs. 6a to 6d, and simulate two prediction 

337 sets composed by samples with different bias. In these cases (Figs. 6e and 6f), the different 

338 values of bias (by slope or by offset) were negatively affecting the R2. In these examples, the 

339 values were R2=0.72 and R2=0.63, resulting in a mean R2=0.675, which clearly contrasts with 

340 the R2=0.99, obtained as a mean of four values of R2 obtained at MPS scale. To have a direct 

341 measure of such discrepancy, we also computed the R2 after pooling predictions from the 

342 different MPS, mimicking prediction sets composed by samples that can have a different bias. 

343 For that, predictions from two illustrative model types were selected: 1) predictions obtained 

344 with models 24s–v1c (Fig. 6g), which was the worst option in terms of bias (highest bias in 

345 Fig. 5a); 2) predictions obtained with models 96s–v4 (Fig. 6h), which was the best option in 

346 terms of bias (lowest bias in Fig. 5a). A small discrepancy between the approaches was 

347 observed when the predictions were obtained with models 96s–v4 (low bias; Fig. 6h), with 

348 R2=0.981 when the R2 was computed once predictions were pooled (Fig. 6h) and R2=0.985 

349 when R2 was computed as an average of values obtained at MPS scale (Fig. 5b). As expected, 
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350 a larger discrepancy was observed when predictions were obtained with models 24s–v1c 

351 (high bias; Fig. 6g), with R2=0.954 when predictions were pooled (Fig. 6g) while R2=0.971 

352 when it was computed as an average of the five cases (Fig. 5b). Regardless of the approach, 

353 the R2 values were high because the bias values were not very large—clearly lower than those 

354 shown in Figs. 6b or 6d. Moreover, the wide range included in the prediction sets also 

355 contributed to the high R2 values (Davies and Fearn, 2006). Despite their absolute values, the 

356 R2 values shown in Fig. 5b were in concordance with other performance parameters and 

357 therefore support the same conclusions about the importance of the calibration set size and 

358 variability. It is worth highlighting that other prediction performance parameters, such as 

359 RMSEP, in contrast to R2, are minimally affected by the way results were computed because 

360 RMSEP is a parameter related to the residuals, given that it is linked to each predicted value.

361

362 4. Discussion

363 Soil contains heat-sensitive compounds, which can be can be measured with NIR 

364 spectroscopy, allowing the development of models to quantify the TR. However, the 

365 composition of soils, including its heat-sensitive compounds, varies with space, even at short 

366 distances. Therefore, each sample might possess its particular composition of heat-sensitive 

367 compounds and that can exert an important effect on prediction reliability. We have observed 

368 an effect of the calibration set variability on accuracy, which highlights important issues about 

369 how adequate calibration sets should be developed to manage the spatial variation effects. To 

370 facilitate the explanation of mechanisms connecting the calibration set variability with the 

371 robustness of predictions, we discuss the results with the help of a schematic representation of 

372 spectra, models and predictions (Fig. 7), since a direct analysis of the b–coefficients of PLS–

373 models is not straightforward. Such simplification enhances the illustration and understanding 

374 of mechanisms involved. A schematic representation of the NIR spectra of three MPS and one 
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375 composite sample is shown in Fig. 7a: a black circle denotes the wavelength () where the 

376 spectral feature of a heat-sensitive compound appears, and a grey circle denotes its absence in 

377 the sample. Fig. 7b contains the schematic representation of seven models calibrated with 

378 aliquots from samples shown in Fig. 7a. The black arrows denote those wavelengths included 

379 in the models, which depend on the heat-sensitive compounds present in the calibration set. 

380 Thus, a black arrow at n denotes where the b–coefficient has a large contribution in 

381 predicting TR. As consequence of heating, some compounds trend to disappear, decreasing 

382 their spectral features as temperature increases, such those related with –OH loss by 

383 dehydroxilation (and organic matter combustion, in general). However, other compounds can 

384 be generated by heating, such as certain iron oxides (as hematite), and thus they appear as 

385 new spectral features as the temperature increases. Consequently, the sign of b–coefficients 

386 could be negative or positive, being denoted as down or up arrows, respectively. 

387 The first case shown at the top of Fig. 7b (case i) represents an example of a model 

388 whose calibration set had minimal variability (variability=1) because all the heated aliquots 

389 included in the calibration set had been obtained from the same sample (MPS1). Therefore, 

390 this is a sample-specific model. This model had been fitted only on the basis on changes 

391 produced in the heat-sensitive compounds present in that sample (those located at 3 and 4; 

392 see black dots in Fig. 7a). As consequence, this model will predict TR using two b–

393 coefficients located at 3 and 4 (see black arrows at 3 and 4 in Fig. 7b, case i). The second 

394 and third models shown in Fig. 7b (cases ii and iii) are also examples of models constructed 

395 with heated aliquots obtained from a unique sample (MPS2 for case ii; MPS3 for case iii), 

396 therefore, these are also sample-specific models (variability=1). Since each MPS sample 

397 would have had a different composition (Fig. 7a), we would therefore expect that the models 

398 were based on the different wavelengths from each sample, as shown in Fig. 7b for cases i to 

399 iii. The models shown in cases iv and v of Figure 7b represent models constructed with heated 



18

400 aliquots from two MPS samples (i.e., variability=2). While these two MPS samples might 

401 have had a different composition, only the common changes (common heat-sensitive 

402 compounds) were used to fit the model. Similarly, when three MPS were used as the source of 

403 the aliquots (Fig. 7b, case vii), three different sets of heat-sensitive compounds might have 

404 been be present in the calibration set, but the model was fitted only with the common changes 

405 (i.e., common heat-sensitive compounds, as in that located at 3). Thus, the increase in the 

406 number of MPS used as sources of standards (i.e., the increase of the calibration set 

407 variability) forces the calibration of models on the basis of the most common heat-sensitive 

408 compounds. It is worth mentioning that a model based on the most common heat-sensitive 

409 compounds could also have been obtained with only two samples (MPS1 and MPS2), as 

410 illustrated in Fig. 7b iv. However, two samples might not be enough, as in the case shown in 

411 Fig. 7b v, explaining why a gradual augmentation in calibration set variability progressively 

412 increases the chance to fit a model based only on the most common heat-sensitive 

413 compounds. Fig. 7b clearly illustrates that several different models can be obtained with the 

414 samples from a given site. Apparently, all of them seem to be useful since they relate NIR and 

415 TR; however, most of them would have restricted applicability.

416 Figs. 7c to 7f represent the predictions obtained in MPS1, MPS2 and MPS3 from four 

417 different models. The model used in each case is described by its b–coefficients (black 

418 arrows). When the model is used in each of the three samples, a pass or fail symbol is added 

419 to denote unbiased or biased predictions, respectively. We can expect accurate predictions 

420 when the sample used for prediction has the same heat-sensitive compounds as the predictors 

421 in the model. For instance, Model 1 (shown in Fig. 7c) predicts TR using the changes in the 

422 heat-sensitive compounds located at 1 and 3 (black arrows). Thus, accurate predictions are 

423 expected when Model 1 is used for sample MPS2 (Fig. 7c). Conversely, biased predictions 

424 are expected when Model 1 (Fig. 7c) is used for samples MPS1 and MPS3 because these 
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425 samples lack the heat-sensitive compound located at 1. Since the contribution of 1 to the 

426 prediction is missing, then we would expect negatively biased predictions in MPS1 and MPS3 

427 (a 50% underestimation assuming a similar contribution from both heat-sensitive 

428 compounds). However, Figs. 7d and 7e show how we can obtain accurate predictions from 

429 samples that contain a different composition of heat-sensitive compounds. This is the case for 

430 Model 2 when used for sample MPS2 (Fig. 7d). The presence of an additional heat-sensitive 

431 compound in MPS2 (the one located at 3) does not distort the predictions obtained with 

432 Model 2, because this model does not consider the changes in wavelength 3 when predicting 

433 TR. Whereas Model 2 can predict without bias only for one sample (MPS2; Fig. 7d), Model 3 

434 can do so for three samples (Fig. 7e). The reason is that Model 3 (Fig. 7e) predicts TR with 

435 the heat-sensitive compound located at 3, which is the most common. Therefore, a model 

436 such as this can predict without bias in a wide number of different samples. The unique 

437 requirement is the presence of that heat-sensitive compound, which most of the samples 

438 would contain since it is a very common compound. Therefore, the better identification of the 

439 most common heat-sensitive compounds might be the link which explains why the 

440 progressive augmentation of the calibration set variability successively improved prediction 

441 accuracy. 

442 In agreement with this supposed mechanism, a high variability in the calibration set 

443 would allow obtaining reliable (not biased) predictions in dissimilar samples as well (Fig. 7e), 

444 overcoming the restriction of predictions based only on similar samples. Consequently, it 

445 increases the spatial applicability of the models, since they would not only be restricted to 

446 adjacent sites, where similar samples would be expected. A high variability does not 

447 completely exclude the possibility of bias in predictions, although this would be expected 

448 only for those samples where the most common heat-sensitive compound is absent. Especially 

449 if the collection of unburned samples used as sources of aliquots is sufficiently representative 
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450 of the unburned area, this should be a minor proportion of the total samples. Additionally, in 

451 turn, the unburned area would also have to be representative of the burned area. Under these 

452 conditions, a calibration set constituted by a number of different samples could be considered 

453 a site-specific model.

454 This theory also explains why the most biased predictions were obtained with the 24s–

455 v1c models. For an arbitrary study site, all the heated aliquots used for the model 24s–v1c 

456 were obtained from the composite sample; therefore, it can considered as a sample-specific 

457 model. The composite sample, as a bulked mixture of several subsamples, should contain 

458 most of the heat-sensitive compounds (Fig. 7a). As a consequence, all these compounds 

459 would probably have contributed to the calibration of the model (Fig. 7b, case vi). Thus, this 

460 model (such as Model 4, Fig. 7f) should produce biased predictions in those samples where at 

461 least one of the heat-sensitive compounds is absent. The observed results fully support this 

462 theory, since the most biased predictions were obtained with models 24s–v1c. Clearly, any 

463 attempt to include site variability through the use of a composite sample is not recommended. 

464 A composite sample would describe a representative fingerprint of heat on soil properties, but 

465 this would not be useful to obtain robust models because they would be prone to produce 

466 biased predictions in many samples. Therefore, the development of models using a composite 

467 sample should be totally avoided. This result might explain why, when using predictions from 

468 this type of model, some authors did not observe the expected relationships between changes 

469 in soil properties and temperature (Maia et al., 2012; Mataix-Solera et al., 2013). 

470 The number of heated aliquots (model size) also had an impact on the accuracy. 

471 Whereas the number of MPS decreased the bias, the number of heated aliquots increased the 

472 accuracy through the improvement of precision (i.e., the decrease of SEP). A high number of 

473 heated aliquots in the calibration set of a model should better describe the heat effect on the 

474 heat-sensitive compounds. Consequently, it enhances the quantification of the b–coefficient 
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475 values of the implied heat-sensitive compounds, improving the calibration of models, which is 

476 a basic premise for obtaining accurate predictions. Clearly, the best option is the development 

477 of models with a large number of heated aliquots from several samples. The importance of the 

478 variability and the number of samples used for calibration has been already demonstrated by 

479 many authors with other soil properties (Brown, 2007; Shepherd and Walsh, 2002).  

480 Very accurate predictions have been obtained in this study, even when the worst 

481 models were used, which were those calibrated with low variability (such as those 24s–v1 and 

482 24s–v1c). This is probably due to the very small size of the area (2500 m2) where the five 

483 MPS were sampled in each site. Thus, these samples were separated by short distances (less 

484 than 50 m; see section 2.2), and consequently, they were quite similar to each other. Hence, it 

485 is reasonable to expect a substantially lower accuracy when this model type is used under 

486 realistic conditions, where larger distances (and larger dissimilarity) may exist between 

487 burned and unburned samples. Thus, we should also expect a larger difference in the accuracy 

488 of predictions obtained with models calibrated with low and high variability.

489 This study provides valuable information about factors affecting the reliability of 

490 models. Most of these results are very interesting because they have a direct impact on how to 

491 design the calibration set, which even affects the collection of the unburned samples to be 

492 used as sources of aliquots, and the built of a calibration set for site-specific models. 

493 Nevertheless, more studies are needed to understand the limitations and capabilities of NIR 

494 spectroscopy to predict TR and how to construct models in a more efficient way. For instance, 

495 the transferability of models across sites and scales is an important issue because it may 

496 facilitate a faster development of models, which may substantially decrease the time needed 

497 to evaluate wildfire-affected sites. Dedicated experiments should be designed for that 

498 purpose, especially because some of the results obtained in previous studies (Guerrero et al., 

499 2007) have suggested its feasibility. These authors constructed several hundred different 
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500 models using soil samples from four sites. These models differed from each other in their 

501 basic characteristics such as rank (number of PLS vectors), spectral range included and pre-

502 processing (normalization, derivatives, etc.). Then, a few of these models (but not all of them) 

503 were able to predict TR in samples from a new independent site (as left-out site). Similar 

504 results were observed when repeated with each of the five sites as a prediction set. Thus, the 

505 results undoubtedly demonstrated the presence of common heat-sensitive compounds in soils 

506 from five different sites in Alicante province (southeast Spain). Anyway, it should be noted 

507 that although independent sites were used in Guerrero et al. (2007), the identification of the 

508 best model (correct design) was based on the results from the leave-out site and thus not an 

509 independent selection. Therefore, these results should not be considered as the expected 

510 accuracy for a true independent prediction, since hundreds of models (varying in its design) 

511 can be fitted, but not all of them would produce accurate predictions. Nonetheless, the results 

512 shown in Guerrero et al. (2007) were useful to illustrate the potential of NIR to predict TR. 

513 For that reason, the results of the present study have an additional value because they provide 

514 the first measure of the accuracy obtained by independent predictions. 

515 The improvement of the ability to obtain more realistic standards (mimicking naturally 

516 burned soils) is also a step needed in the way towards the use of NIR as a thermometer. For 

517 instance, the convenience to built models including standards generated under different 

518 oxygen limitation levels should be also evaluated in future studies. Oxygen limitation level 

519 during heating could be an important variable since it controls the type of thermal changes in 

520 soil organic matter during heating (from combustion to pyrolysis), and it may represent one of 

521 the most important difference between naturally burned soils respect to the artificial 

522 standards, which act as their surrogates to calibrate models.  

523

524 5. Conclusions
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525 The models to predict TR through NIR are calibrated with standards generated by 

526 heating soil samples at known temperatures under controlled conditions in the laboratory. 

527 When all the standards are obtained from a unique sample, the variability of the calibration set 

528 is minimal. In this case, the model is calibrated with the heat-sensitive compounds present in 

529 the sample. However, due to spatial variation, these compounds can differ in samples located 

530 at distant positions. Therefore, each sample-specific model may be based on a particular, 

531 unique and singular group of predictors, which are virtually different in each model. Thereby, 

532 we can fit a very large number of different models, although the applicability might be 

533 restricted to similar samples. On the other hand, when the calibration set includes standards 

534 from different samples (i.e., high variability), then the model is fitted only with the common 

535 heat-sensitive compounds. If the number of different samples is high enough to cover the site 

536 variability, then the model can be considered site-specific. In contrast with a sample-specific 

537 model, a site-specific model can predict without bias in a large number of different samples, 

538 being able to overcome the negative effects of the spatial variation. Despite their apparent 

539 utility, models calibrated with low variability or those based on a composite sample should be 

540 avoided since they might be not useful. In addition, the model size (number of standards) is 

541 also an important factor to consider during the calibration of models. While the increase in 

542 variability improved prediction accuracy (lower RMSEP) by a decrease in bias, the increase 

543 of model size did so through the enhancement of precision (i.e., decrease of SEP). 

544
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681 Figures captions

682

683 Figure 1. Four spectral regions (a-d) displaying in detail the NIR spectra (absorbance after first 

684 derivative) of a soil sample, before heating (black colour, thin line) and after exposition to 700°C for 

685 20 minutes (red colour, thick line). 

686

687

688 Figure 2. Measured vs predicted TR values obtained during the cross-validation (leave-one-out) of 

689 four randomly selected models: a) model #5 (type 24s–v1) from Maigmó site; b) model #61 (type 72s–

690 v4) from Aitana site; c) model #27 (type 96s–v4) from Pinoso site; d) model #57 (type 48s–v4) from 

691 Aitana site. See more details in Table 2, and supplementary content (Tables S1, S2 and S3). The black 

692 line denotes the 1:1, and the grey dashed line is the linear regression. 

693

694

695 Figure 3. Representative predictions obtained with three models: a) predictions obtained in A5 with 

696 model #1, which was constructed with 24 heated aliquots from A1 and is therefore labelled 24s–v1; b) 

697 predictions obtained in A5 with model #35, which was constructed with 24 heated aliquots from A2 

698 and A3 and is therefore labelled 24s–v2; c) predictions obtained in A2 with the model #62, which was 

699 constructed with 72 heated aliquots from A1, A3, A4 and A5 and is therefore labelled 72–v4. The 

700 black line denotes the 1:1, and the grey dashed line is the linear regression. 

701

702

703 Figure 4. Values of the root mean square error of prediction (RMSEP) obtained with different model 

704 types in Aitana site (a), Maigmo site (b) and Pinoso site (c). The grey bars denote the mean value, 

705 whereas dots and triangles are used for minimum and maximum values respectively. Please note that 

706 the scale of the y-axis varies for each site. 

707
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708

709

710 Figure 5. Prediction performance parameters obtained with the different model types (results of the 

711 three studies were averaged): a) RMSEP, SEP and bias; b) R2 and RPD. The first number in the model 

712 type label (24, 48, 72 or 96) denotes the number of heated aliquots (=number of spectra) used to 

713 calibrate the model (i.e., model size). The number after –v denotes the variability, which is the number 

714 of micro-plot scale soil (MPS) sample(s) used as source(s) of aliquots.

715

716

717 Figure 6. Measured vs predicted TR values: a) original data; b) 100ºC was added to original predicted 

718 values; c) 50ºC was subtracted to original predicted values; d) original predicted values divided by two 

719 (×0.5); e) random selection of 24 cases shown in panels a to d; f) random selection of 24 cases shown 

720 in panels a to d; g) predictions obtained with models 24s–v1c (three sites pooled); h) predictions 

721 obtained with models 96s–v4 (three sites pooled).

722

723

724 Figure 7. Panel 7a contains the schematic representation of four NIR spectra (stacked), where black 

725 and grey circles denote presence and absence, respectively, of the heat-sensitive compounds at four 

726 wavelengths. The black arrows in panel 7b represent wavelengths selected in seven stacked models 

727 (relevant b–coefficients), depending on the composition of heat-sensitive compounds present in the 

728 MPS used as source(s) of aliquots. The sign of b–coefficients could be negative or positive, being 

729 denoted as down or up arrow, respectively. The panels 7c to 7f represents predictions obtained with 

730 four models (Models 1 to 4) applied to MPS1, MPS2 and MPS3, and the fail and pass symbols denote 

731 biased and unbiased predictions, respectively. 
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Table 1. Main characteristics of sites and soils characteristics (0-5cm depth)

Site a
UTM

Coordinates b
Tc 

(°C)

Pd 

(mm)

Sand, silt, clay 

(%)

SOC ± SDe 

(%)

pH CaCO3 

(%)

A 30SYH3080 13.8 706 33, 32, 35 7.31 ± 3.11 7.5 46.9

M 30SYH0664 18.2 302 57, 22, 21 3.60 ± 1.23 7.9 57.6

P 30SXH7749 15.8 277 31, 56, 13 4.47 ± 1.64 8.0 7.0
a A: Aitana; M: Maigmó; P: Pinoso
b UTM coordinates – WGS84 (at 1 km2 resolution).
c T: Mean annual temperature 
d P Mean annual precipitation.
e SD: standard deviation of the five MPS



Table 2. Description of models types in each site.

Model type 

label
Size a Variability b

Number of 

models

Supplementary 

tables c
Times used 

to predict c

Group i 24s–v1 24 1 5 #1 – #5 20

48s–v2 48 2 10 #6 – #15 30

72s–v3 72 3 10 #16 – #25 20

96s–v4 96 4 5 #26 – #30 5

Group ii 24s–v1 24 1 5 #1 – #5 20

24s–v2 24 * 2 10 #31 – #40 30

24s–v3 24 * 3 10 #41 – #50 20

24s–v4 24 * 4 5 #51 – #55 5

Group iii 24s–v4 24 * 4 5 #51 – #55 5

48s–v4 48 * 4 5 #56 – #60 5

72s–v4 72 * 4 5 #61 – #65 5

96s–v4 96 4 5 #26 – #30 5

Group iv 24s–v1c 24 1 1 #66 5

Total 66 d 145 d

a Number of heated aliquots (number of spectra; number of standards) used to calibrate the 

model
b Number of different MPS used as sources of heated aliquots 
c A full description of each model is shown in supplementary tables S1, S2 and S3 for Aitana, 

Maigmó and Pinoso sites respectively.  
d Total number (repeated cases excluded) 
* The Kennard-Stone algorithm was used to select the desired number of spectra (model size). 



Appendices 
Appendix 1: Supplementary content (Tables S1, S2 and S3):

General comments about how interpret the tables S1, S2 and S3:

1) Regarding the construction of models:
This is a brief comment about how to read tables to understand the construction of models. The left 
part of tables (in blue colour) identifies each model with a number (#) and also contains information 
about the MPS used as source of aliquots. The model type (size, variability) is also shown. Examples for 
three models types are described, as follows:

- Model #1:
The model #1 in Aitana site was constructed with 24 standards (24 spectra) (see table S1). All the heated 
aliquots used were obtained from one MPS, namely A1. 
The model #1 in Maigmó site was constructed with 24 standards (24 spectra) (see table S2). All the 
heated aliquots used were obtained from one MPS, namely M1. 
The model #1 in Pinoso site was constructed with 24 standards (24 spectra) (see table S3). All the heated 
aliquots used were obtained from one MPS, namely P1.

- Model #26:  
The model #26 in Aitana site was constructed with 96 standards (96 spectra) (see table S1). The 
standards (heated aliquots) were obtained from four MPS, namely A2, A3, A4 and A5.
The model #26 in Maigmó site was constructed with 96 standards (96 spectra) (see table S2). The 
standards (heated aliquots) were obtained from four MPS, namely M2, M3, M4 and M5.
The model #26 in Pinoso site was constructed with 96 standards (96 spectra) (see table S3). The 
standards (heated aliquots) were obtained from four MPS, namely P2, P3, P4 and P5.

- Model #63:
The model #63 in Aitana site was constructed with 72 standards (72 spectra) (see table S1). These 72 
standards (heated aliquots) were selected from a pool with 96 (those available from four MPS, namely 
A1, A2, A4 and A5). The Kennard-Stone algorithm was used to select the 72 spectra. 
The model #63 in Maigmó site was constructed with 72 standards (72 spectra) (see table S2). These 72 
standards (heated aliquots) were selected from a pool with 96 (those available from four MPS, namely 
M1, M2, M4 and M5). The Kennard-Stone algorithm was used to select the 72 spectra. 
The model #63 in Pinoso site was constructed with 72 standards (72 spectra) (see table S3). These 72 
standards (heated aliquots) were selected from a pool with 96 (those available from four MPS, namely 
P1, P2, P4 and P5). The Kennard-Stone algorithm was used to select the 72 spectra. 

2) Regarding the use of models (predictions):
The right part of tables S1, S2 and S3 shows what prediction sets were used for each model (in red 
colour). 
   
A total of 66 models were constructed in each site. However, in each site we have obtained 145 values 
of R2, RMSEP, bias, SEP and RPD. The reason is that some models were used to predict more than one 
time. 
For instance, the model #26 in Aitana site was used to predict in the A1 as prediction set (indicated with 
a cross in table S1), and therefore one value of R2, RMSEP, bias, SEP and RPD was computed using the 24 
heated aliquots from A1. Thus, this model was used only one time. 
However, other models, such as model #1, were used more than one time. The model #1 in Aitana site 
was used to predict in the 24 heated aliquots of A2. But the model #1 was also used to predict in A3, A4 
and A5. So, the model #1 was used four times, and consequently the model #1 produced four values of 
R2, RMSEP, bias, SEP and RPD (different values for each case: A2, A3, A4 and A5). 
In overall, the 66 models produced 145 values of R2, RMSEP, bias, SEP and RPD (in each site). 
Those values of R2, RMSEP, bias, SEP and RPD obtained with the same model type were considered 
replicates, therefore, they were averaged. 



Table S1. Models and predictions in Aitana site

MPS used as prediction set
# MPS used as 

source of aliquots
Type (label) Size Variability A1 A2 A3 A4 A5

#1 A1 24s-v1 24 1 × × × ×
#2 A2 24s-v1 24 1 × × × ×
#3 A3 24s-v1 24 1 × × × ×
#4 A4 24s-v1 24 1 × × × ×
#5 A5 24s-v1 24 1 × × × ×
#6 A1+A2 48s-v2 48 2 × × ×
#7 A1+A3 48s-v2 48 2 × × ×
#8 A1+A4 48s-v2 48 2 × × ×
#9 A1+A5 48s-v2 48 2 × × ×
#10 A2+A3 48s-v2 48 2 × × ×
#11 A2+A4 48s-v2 48 2 × × ×
#12 A2+A5 48s-v2 48 2 × × ×
#13 A3+A4 48s-v2 48 2 × × ×
#14 A3+A5 48s-v2 48 2 × × ×
#15 A4+A5 48s-v2 48 2 × × ×
#16 A1+A2+A3 72s-v3 72 3 × ×
#17 A1+A2+A4 72s-v3 72 3 × ×
#18 A1+A2+A5 72s-v3 72 3 × ×
#19 A1+A3+A4 72s-v3 72 3 × ×
#20 A1+A3+A5 72s-v3 72 3 × ×
#21 A1+A4+A5 72s-v3 72 3 × ×
#22 A2+A3+A4 72s-v3 72 3 × ×
#23 A2+A3+A5 72s-v3 72 3 × ×
#24 A2+A4+A5 72s-v3 72 3 × ×
#25 A3+A4+A5 72s-v3 72 3 × ×
#26 A2+A3+A4+A5 96s-v4 96 4 ×
#27 A1+A3+A4+A5 96s-v4 96 4 ×
#28 A1+A2+A4+A5 96s-v4 96 4 ×
#29 A1+A2+A3+A5 96s-v4 96 4 ×
#30 A1+A2+A3+A4 96s-v4 96 4 ×
#31 A1+A2 24s-v2 24 2 × × ×
#32 A1+A3 24s-v2 24 2 × × ×
#33 A1+A4 24s-v2 24 2 × × ×
#34 A1+A5 24s-v2 24 2 × × ×
#35 A2+A3 24s-v2 24 2 × × ×
#36 A2+A4 24s-v2 24 2 × × ×
#37 A2+A5 24s-v2 24 2 × × ×
#38 A3+A4 24s-v2 24 2 × × ×
#39 A3+A5 24s-v2 24 2 × × ×
#40 A4+A5 24s-v2 24 2 × × ×
#41 A1+A2+A3 24s-v3 24 3 × ×
#42 A1+A2+A4 24s-v3 24 3 × ×
#43 A1+A2+A5 24s-v3 24 3 × ×
#44 A1+A3+A4 24s-v3 24 3 × ×
#45 A1+A3+A5 24s-v3 24 3 × ×
#46 A1+A4+A5 24s-v3 24 3 × ×
#47 A2+A3+A4 24s-v3 24 3 × ×
#48 A2+A3+A5 24s-v3 24 3 × ×
#49 A2+A4+A5 24s-v3 24 3 × ×
#50 A3+A4+A5 24s-v3 24 3 × ×
#51 A2+A3+A4+A5 24s-v4 24 4 ×
#52 A1+A3+A4+A5 24s-v4 24 4 ×
#53 A1+A2+A4+A5 24s-v4 24 4 ×
#54 A1+A2+A3+A5 24s-v4 24 4 ×
#55 A1+A2+A3+A4 24s-v4 24 4 ×
#56 A2+A3+A4+A5 48s-v4 48 4 ×
#57 A1+A3+A4+A5 48s-v4 48 4 ×
#58 A1+A2+A4+A5 48s-v4 48 4 ×
#59 A1+A2+A3+A5 48s-v4 48 4 ×
#60 A1+A2+A3+A4 48s-v4 48 4 ×
#61 A2+A3+A4+A5 72s-v4 72 4 ×
#62 A1+A3+A4+A5 72s-v4 72 4 ×
#63 A1+A2+A4+A5 72s-v4 72 4 ×
#64 A1+A2+A3+A5 72s-v4 72 4 ×
#65 A1+A2+A3+A4 72s-v4 72 4 ×
#66 Ac (composite) 24s-v1c 24 1 × × × × ×



Table S2. Models and predictions in Maigmó site

MPS used as prediction set
# MPS used as 

source of aliquots
Type (label) Size Variability M1 M2 M3 M4 M5

#1 M1 24s-v1 24 1 × × × ×
#2 M2 24s-v1 24 1 × × × ×
#3 M3 24s-v1 24 1 × × × ×
#4 M4 24s-v1 24 1 × × × ×
#5 M5 24s-v1 24 1 × × × ×
#6 M1+M2 48s-v2 48 2 × × ×
#7 M1+M3 48s-v2 48 2 × × ×
#8 M1+M4 48s-v2 48 2 × × ×
#9 M1+M5 48s-v2 48 2 × × ×
#10 M2+M3 48s-v2 48 2 × × ×
#11 M2+M4 48s-v2 48 2 × × ×
#12 M2+M5 48s-v2 48 2 × × ×
#13 M3+M4 48s-v2 48 2 × × ×
#14 M3+M5 48s-v2 48 2 × × ×
#15 M4+M5 48s-v2 48 2 × × ×
#16 M1+M2+M3 72s-v3 72 3 × ×
#17 M1+M2+M4 72s-v3 72 3 × ×
#18 M1+M2+M5 72s-v3 72 3 × ×
#19 M1+M3+M4 72s-v3 72 3 × ×
#20 M1+M3+M5 72s-v3 72 3 × ×
#21 M1+M4+M5 72s-v3 72 3 × ×
#22 M2+M3+M4 72s-v3 72 3 × ×
#23 M2+M3+M5 72s-v3 72 3 × ×
#24 M2+M4+M5 72s-v3 72 3 × ×
#25 M3+M4+M5 72s-v3 72 3 × ×
#26 M2+M3+M4+M5 96s-v4 96 4 ×
#27 M1+M3+M4+M5 96s-v4 96 4 ×
#28 M1+M2+M4+M5 96s-v4 96 4 ×
#29 M1+M2+M3+M5 96s-v4 96 4 ×
#30 M1+M2+M3+M4 96s-v4 96 4 ×
#31 M1+M2 24s-v2 24 2 × × ×
#32 M1+M3 24s-v2 24 2 × × ×
#33 M1+M4 24s-v2 24 2 × × ×
#34 M1+M5 24s-v2 24 2 × × ×
#35 M2+M3 24s-v2 24 2 × × ×
#36 M2+M4 24s-v2 24 2 × × ×
#37 M2+M5 24s-v2 24 2 × × ×
#38 M3+M4 24s-v2 24 2 × × ×
#39 M3+M5 24s-v2 24 2 × × ×
#40 M4+M5 24s-v2 24 2 × × ×
#41 M1+M2+M3 24s-v3 24 3 × ×
#42 M1+M2+M4 24s-v3 24 3 × ×
#43 M1+M2+M5 24s-v3 24 3 × ×
#44 M1+M3+M4 24s-v3 24 3 × ×
#45 M1+M3+M5 24s-v3 24 3 × ×
#46 M1+M4+M5 24s-v3 24 3 × ×
#47 M2+M3+M4 24s-v3 24 3 × ×
#48 M2+M3+M5 24s-v3 24 3 × ×
#49 M2+M4+M5 24s-v3 24 3 × ×
#50 M3+M4+M5 24s-v3 24 3 × ×
#51 M2+M3+M4+M5 24s-v4 24 4 ×
#52 M1+M3+M4+M5 24s-v4 24 4 ×
#53 M1+M2+M4+M5 24s-v4 24 4 ×
#54 M1+M2+M3+M5 24s-v4 24 4 ×
#55 M1+M2+M3+M4 24s-v4 24 4 ×
#56 M2+M3+M4+M5 48s-v4 48 4 ×
#57 M1+M3+M4+M5 48s-v4 48 4 ×
#58 M1+M2+M4+M5 48s-v4 48 4 ×
#59 M1+M2+M3+M5 48s-v4 48 4 ×
#60 M1+M2+M3+M4 48s-v4 48 4 ×
#61 M2+M3+M4+M5 72s-v4 72 4 ×
#62 M1+M3+M4+M5 72s-v4 72 4 ×
#63 M1+M2+M4+M5 72s-v4 72 4 ×
#64 M1+M2+M3+M5 72s-v4 72 4 ×
#65 M1+M2+M3+M4 72s-v4 72 4 ×
#66 Mc (composite) 24s-v1c 24 1 × × × × ×



Table S3. Models and predictions in Pinoso site

MPS used as prediction set
# MPS used as 

source of aliquots
Type (label) Size Variability P1 P2 P3 P4 P5

#1 P1 24s-v1 24 1 × × × ×
#2 P2 24s-v1 24 1 × × × ×
#3 P3 24s-v1 24 1 × × × ×
#4 P4 24s-v1 24 1 × × × ×
#5 P5 24s-v1 24 1 × × × ×
#6 P1+P2 48s-v2 48 2 × × ×
#7 P1+P3 48s-v2 48 2 × × ×
#8 P1+P4 48s-v2 48 2 × × ×
#9 P1+P5 48s-v2 48 2 × × ×
#10 P2+P3 48s-v2 48 2 × × ×
#11 P2+P4 48s-v2 48 2 × × ×
#12 P2+P5 48s-v2 48 2 × × ×
#13 P3+P4 48s-v2 48 2 × × ×
#14 P3+P5 48s-v2 48 2 × × ×
#15 P4+P5 48s-v2 48 2 × × ×
#16 P1+P2+P3 72s-v3 72 3 × ×
#17 P1+P2+P4 72s-v3 72 3 × ×
#18 P1+P2+P5 72s-v3 72 3 × ×
#19 P1+P3+P4 72s-v3 72 3 × ×
#20 P1+P3+P5 72s-v3 72 3 × ×
#21 P1+P4+P5 72s-v3 72 3 × ×
#22 P2+P3+P4 72s-v3 72 3 × ×
#23 P2+P3+P5 72s-v3 72 3 × ×
#24 P2+P4+P5 72s-v3 72 3 × ×
#25 P3+P4+P5 72s-v3 72 3 × ×
#26 P2+P3+P4+P5 96s-v4 96 4 ×
#27 P1+P3+P4+P5 96s-v4 96 4 ×
#28 P1+P2+P4+P5 96s-v4 96 4 ×
#29 P1+P2+P3+P5 96s-v4 96 4 ×
#30 P1+P2+P3+P4 96s-v4 96 4 ×
#31 P1+P2 24s-v2 24 2 × × ×
#32 P1+P3 24s-v2 24 2 × × ×
#33 P1+P4 24s-v2 24 2 × × ×
#34 P1+P5 24s-v2 24 2 × × ×
#35 P2+P3 24s-v2 24 2 × × ×
#36 P2+P4 24s-v2 24 2 × × ×
#37 P2+P5 24s-v2 24 2 × × ×
#38 P3+P4 24s-v2 24 2 × × ×
#39 P3+P5 24s-v2 24 2 × × ×
#40 P4+P5 24s-v2 24 2 × × ×
#41 P1+P2+P3 24s-v3 24 3 × ×
#42 P1+P2+P4 24s-v3 24 3 × ×
#43 P1+P2+P5 24s-v3 24 3 × ×
#44 P1+P3+P4 24s-v3 24 3 × ×
#45 P1+P3+P5 24s-v3 24 3 × ×
#46 P1+P4+P5 24s-v3 24 3 × ×
#47 P2+P3+P4 24s-v3 24 3 × ×
#48 P2+P3+P5 24s-v3 24 3 × ×
#49 P2+P4+P5 24s-v3 24 3 × ×
#50 P3+P4+P5 24s-v3 24 3 × ×
#51 P2+P3+P4+P5 24s-v4 24 4 ×
#52 P1+P3+P4+P5 24s-v4 24 4 ×
#53 P1+P2+P4+P5 24s-v4 24 4 ×
#54 P1+P2+P3+P5 24s-v4 24 4 ×
#55 P1+P2+P3+P4 24s-v4 24 4 ×
#56 P2+P3+P4+P5 48s-v4 48 4 ×
#57 P1+P3+P4+P5 48s-v4 48 4 ×
#58 P1+P2+P4+P5 48s-v4 48 4 ×
#59 P1+P2+P3+P5 48s-v4 48 4 ×
#60 P1+P2+P3+P4 48s-v4 48 4 ×
#61 P2+P3+P4+P5 72s-v4 72 4 ×
#62 P1+P3+P4+P5 72s-v4 72 4 ×
#63 P1+P2+P4+P5 72s-v4 72 4 ×
#64 P1+P2+P3+P5 72s-v4 72 4 ×
#65 P1+P2+P3+P4 72s-v4 72 4 ×
#66 Pc (composite) 24s-v1c 24 1 × × × × ×



Appendix 2: Supplementary content (Figures S1 to S27):
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Figure S1. Representative NIR spectra of a few heated aliquots (only those heated during 20 
minutes) from Aitana (A3): without preprocessing. Samples heated at 70°C and 100°C were 

omitted to enhance the clarity.

Figure S2. Principal component analysis of the NIR spectra (without preprocessing) of the 144 
heated aliquots from Aitana site. Left: scores over first and second factors. Right: scores over 

the first and third factors.
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Figure S3. Representative NIR spectra of a few heated aliquots from Aitana (A3) at different 
exposure times. Without preprocessing.
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Figure S4. Representative NIR spectra of a few heated aliquots (only those heated during 20 
minutes) from Aitana (A3): Standard normal variate. Samples heated at 70°C and 100°C were 

omitted to enhance the clarity.

Figure S5. Principal component analysis of the NIR spectra (Standard normal variate) of the 144 
heated aliquots from Aitana site. Left: scores over first and second factors. Right: scores over 

the first and third factors.
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Figure S6. Representative NIR spectra of a few heated aliquots from Aitana (A3) at different 
exposure times. Standard normal variate.
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Figure S7. Representative NIR spectra of a few heated aliquots (only those heated during 20 
minutes) from Aitana (A3): First derivate (25 points, Savitzky-Golay). Samples heated at 70°C 

and 100°C were omitted to enhance the clarity.

Figure S8. Principal component analysis of the NIR spectra (First derivate, 25 points, Savitzky-
Golay) of the 144 heated aliquots from Aitana site. Left: scores over first and second factors. 

Right: scores over the first and third factors.
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Figure S9. Representative NIR spectra of a few heated aliquots from Aitana (A3) at different 
exposure times. First derivate (25 points, Savitzky-Golay).
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Figure S10. Representative NIR spectra of a few heated aliquots (only those heated during 20 
minutes) from Maigmo (M3): Without preprocessing. Samples heated at 70°C and 100°C were 

omitted to enhance the clarity.

Figure S11. Principal component analysis of the NIR spectra (without preprocessing) of the 144 
heated aliquots from Maigmo site. Left: scores over first and second factors. Right: scores over 

the first and third factors.
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Figure S12. Representative NIR spectra of a few heated aliquots from Maigmo (M3) at different 
exposure times. Without preprocessing.
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Figure S13. Representative NIR spectra of a few heated aliquots (only those heated during 20 
minutes) from Maigmo (M3): Standard normal variate. Samples heated at 70°C and 100°C 

were omitted to enhance the clarity.

Figure S14. Principal component analysis of the NIR spectra (Standard normal variate) of the 
144 heated aliquots from Maigmo site. Left: scores over first and second factors. Right: scores 

over the first and third factors.
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Figure S15. Representative NIR spectra of a few heated aliquots from Maigmo (M3) at different 
exposure times. Standard normal variate.
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Figure S16. Representative NIR spectra of a few heated aliquots (only those heated during 20 
minutes) from Maigmo (M3): First derivate (25 points, Savitzky-Golay). Samples heated at 70°C 

and 100°C were omitted to enhance the clarity.

Figure S17. Principal component analysis of the NIR spectra (First derivate, 25 points, Savitzky-
Golay) of the 144 heated aliquots from Maigmo site. Left: scores over first and second factors. 

Right: scores over the first and third factors.
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Figure S18. Representative NIR spectra of a few heated aliquots from Maigmo (M3) at different 
exposure times. First derivate (25 points, Savitzky-Golay).
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Figure S19. Representative NIR spectra of a few heated aliquots (only those heated during 20 
minutes) from Pinoso (P3): Without preprocessing. Samples heated at 70°C and 100°C were 

omitted to enhance the clarity.

.

Figure S20. Principal component analysis of the NIR spectra (without preprocessing) of the 144 
heated aliquots from Pinoso site. Left: scores over first and second factors. Right: scores over 

the first and third factors.
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Figure S21. Representative NIR spectra of a few heated aliquots from Pinoso (P3) at different 
exposure times. Without preprocessing.
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Figure S22. Representative NIR spectra of a few heated aliquots (only those heated during 20 
minutes) from Pinoso (P3): Standard normal variate. Samples heated at 70°C and 100°C were 

omitted to enhance the clarity.

 

Figure S23. Principal component analysis of the NIR spectra (Standard normal variate) of the 
144 heated aliquots from Pinoso site. Left: scores over first and second factors. Right: scores 

over the first and third factors.
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Figure S24. Representative NIR spectra of a few heated aliquots from Pinoso (P3) at different 
exposure times. Standard normal variate.
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Figure S25. Representative NIR spectra of a few heated aliquots (only those heated during 20 
minutes) from Pinoso (P3): First derivate (25 points, Savitzky-Golay). Samples heated at 70°C 

and 100°C were omitted to enhance the clarity.

Figure S26. Principal component analysis of the NIR spectra (First derivate, 25 points, Savitzky-
Golay) of the 144 heated aliquots from Pinoso site. Left: scores over first and second factors. 

Right: scores over the first and third factors.
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Figure S27. Representative NIR spectra of a few heated aliquots from Pinoso (P3) at different 
exposure times. First derivate (25 points, Savitzky-Golay).




