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Abstract—In the past decade, many techniques ranging from
statistical methods to complex artificial intelligence systems have
been proposed by implementing their application to an electric
system and highlighting its performance; usually providing a
measure of accuracy like RMSE over a definite period. However,
there is little research in which a fair comparison among methods
is demonstrated, and it is difficult to determine which method
would be better suited to a particular electric system or data set.
This paper analysis one of the forecasting models running at the
National Transport Operator of the Spanish system (REE),
which is based on both autoregressive and neural network
techniques. The results of this paper help to determine under
which circumstances each of the models shows a better
performance, which periods are more accurately forecasted by
each model and provide valid criteria to choose one or the other
depending on the characteristics of the application.

Index Terms— Autoregressive processes, demand forecasting,
neural networks, power demand.

L. INTRODUCTION

The development of Short-Term Load Forecasting (STLF)
tools has been a common topic in the late years[1]-[3].
Different techniques have been proposed as forecasting engines
ranging from statistical methods [4]-[6] to complex artificial
intelligence application [7]-[11]. However, the forecasting
process involves more stages than selecting a mathematical
model. In many cases, the selection of the input variables, the
period of time used for training or the treatment of variables
(normalization, linearization, filtering...), are more relevant to
the final performance of the model than selecting a specific
engine [12].

As the referred reviews show, many published papers on the
subject describe a particular forecasting model by defining its
input, the forecasting engine characteristics and its method of
configuration and its results when applied to a particular
database. This has provided a wide variety of models for the
scientific community to choose from but very little information
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regarding how to compare the methods against each other, as
the characteristics of the database are usually not analyzed.

This problem is analyzed in [13], [14], by proposing a
certain methodology to adopt different techniques according to
the forecasting problem at hand. In addition, [15] has
approached the study of the predictability of load series and
how it is possible to characterize a load data series in order to
determine which type of forecaster would work best. The
importance of standardization and how it would improve the
process of developing techniques to solve specific forecasting
problems: effects of temperature, long-term trends, special
days, etc is also addressed in [12].

Consequently, there is a consensus that a global solution
that fits all cases does not exist. Nevertheless, the objective of
this paper is to provide a fair comparison of two of the most
common forecasting engines working under the same
conditions and determine the specific situations in which each
of them performs more accurately.

Section 2 of this paper describes the parameters that were
analyzed, the specifics of both models used and the
methodology used to obtain the results. Section 3 includes all
the results for each of the realized tests. The results are provided
as an aggregate for a 365-day period but they are also
categorized by weather and type of day. The conclusions are
exposed in section 4.

II.  MATERIAL AND METHODS

The starting point of this paper is a forecasting system
designed for the Spanish national system operator, Red
Eléctrica de Espaiia (REE) [16]. This forecasting system is
based on the combination of the forecasts of two independent
models, each based on a different forecasting engine. The input
information for each model is identical; however, the results
from each model are sufficiently uncorrelated so that their
combination produces a more accurate forecast.
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This section presents the data used as input, the
characteristics of each of the two models and the methodology
used to analyze each model’s sensitivity to the available data,
to the data pretreatment and the type of day.

A. Data

The forecasting system uses temperature, load and calendar
data as input. The load data available is an hourly series from
2007 to 2017 for the entire inland system of Spain. Electric load
in Spain is affected by many different factors at different scales
and with different periodicity. Long-term trend is determined
by socio-economic factors: economy growth, energy efficiency
investments or air conditioning availability. Temperature is a
relevant factor, which non-linearly increases demand on days
with extreme values both high and low. In addition, daily load
is mostly determined by the type of day. As it is thoroughly
explained in [16], there is a complex set of relations between
different holidays, adjacent days and other factors that
determine how the calendar affects the load.

The temperature data available comprises realdata series
from 59 stations across the country reporting actual and
forecasted daily maximum and minimum temperatures. The
national forecast uses only five selected locations from the 59
available. This selection is based on empirical results and it
represents the most demand-intensive areas of the country. In
order to capture the dynamics of the behavior of consumers
regarding temperature, the temperature lags for up to 4 days is
included in the model. Finally, to address the non-linear relation
between temperature and load, a Heating and Cooling Degree
Day approach is used as described in [16], [17]. The thresholds
for each location are obtained by empirical experimentation.

The type of day is determined by a classification system that
takes the national holidays from the Official Gazette [18] and
assigns each day to one of 41 categories. In addition to the
specific category of the day, the month is also included as 11
binary variables. The long-term trends are accounted for by a
variable calculated as a 52-weeks moving average of the load.

B. Models

The forecasting system includes two models: one that uses
an autoregressive structure with errors (AR) and one that uses
an autoregressive neural network with exogenous variables
(NARX) as a forecasting engine. Both models forecast each
hour separately and, therefore, include 24 sub-models.
Furthermore, both of them take the same data input previously
described. Both models are described in detail in [16] but can
be represented by (1) and fig. 1.
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The main difference between both models is that while the
autoregressive order of the AR model is seven, the order of the
NARX model is 14. Both orders were optimized empirically.

Hidden
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Fig 1. Matlab© representation of a NARX model.

C. Methodology

In order to compare the performance of both techniques
under different situations, it is necessary to obtain results for a
number of days sufficiently large to reflect most real conditions.
The average accuracy results reported in this paper refer to a
one-year period so that all seasons, types of weather, holidays
and special days are included. Both models are tested under
real-time conditions in which forecasted temperature values are
used at forecasting times when real values are not known yet.
This implies that both models include an intrinsic error due to
temperature forecast deviations.

The conditions tested on this research work are the amount
of historical data available, the amount of temperature locations
available, the treatment of temperature variables and, for the
NARX model, the number of neurons in the hidden layer.

1) Historical data available

Many times, under lab conditions, the databases are deep and
there are no restrictions regarding the quality or quantity of
available data. However, sometimes, and especially in industry
application where data acquisition and storing systems have
only recently been set up, the depth of the historical database is
shallow and only data from few months or years is available.
How far in the past should we include data in our model is a
valid question. If we include only recent data, it is possible that
our database did not include behaviors that, even though have
not occurred recently, they may happen in the forecast horizon.
In addition, data from long ago in the past could contain
obsolete behaviors that may not repeat under the same
conditions in the future, thus lowering the quality of the
forecast.

In our research, both models have been trained with datasets
from the 3, 5 and 7 previous years. The objective is to determine
how each technique reacts to the change of data availability.

2) Temperature locations

The forecast of small regions in which climate is
homogenous requires only one series of data to capture weather
related behaviors. However, when larger regions with higher
weather variability are considered, it is important to determine
which locations represent behaviors from each weather region
better. In addition, not all regions will have the same relevance
in overall electricity consumption, as some regions have lower
or higher electric capacity than others.
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Spain is a large country with high weather and power demand
variability across regions. The working model from REE
includes data locations on Fig. 2. They represent all weather
regions with relevant economic weight: North (Bilbao), East
(Barcelona), South (Sevilla), upper center (Zaragoza), lower
center (Madrid).

Zamagoza

Bacelona

Madrid

Fig 2. Location of temperature series considered in the models.

In order to test the availability of temperature data, we have
tested both models by limiting the temperature input to fewer
locations. Our aim is to determine how each technique is
affected by having more or fewer data series available.

3) Temperature treatment

The relationship between temperature and load is highly
nonlinear and, therefore, it may require some pre-treatment to
facilitate the modelling of its effects by the forecasting engines.
Fig. 3 shows the scatter plot of average load of regular days at
18h against average temperature for the day. It can be inferred
from the graph that there is an increment in load when
temperature drops below a lower threshold and whenever it
rises above a higher one. This type of behavior is usually
modeled using a technique known as Heating Degree days and
Cooling Degree Days (HDD and CDD), which splits a
temperature series into two series, one responsible for the
increase on hot days and the other for the increase on cool days.
In order to do this, it is necessary to determine both thresholds
for each series.

In our research, the thresholds have already been optimized for
each location. However, in order to test the robustness of each
model against variation of the optimal thresholds, we have
tested both models by introducing variations of up to 12 degrees
on each threshold.

4) Number of neurons
In real time applications, the response time of the model may
be a critical feature. If the computational burden of the model
is too high, then the forecasts may not be produced on time,
This work is supported by the Ministerio de Economia, Industria y
Competitividad, Agencia Estatal de Investigacion (Spanish Government)
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Fig 3. Non-linear relation between temperature at Madrid and National load.

rendering the effort useless. In order to compare both models,
we have tested execution time for both models by introducing
variations in the topology of the neural network modifying the
number of neurons on the hidden layer. This modification
affects the ability of the network to model complex behaviors
but at a heavy computational cost. Therefore, if the model’s
accuracy is not compromised, then the number of neurons
should be minimized. In addition, it is possible that too many
neurons in the hidden layers may cause the model to over fit the
training data.

5) Classification of days

In addition to modifying the aforementioned forecasting
conditions, it is important to analyze the results in terms of the
different types of days. Changes in temperature treatment or
historical availability may not produce big changes in overall
accuracy of the model but their effect may concentrate on a
small number of days for which the right configuration of the
model is critical. Therefore, each result is reported for each
category regarding type of day and temperature.

III.  RESULTS

The results from the tests described in the previous section
are presented here. Each result is analyzed globally, but also
considering the categories of days that are more closely related
to the condition at study. In these tables, special days include
days which fall under any of the 41 categories described in [16].
Hot and cold days include those on the top 20 and bottom 20 on
the average temperature ranking. Regular days are those that do
not fall under any of these categories.

A. Historical data availability

The results in Table 1 show how each model improves its
accuracy when more training data becomes available. On these
results, the data used in training shifts from 3 to 7 years while
other conditions are fixed.The AR model performs better than
the NN across the three tests. However, the difference becomes
smaller when the database is more complete. This behavior
shows that AR model perform better when less historic data is
available. Table 1 also shows the results categorized by type of
day. These data point out that non-regular types of day are
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TABLE L FORECASTING ERROR WITH INCREASING TRAINING PERIODS
Type of 3-yrs 5-yrs 7-yrs
Day AR NN AR NN AR NN
OVERALL 1,50% 2,17% 1,52% 1,72% 1,49% 1,59%
REGULAR 1,44% 1,96% 1,47% 1,57% 1,44% 1,47%
SPECIAL 1,91% 3,62% 1,81% 2,71% 1,80% 2,43%
HOT 1,63% 2,65% 1,53% 2,08% 1,66% 1,89%
COoLD 1,61% 2,79% 1,73% 1,81% 1,72% 1,48%

affected the most by the lack of availability of larger historical
databases. However, it is interesting to notice that neural
networks predict cold days better than the AR model when 7
years of data are available.

B. Temperature locations

The results of the progressive addition of series of
temperature data from new location is included in Table 2. The
accuracy of the AR model improves with every new location
and the AR model shows a better performance when multiple
locations are available. However, the results prove that when
only one location is available, the NN outperforms the AR
model.
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Fig 4. Forecasting error with increasing number of temperature series included
in the model.

C. Temperature treatment

The key to the temperature treatment is the selection of the
thresholds. Fig. 5 shows the forecasting error of both models
(AR and NN) as the CDD thresholds are shifted from 13°C to
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Fig 5. Forecasting Error with Different CDD Thresholds at Zaragoza and
Barcelona.

25°C. The accuracy of both models is affected by the selection
of the CDD threshold. It is shown that the AR model may
achieve a more accurate performance if the optimal threshold is
selected. However, it also shows that the accuracy of the NN
model is more robust and has very little variation across the
range of the tested thresholds. The optimal threshold can be
selected by analyzing the database, but several factors may
change it overtime (number of consumers with A/C machines,
sensitivity of the consumers to heat and electricity price,...).
Therefore, the NN model may have an advantage in
applications in which the threshold may be difficult to obtain.

D. Number of neurons

The number of neurons on the hidden layer tested varies
from 3 to 20. The computational burden of the NN model is
lower to the AR model when the number of neurons is lower
than 15. The results shown in table 3 show that the optimal
number of neurons is 4 and, therefore, the computational
burden is not an issue. The fact that the number of
recommended neurons is as few as four can be explained if we
consider the pretreatment of the data before it is fed to the
forecasting engine. The type of day is classified in a binary
matrix with one variable for each class, the temperature series
have been linearized and the lag of the temperature has been
included. Therefore, there are few phenomena to justify the
need for a large number of neurons in the hidden layer.

TABLE II. FORECASTING ERROR WITH INCREASING LOCATIONS AVAILABLE
Type of MAD MAD,BAR MAD, BAR,VIZ MAD, BAR,VIZ,SEV MAD,BAR,VIZ,SEV,ZAR
Day AR NN AR NN AR NN AR NN AR NN
OVERALL 1,63% 1,61% 1,53% 1,59% 1,48% 1,54% 1,46% 1,54% 1,45% 1,55%
REGULAR 1,59% 1,53% 1,48% 1,50% 1,43% 1,45% 1,41% 1,44% 1,40% 1,44%
SPECIAL 1,84% 2,22% 1,86% 2,21% 1,81% 2,15% 1,80% 2,17% 1,81% 2,31%
HOT 1,83% 2,02% 1,63% 1,91% 1,52% 1,84% 1,55% 1,94% 1,55% 1,93%
coLD 2,00% 1,61% 1,81% 1,49% 1,83% 1,47% 1,76% 1,48% 1,75% 1,50%
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TABLE IIl.  FORECASTING ERROR WITH INCREASING NUMBER OF
NEURONS
Type of Number of neurons
Day 3 4 5 10 15 20
OVERALL  1,56% 1,55% 1,56% 1,59% 1,58% 1,62%
REGULAR  1,49% 1,46% 1,45% 1,47% 1,46% 1,50%
SPECIAL  2,00% 2,10% 2,28% 2,43% 2,36% 2,46%
HOT 2,00% 1,93% 1,95% 1,89% 2,00% 2,04%
CcoLD 1,55% 1,45% 1,51% 1,48% 1,51% 1,58%

E. Overall results by type of day

The overall performance of both models under optimal
conditions (7 years, 4 neurons in the hidden layer and optimal
thresholds) is quite similar: 1.45% AR vs 1.55% NN. However,
the NN performs significantly better on cold days while it is less
accurate on hot days. This could imply that consumer behavior
on cold days is not as linear as it is on hot days. Moreover, the
accuracy of NN is especially lower on special days. Special
days are defined by having very few occurrences each year and,
therefore, the data from which to infer consumer behavior is
scarce. NN seem to have more problems capturing such
behavior than the AR model.

The inclusion of temperature from multiple location reduces
forecasting error in all categories but special days, as it was
expected. Both hot and cold days improve their results from
both models similarly.

IV. CONCLUSIONS

The main objective of this paper is to provide objective
proof of which characteristics of a load-forecasting problem
favor each of the two techniques analyzed: autoregressive with
errors and neural network (NARX). The test conditions of the
forecasting problem were availability of historical data,
availability of temperature from several locations and size of
the NN (as an assessment of computational burden).

The tests that were carried out show that the performance of
both models under optimal conditions is very similar. However,
the NN model shows a better performance when only one
temperature location is available. As a counter fact, the NN
model requires at least 7 years of available data to match the
performance of the AR model. The computational burden of
both models is similar because the size of the optimal number
of neurons in the hidden layer of the NN is small.

Depending on the type of day, the NN shows a better
performance on cold days, while the AR is more accurate on
special days. These conclusions could be used to obtain a
weighted combination of both forecast that would take into
consideration the type of the forecasted day.
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