UNIVERSIDAD MIGUEL HERNÁNDEZ DE ELCHE

ESCUELA POLITÉCNICA SUPERIOR DE ELCHE

GRADO EN INGENIERÍA MECÁNICA

TRABAJO FIN DE GRADO

Junio -2022

AUTOR: Alejandro Cabrera Maciá

DIRECTOR/ES: Sergio Valero Verdú

ÍNDICE

I-MEMORIA DESCRIPTIVA	5
1Objeto	5
2Normativa	5
3-Antecedentes	6
3.1-Desarrollo de la energía solar fotovoltaica en España	6
3.2 Requisitos de diseño	8
3.2.1 Datos de partida	8
3.2.2 Datos meteorológicos	10
3.2.3Consumo eléctrico	15
4Descripción de los elementos de la instalación	19
4.1Panel solar fotovoltaico	19
4.2Inversor	20
4.3 Monitorización de la instalación	
4.4 Vatímetro	23
4.5Estructura de montaje	24
5Instalación eléctrica	25
5.1-Instalación CC	25
5.2-Instalación AC	26
6Puesta a tierra	27
7Producción de la instalación	28
8Justificación económica	29
II-ANEXOS A LA MEMORIA	31
1Dimensionamiento de la instalación	31
2Cálculo de conexionado de los paneles fotovoltaicos	48
3Cálculos de perdidas por orientación e inclinación	55
4Cálculo de sombras y distancia entre filas de módulos	57
5Calculo de la sección de los conductores	61
6Cálculo de puesta a tierra	65
7Fichas técnicas	65
III-PLIEGO DE CONDICIONES TÉCNICAS	
1-Objeto	79
2-Normativa	79

	2.1-Generales	79
	2.2-Sistemas generadores fotovoltaicos	80
	2.3-Estructuras de soporte	81
	2.4-Inversores	81
	2.5-Cableado	82
	2.6-Conexión a red	82
	2.7-Medidas	82
	2.8-Protecciones	82
	2.9-Puesta a tierra de las instalaciones fotovoltaicas	83
	2.10-Armónicos y compatibilidad electromagnética	83
3	-Definiciones	83
	3.1-Radiación solar	83
	3.2-Irradiancia	83
	3.3-Irradiación	83
	3.4-Instalaciones fotovoltaicas	83
	3.5-Instalaciones fotovoltaicas interconectadas	
	3.6-Línea y punto de conexión y medida	84
	3.7-Interruptor automático de la interconexión	
	3.8-Interruptor general	84
	3.9-Generador fotovoltaico	84
	3.10-Rama fotovoltaica	84
	3.11-Inversor	84
	3.12-Potencia nominal del generador	84
	3.13-Potencia de la instalación fotovoltaica o potencia nominal	84
	3.14-Célula solar o fotovoltaica	85
	3.15-Célula de tecnología equivalente (CTE)	85
	3.16-Módulo o panel fotovoltaico	85
	3.17-Condiciones Estándar de Medida (CEM)	85
	3.18-Potencia pico	85
	3.19-TONC	85
	3.20-Integración arquitectónica de módulos fotovoltaicos	86
	3.21-Revestimiento	86
	3.22-Cerramiento	86
	3.23-Elementos de sombreado	86
4	-Diseño	86

4.1-Diseño del generador fotovoltaico	86
4.1.1-Generalidades	86
4.1.2-Orientación, inclinación y sombras	87
4.2-Diseño del sistema de monitorización	87
4.3-Integración arquitectónica	88
5-Componentes y materiales	89
5.1-Generalidades	89
5.2-Sistemas generadores fotovoltaicos	90
5.3-Estructura soporte	91
5.4-Inversores	92
5.5-Cableado	94
5.6-Protecciones	95
5.7-Puesta a tierra de las instalaciones fotovoltaicas	95
5.8-Medidas de seguridad	95
6-Recepeción y pruebas	96
7-Requerimientos técnicos del contrato de mantenimiento	98
7.1-Generalidades	98
7.2-Programa de mantenimiento	98
7.3-Garantías	100
7.3.1-Ámbito gen <mark>eral</mark>	100
7.3.2-Plazos	100
7.3.3-Condiciones económicas	101
7.3.4-Anulación de la garantía	101
7.3.5-Lugar y tiempo de la prestación	102
IV-PRESUPUESTO	103
V-PLANOS	109

I-MEMORIA DESCRIPTIVA

1.-Objeto

El presente proyecto tiene como objeto el diseño y dimensionamiento de una instalación solar fotovoltaica para autoconsumo eléctrico sobre la superficie del tejado ya existente de una vivienda unifamiliar. Dicho proyecto, tiene como fin servir de Trabajo de Final de Grado para el grado de Ingeniería Mecánica en la Universidad Miguel Hernández de Elche.

El diseño de la instalación se llevará acabo siguiendo la normativa actual presente en el Pliego de Condiciones Técnicas de Instalaciones Conectadas a Red del IDAE. El dimensionamiento se realizará teniendo en cuenta todas las variables presentes en un proyecto de estas características entre las que podemos destacar; dimensiones del tejado, consumo eléctrico, requisitos económicos del cliente, las cuales, detallaremos paso por paso en los siguientes documentos

El objetivo principal del proyecto será la búsqueda del máximo rendimiento de la instalación para reducir el consumo eléctrico de red del cliente, aprovechando la energía producida por el sol.

2.-Normativa

-Real Decreto 842/2002 de 2 de agosto de 2002 por el que se aprueba el nuevo Reglamento Electrotécnico para Baja Tensión, e Instrucciones Técnicas Complementarias (ITC) BT01 a BT 51.

-Real Decreto 244/2019, de 5 de abril, por el que se regulan las condiciones administrativas, técnicas y económicas del autoconsumo de energía eléctrica.

-Ley 54/1997, de 27 de noviembre, del Sector Eléctrico.

-Real Decreto 1663/2000, de 29 de septiembre, sobre conexión de instalaciones fotovoltaicas a la red de baja tensión.

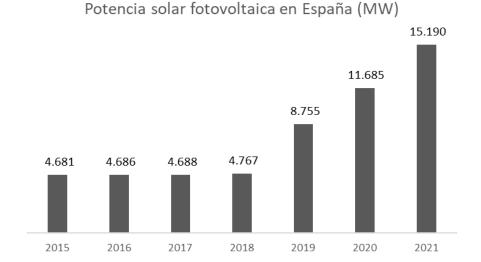
-Real Decreto 1955/2000, de 1 de diciembre, por el que se regulan las actividades de transporte, distribución, comercialización, suministro y procedimientos de autorización de instalaciones de energía eléctrica.

-Real Decreto 842/2002, de 2 de agosto, por el que se aprueba el Reglamento Electrotécnico para Baja Tensión (B.O.E. de 18-9-2002).

-Real Decreto 314/2006, de 17 de marzo, por el que se aprueba el Código Técnico de la Edificación.

-Real Decreto 661/2007, de 25 de mayo, por el que se regula la actividad de producción de energía eléctrica en régimen especial.

-Real Decreto 1110/2007, de 24 de agosto, por el que se aprueba el Reglamento Unificado de puntos de medida del sistema eléctrico.


-Real Decreto 1578/2008, de 26 de septiembre, de retribución de la actividad de producción de energía eléctrica mediante tecnología solar fotovoltaica para instalaciones posteriores a la fecha límite de mantenimiento de la retribución del Real Decreto 661/2007, de 25 de mayo, para dicha tecnología.

3-Antecedentes

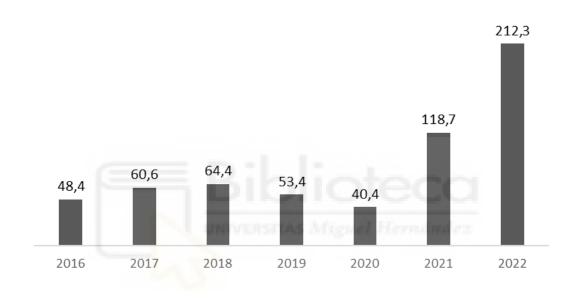
3.1-Desarrollo de la energía solar fotovoltaica en España

Podemos comenzar diciendo que la energía solar fotovoltaica en España se ha triplicado en tan solo tres años, pasando de un 4,767 MW a comienzo del 2019 a un total de 15,190 MW a finales de 2021. Las previsiones nos indican que el crecimiento irá aumentando de manera considerable en los posteriores años.

'EVOLUCIÓN DEL PORCENTAJE DE LA ENERGÍA SOLAR GENERADA EN FSPAÑA'

Uno de los momentos más importantes para el gran desarrollo de la energía solar en España fue la derogación del impuesto del sol, a finales del 2018, que aumentó la rentabilidad de las instalaciones de autoconsumo.

Este impuesto, introducido en España en el año 2015, pretendía que los propietarios de instalaciones fotovoltaicas pagaran unos impuestos adicionales por conectarse a la red eléctrica. Por esta razón, muchos usuarios renunciaban a la idea de implantar una instalación solar fotovoltaica, puesto que, entre otros inconvenientes, retrasaba significativamente las amortizaciones de las instalaciones, con periodos de recuperación superiores a los 20 años.


Podemos ver el efecto que tuvo la eliminación del impuesto observando los anteriores gráficos, pues el primer gran aumento de potencia instalada se produjo justo el año posterior a su derogación.

Gracias a este hecho es por lo que se prevé que la generación solar fotovoltaica aumente exponencialmente en los próximos años, más exactamente las primeras previsiones apuntan a que estas aportarían hasta 1.850 MW nuevos de energía renovable, lo que representaría un aumento del 12% de las instalaciones actuales.

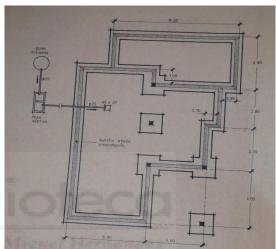
Otros hechos a tener en cuenta es la gran subida de los precios de la energía eléctrica, los cuales este año han marcado un nuevo máximo histórico, y las subvenciones presentes a partir del 2021 con lo que otorgan unos 600 euros por kWp instalado. Esto ha provocado que los usuarios decidan plantearse cada vez más la instalación de un sistema solar fotovoltaico en sus empresas o residencias.

'EVOLUCIÓN DE LA SUBIDA DE LA LUZ EN ESPAÑA'

3.2.- Requisitos de diseño

3.2.1.- Datos de partida

Para el buen diseño y dimensionamiento de dicho proyecto el cliente nos ha facilitado una serie de datos y requisitos a tener en cuenta.


- -Planos de la planta de la vivienda
- -Consumo eléctrico horario durante el año 2021
- -Fotos del tejado y objetos circundantes, para analizar las sombras que nos otorgan dichos objetos.

-Emplazamiento de la vivienda: El proyecto propuesto tendrá lugar en el tejado de una vivienda unifamiliar situada en Calle Benimassot, urbanización Ermita Vieja en Valverde pedanía de Elche(Alicante) en coordenadas: 38°14'47.3"N 0°34'55.7"W.

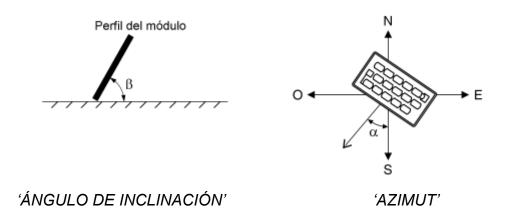
Además, el cliente ha expresado que desearía obtener con la instalación un ahorro con respecto a su consumo actual de entre un 40 o 50% y conseguirlo a su vez con el payback (periodo de recuperación de la inversión) más corto posible y todo ello conseguirlo acogiéndose al sistema de compensación simplificada por el cual la energía excedentaria producida por la instalación sea vendida a un precio pactado o a precio de mercado.

3.2.2.- Datos meteorológicos

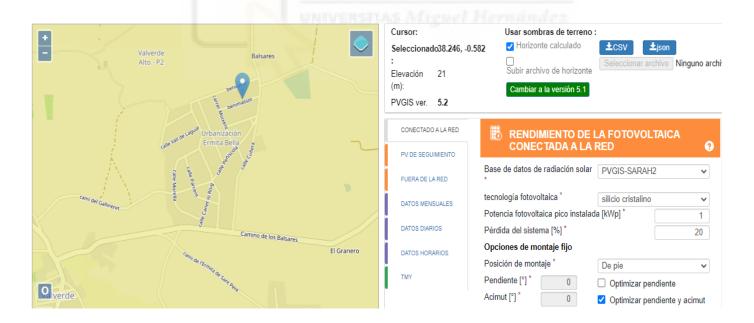
La energía solar, como su propio nombre indica necesita de la radiación solar para producir energía eléctrica, por ello, la meteorología es uno de los parámetros más importantes a la hora del diseño y dimensionamiento de una instalación solar fotovoltaica, ya que, si no tenemos en cuenta estos datos, el rendimiento de nuestra instalación no sería el esperado.

Para la obtención de estos datos meteorológicos nos centraremos en los que realmente nos preocupan para el buen funcionamiento de nuestra instalación.

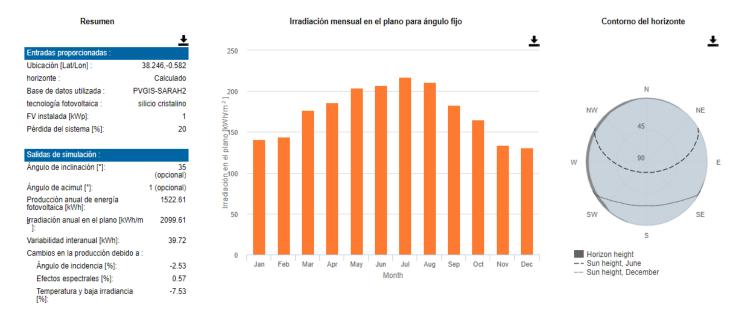
-Temperatura: Es un parámetro a tener en cuenta, ya que los módulos solares fotovoltaicos requieren de una temperatura de unos 20-25°C para su funcionamiento óptimo, si está temperatura excede de esos valores podemos llegar a tener ligeras reducciones de rendimiento. Si la temperatura excediera hasta llegar a los 35-40 grados, el rendimiento del módulo bajaría un 20% aproximadamente.


-Radiación: De este parámetro depende el volumen de producción que otorga nuestra instalación. Cuanta menos radiación solar menos producción eléctrica tendremos en nuestro sistema.

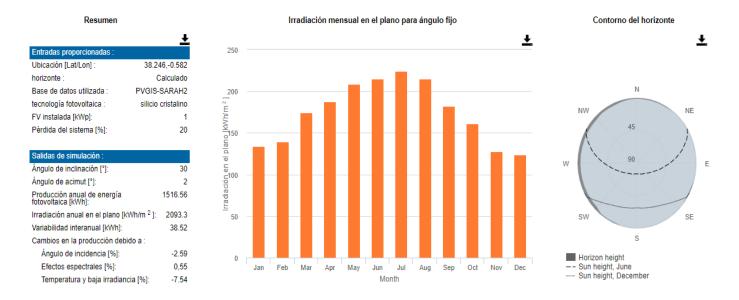
Una vez estudiados estos elementos, daremos paso al análisis de la **irradiancia**, es la magnitud que describe la potencia incidente por unidad de superficie. Para su análisis, necesitamos conocer el Azimut y el Ángulo de Inclinación de nuestros paneles.


-Ángulo de inclinación (β): Se define como el ángulo que forma la superficie de los módulos con el plano horizontal.

-Azimut (α): Definido como el ángulo entre la proyección sobre el plano horizontal de la normal a la superficie del módulo y el meridiano del lugar, es decir, la orientación del módulo. Su valor es 0º cuando están orientados al Sur, -90º para módulos orientados al Este y +90º para el Oeste.


Nuestro proyecto se ejecutará sobre un tejado sin inclinación, es decir, ángulo 0°. Ya que no dependemos de ninguna inclinación impuesta por el tejado, procedemos consultando PVGIS para conocer el Azimut y Ángulo de inclinación óptimos para las coordenadas citadas anteriormente.

Una vez abierto el programa introducimos los datos de partida (Latitud: 38,246 y Longitud: -0,582), introducimos un supuesto de instalación con 1kWp instalado y una estimación de pérdidas del 20% y marcamos la opción de

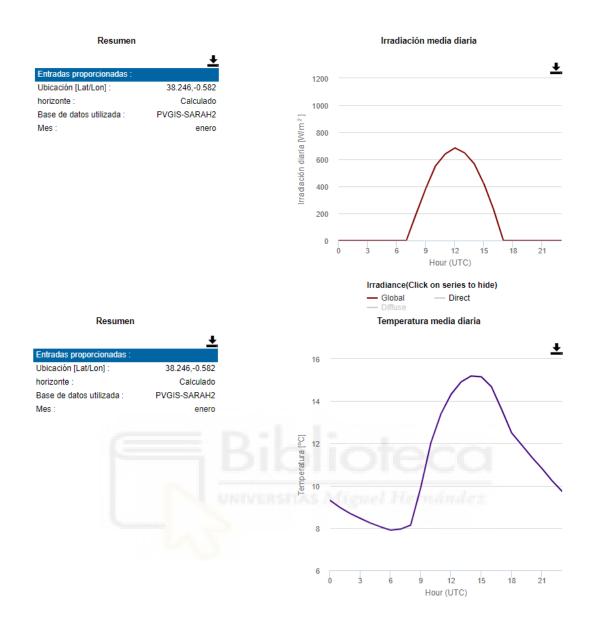


optimizar la pendiente y el azimut. A continuación, obtenemos los siguientes datos:

Los resultados muestran que con Ángulo de inclinación de los módulos de 35° y un Azimut de 1 obtendríamos una irradiación anual óptima de unos 2099,61 kW/m².

Una vez consultados estos datos tenemos una referencia de los valores óptimos de inclinación y azimut para nuestra instalación. Ya que las estructuras más comunes y económicas en instalaciones solares con módulos inclinados son las de 30°, consultamos en el programa que irradiación anual obtendríamos con esta inclinación y un azimut de 2°.

Los resultados muestran que con Ángulo de inclinación de los módulos de 30° y un Azimut de 2° obtendríamos una irradiación anual de unos 2093,3 kW/m². Ya que no encontramos mucha diferencia con la irradiación anual óptima, escogeremos estos valores para el diseño y dimensionamiento de nuestra instalación.


Posteriormente con todos los valores necesarios ya conocidos (ángulo de inclinación y azimut), procedemos a obtener la irradiancia y la temperatura horaria de un día medio de cada mes con el programa anteriormente utilizado.

Como modo de ejemplo, explicamos brevemente la forma de obtener la irradiancia y la temperatura del mes de enero en la ubicación del proyecto.

- 1º: Seleccionamos la pestaña datos diarios.
- 2º: Seleccionamos el mes de Enero y las pestañas de los datos que nos interesan obtener.
- 3º: Introducimos los valores de Inclinación y Azimut escogidos para nuestro proyecto.
 - 4º: Visualizamos los resultados.

Procedemos a recaudar los datos de irradiancia y temperatura

						IRRADIANCIA(W/m2)		/lm2)				
HORA	ENERO	FEBRERO	MARZO	ABRIL	MAYO	JUNIO	JULIO	AGOSTO	SEPTIEMBRE	OCTUBRE	NOVIEMBRE	DICIEMBRE
0:00	0	0	0	0	0	0	0	0	0	0	0	0
1:00	0	0	0	0	0	0	0	0	0	0	0	0
2:00	0	0	0	0	0	0	0	0	0	0	0	0
3:00	0	0	0	0	0	0	0	0	0	0	0	0
4:00	0	0	0	0	0	0	0	0	0	0	0	0
5:00	0	0	0	0	7,46	20,09	6,95	0	0	0	0	0
6:00	0	0	1,01	41,17	85,21	92,82	76,26	51,06	22,67	0	0	0
7:00	0	21,21	121,1	204,39	254,05	264,57	245,81	216,57	188,88	149,27	53,79	0
8:00	195,66	236,77	320,8	395,04	446,18	461,01	449,35	419,99	396,81	348,07	265,79	196,47
9:00	384,87	435,49	524,56	585,66	630,07	645,83	639,56	618,61	571,75	525,52	435,29	378,29
10:00	552,09	596,91	661,71	730,6	773,64	802,99	788,75	779,51	731,27	661,32	570,04	529,01
11:00	639,19	705,8	774,1	820,4	869,9	894,89	898,31	885,28	811,49	741,28	649,25	628,06
12:00	684,72	735,66	781,3	837	889,29	927,54	931,66	936,12	844,35	758,04	671,43	655
13:00	648,04	731,83	765,87	806,33	834,74	882,96	902,67	893,41	810,79	725,95	623,37	613,55
14:00	567,56	640,97	673,99	708,7	735,22	781,87	814,82	786,75	685,69	607,6	506,55	510,46
15:00	418,25	499,76	522,44	554,85	573,57	623,88	660,94	631,48	541,14	435,87	346,44	354,55
16:00	228,23	302	342,04	366,52	389,84	437,48	466,05	433,45	331,53	233,95	145,12	140,12
17:00	0,26	62,88	147,84	177,94	204,38	242,34	259,87	223,99	132	19,81	0	0
18:00	0	0	0,5	21,22	48,93	73,65	79,6	47,03	3,07	0	0	0
19:00	0	0	0	0	0,14	4,5	3,85	0	0	0	0	0
20:00	0	0	0	0	0	0	0	0	0	0	0	0
21:00	0	0	0	0	0	0	0	0	0	0	0	0
22:00	0	0	0	0	0	0	0	0	0	0	0	0
23:00	0	0	0	0	0	0	0	0	0	0	0	0

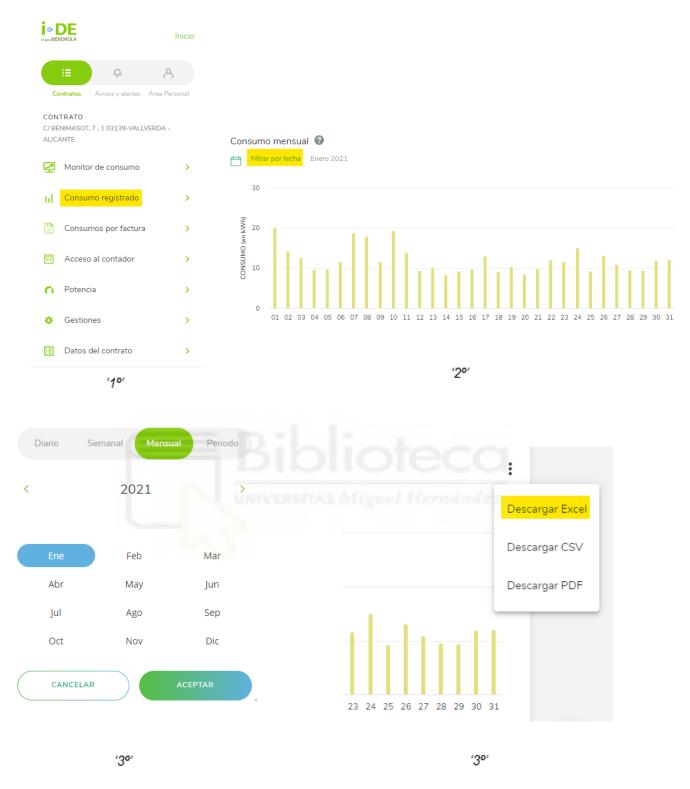
						TEMPERATURA(*C)						
HORA	ENERO	FEBRERO	MARZO	ABRIL	MAYO	JUNIO	JULIO	AGOSTO	SEPTIEMBRE	OCTUBRE	NOVIEMBRE	DICIEMBRE
0:00	11,43	11,47	12,9	15,18	17,9	21,25	24,21	24,83	22,8	19,8	15,38	12,2
1:00	11,22	11,21	12,56	14,89	17,61	20,94	23,99	24,7	22,7	19,69	15,34	12,01
2:00	11,01	10,94	12,31	14,68	17,38	20,74	23,81	24,5	22,44	19,42	15,11	11,77
3:00	10,79	10,67	12,07	14,47	17,15	20,55	23,63	24,31	22,17	19,15	14,88	11,53
4:00	10,58	10,4	11,82	14,26	16,92	20,35	23,45	24,11	21,91	18,88	14,64	11,3
5:00	10,43	10,24	11,62	14,12	16,92	20,41	23,45	24,05	21,73	18,67	14,5	11,16
6:00	10,28	10,07	11,42	13,97	16,91	20,46	23,45	23,99	21,54	18,46	14,36	11,02
7:00	10,14	9,91	11,23	13,83	16,91	20,51	23,45	23,92	21,35	18,26	14,22	10,89
8:00	10,42	10,37	11,98	14,69	17,78	21,32	24,19	24,63	22,09	18,95	14,62	11,2
9:00	10,7	10,84	12,74	15,55	18,65	22,12	24,93	25,34	22,83	19,64	15,03	11,51
10:00	10,98	11,31	13,49	16,41	19,52	22,93	25,68	26,05	23,57	20,33	15,44	11,82
11:00	12	12,24	14,12	16,78	19,75	23,08	25,83	26,29	24,02	20,95	16,21	12,76
12:00	13,01	13,17	14,75	17,16	19,98	23,23	25,98	26,53	24,47	21,57	16,98	13,7
13:00	14,02	14,09	15,37	17,54	20,2	23,38	26,13	26,76	24,92	22,19	17,76	14,64
14:00	14,22	14,2	15,4	17,46	20,12	23,3	26,06	26,69	24,88	22,14	17,87	14,85
15:00	14,41	14,31	15,42	17,38	20,04	23,22	26	26,63	24,84	22,09	17,99	15,07
16:00	14,61	14,41	15,44	17,3	19,96	23,14	25,94	26,56	24,8	22,04	18,11	15,28
17:00	14,11	13,94	15,11	17,07	19,78	23	25,78	26,38	24,52	21,67	17,68	14,79
18:00	13,61	13,46	14,78	16,84	19,61	22,85	25,62	26,21	24,24	21,3	17,26	14,29
19:00	13,11	12,99	14,44	16,62	19,43	22,71	25,47	26,03	23,96	20,93	16,83	13,8
20:00	12,71	12,63	14,1	16,28	19,05	22,34	25,15	25,73	23,71	20,7	16,5	13,42
21:00	12,31	12,28	13,76	15,94	18,67	21,98	24,83	25,42	23,46	20,47	16,16	13,05
22:00	11,9	11,93	13,42	15,6	18,28	21,62	24,51	25,12	23,2	20,23	15,83	12,67
23:00	11,67	11,7	13,16	15,39	18,09	21,43	24,36	24,97	23	20,02	15,61	12,44

3.2.3.-Consumo eléctrico

Conocer las curvas de consumo del cliente, es uno de los pasos imprescindibles para el dimensionamiento de una instalación solar fotovoltaica.

Nuestro cliente nos ha proporcionado acceso a la página de i-DE, donde podremos conocer todos los datos relacionados con el contrato eléctrico (consumo mensual horario, potencia contratada, tarifa contratada, etc).

En este proyecto hemos analizado el consumo mensual horario ya que nos ofrece con mayor detalle, hora por hora lo que consume el cliente y así podremos hacer un dimensionamiento más preciso de la instalación.


Los datos los obtenemos realizando los siguientes pasos:

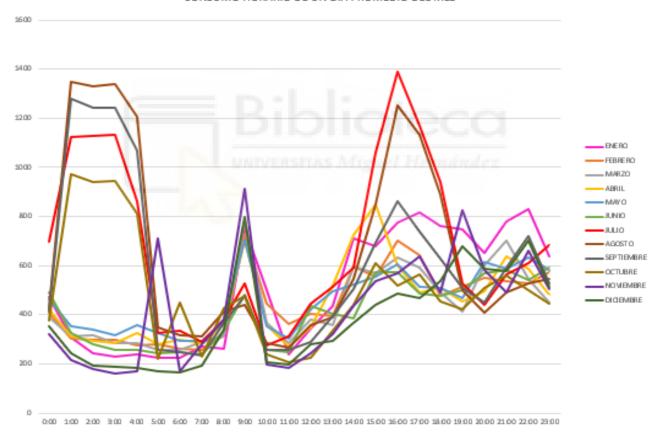
1º-Accedemos en la página de i-DE/consumidores, gracias a los datos personales proporcionados por el cliente.

2º-Seleccionamos el apartado de consumo registrado

3º-Filtramos por fecha para obtener el documento excel con los datos de consumo horario de todos los días del mes

Una vez realizados todos estos pasos para cada uno de los doce meses del año, obtenemos un Excel con el consumo horario por día de cada día del mes.

01/01/2021 - 31/01/2021											
C/ BENIMASOT, 7 , 1 03139-YALLYERDA - ALICANTE											
CUPS	FECHA-HORA	INV / VER	CC	ONSUMO VI	GENERACION VI						
ES0021000001097308PK	2021/01/01 01:00	0		366	0						
ES0021000001097308PK	2021/01/01 02:00	0		279	0						
ES0021000001097308PK	2021/01/01 03:00	0		197	0						
ES0021000001097308PK	2021/01/01 04:00	0	•	183	0						
ES0021000001097308PK	2021/01/01 05:00	0		176	0						
ES0021000001097308PK	2021/01/01 06:00	0		173	0						
ES0021000001097308PK	2021/01/01 07:00	0		243	0						
ES0021000001097308PK	2021/01/01 08:00	0		393	0						
ES0021000001097308PK	2021/01/01 09:00	0		926	0						
ES0021000001097308PK	2021/01/01 10:00	0	•	578	0						
ES0021000001097308PK	2021/01/01 11:00	0		213	0						
ES0021000001097308PK	2021/01/01 12:00	0	•	382	0						
ES0021000001097308PK	2021/01/01 13:00	0		503	0						
ES0021000001097308PK	2021/01/01 14:00	0	•	1149	0						
ES0021000001097308PK	2021/01/01 15:00	0		2599	0						
ES0021000001097308PK	2021/01/01 16:00	0		1696	0						
ES0021000001097308PK	2021/01/01 17:00	0		1718	0						
ES0021000001097308PK	2021/01/01 18:00	0		1267	0						
ES0021000001097308PK	2021/01/01 19:00	0		1209	0						
ES0021000001097308PK	2021/01/01 20:00	0		1418	0						
ES0021000001097308PK	2021/01/01 21:00	0		1244	0						
ES0021000001097308PK	2021/01/01 22:00	0		1189	0						
ES0021000001097308PK	2021/01/01 23:00	0		1192	0						
ES0021000001097308PK	2021/01/02 00:00	0		870	0						
ES0021000001097308PK	2021/01/02 01:00	0		189	0						
ES0021000001097308PK	2021/01/02 02:00	0		223	0						
ES0021000001097308PK	2021/01/02 03:00	0		198	0						
ES0021000001097308PK	2021/01/02 04:00	0		371	0						
ES0021000001097308PK	2021/01/02 05:00	0	1	259	0						
ES0021000001097308PK	2021/01/02 06:00	0		405	0						


'EJEMPLO DE PARTE DE CONSUMO HORARIO MENSUAL DEL MES DE ENERO'

Este documento lo simplificamos para obtener el consumo de un día promedio de cada uno de los meses del año como se muestra en la siguiente tabla, separando el consumo en los distintos periodos de facturación, en azul el periodo más barato Valle(P3), en verde el cual tiene un valor intermedio Llano(P2) y en naranja la franja donde el precio de la electricidad es más caro Punta(P1):

HORA	ENERO	FEBRERO	MARZO	ABRIL	MAYO	JUNIO	JULIO	AGOSTO	SEPTIEMBRE	OCTUBRE	NOVIEMBRE	DICIEMBRE
0:00	471,87097	406,07143	390,35484	420,8	461,12903	492,43333	698,25806	420,19355	411,53333333	374,12903	320,8666667	352,1612903
1:00	308,6129	304,32143	312,35484	311,233333	354,41935	323,56667	1124,9677	1345,871	1277,566667	970,70968	216,6666667	242,7096774
2:00	245	297	316,06452	291,86667	340,16129	278,26667	1127,2258	1327,7097	1241,533333	939,64516	177,5666667	192,4516129
3:00	229,29032	296	282,58065	286,2	316,41935	255,23333	1134,2581	1337,3871	1244,5	945,93548	161,6	187,0322581
4:00	236,90323	276,42857	285,6129	323,5	359,90323	257,9	861,96774	1206,8387	1068,9	810,87097	171,93333333	181,7096774
5:00	226,64516	280,21429	255,64516	278,83333	325,19355	244,03333	327,58065	347,25806	256,6333333	219,06452	710,5333333	169,9677419
6:00	224,93548	259,57143	258,3871	298,53333	293,58065	249,7	335,25806	315,48387	248,4	447,93548	171,1666667	167,0967742
7:00	270,70968	257,89286	287,96774	284,16667	294,25806	238,73333	291,12903	313,41935	232,2333333	229,58065	281,5	190,9032258
8:00	259,25806	317,32143	311,70968	361,46667	372,45161	333,13333	378,48387	413,22581	366,5666667	425,58065	378,7666667	338,2580645
9:00	750,51613	724,75	785,06452	703,13333	708,22581	483	527,70968	438,6129	479,1333333	475,09677	911,13333333	796,7096774
10:00	497,77419	445,64286	365,16129	356,56667	351,35484	258,9	277,19355	283,35484	255,2333333	238,35484	197,6	207,5806452
11:00	239,83871	363,25	283,51613	271,3	303,16129	248,76667	311,74194	263,70968	258,1666667	205,58065	181,6666667	197,1612903
12:00	342,29032	405,67857	382,6129	350,06667	422,77419	435,56667	445,41935	359	289,2	223,87097	244,73333333	279,2580645
13:00	434,3871	392,82143	356,64516	520,4	497,22581	403,76667	512,45161	388	395,7333333	333,32258	322,7	294,516129
14:00	710,80645	595,67857	596,35484	724,86667	524,51613	385,46667	590,54839	544,19355	504,7	438,74194	437,4	367,1612903
15:00	677,6129	552,85714	570,70968	849,96667	556,48387	575	1061,4839	847,74194	693,1666667	607,87097	536,7666667	442
16:00	776,70968	699,57143	634,45161	602,23333	603,64516	573,8	1387,6774	1252,871	861,2666667	517,93548	570,4666667	485,7419355
17:00	814,28091	641,5	593,16129	490,9	513,83871	483,83333	1169,6774	1131,129	736,7333333	564,29032	637,7333333	469,1612903
18:00	759,32258	478,39286	490,3871	509,53333	507,09677	476,1	941,93548	890,77419	628,8666667	455,87097	489,4333333	538
19:00	748,3871	513,32143	411,64516	452,7	469,32258	498,03333	528,35484	499,32258	507	421,45161	825,8333333	679,9677419
20:00	652,77419	549,57143	602,48387	494,36667	614,03226	567,13333	438,25806	407,12903	448,63333333	510,03226	580,2	587,6129032
21:00	778,51613	535,82143	700,80645	635,43333	585,93548	584,5	563,64516	491,74194	589,8666667	557,19355	492,6	576,516129
22:00	828,64516	529,64286	547,54839	588	634,09677	541,53333	611,06452	525,25806	721,23333333	498,87097	661,5666667	700,4516129
23:00	636,22581	573,32143	447,35484	480,6	583,16129	589,46667	681,58065	544,90323	527,2666667	443,25806	505,4	515,1935484

CONSUMO HORARIO DE UN DÍA PROMEDIO DEL MES

El gráfico representa los valores de la tabla anterior, nos sirve para poder visualizar de que manera el consumo varía cada mes y poder encontrar algún patrón que podamos utilizar a la hora de realizar el dimensionamiento correcto.

Como podemos ver, el consumo es muy distinto de un mes a otro, por lo que, deberemos analizar con detalle cada mes, para ver cuál es el dimensionado óptimo de nuestra instalación para que resulte lo más rentable posible.

4.-Descripción de los elementos de la instalación

4.1.-Panel solar fotovoltaico

El Panel Solar 455W Ja Solar Mono Perc es un módulo de gran potencia del fabricante internacional JA Solar. Este panel pertenece a la gama JAM72S20 que ofrece la última tecnología con características técnicas avanzadas; como por ejemplo las células PERC que ofrecen una producción superior y un rendimiento térmico mucho mejor. Al tener mayor eficiencia, la producción es mayor aun teniendo la misma superficie de captación que un panel de 72 células.

Con la tecnología que tiene le permite obtener una eficiencia de hasta un 20,4% aproximadamente. La progresiva mejora en la eficiencia de las células resulta en potencias superiores y todo con un aspecto externo muy similar sin apenas incremento de tamaño.

Estos paneles se someten a estrictos controles de calidad para garantizar la durabilidad y producción a lo largo de su vida útil. La garantía mecánica es de 12 años contra defectos de fabricación y 25 años de garantía de al menos un 80% de su potencia nominal de cuando era nuevo. Dispone de certificaciones internacionales requeridas y por eso se puede instalar en cualquier sistema solar fotovoltaico. Además, cumple con toda la legislación correspondiente, descrita en el pliego de condiciones

Cada panel contiene un total de 144 unidades de medias células.

Además, en su parte trasera lleva 3 cajas estancas de la que salen los cables con los terminales positivo y negativo. En el interior de la caja de conexiones central están los diodos de derivación.

En el anejo de dimensionamiento de la instalación se determinará cuantos módulos serán necesarios para cumplir con las prescripciones indicadas por nuestro cliente.

4.2.-Inversor

El Inversor Red Growatt MIN 2500TL-XE se trata de un inversor monofásico de autoconsumo, que se conoce también como inversor de conexión a red y que puede entregar, tal y como extraemos de su nombre, hasta 2500 W de potencia, siempre que contemos con la radiación solar precisa para ello. Como gran ventaja de este dispositivo, debemos destacar su coste, lo que unido a una calidad de fabricación óptima nos proporcionará la solución más asequible para nuestra instalación de autoconsumo. Recibe el nombre de inversor de conexión a red dado que requiere de la existencia de red eléctrica a la que se conectará el inversor para entrar en funcionamiento. El Inversor Red Growatt MIN 2500TL-XE es, como ya hemos señalado previamente, monofásico y por ello está listo para funcionar conectado a redes monofásicas con fase y neutro. Su misión es contribuir sobre la red eléctrica de nuestro hogar, con la energía que los paneles solares que tiene conectados proporcionan.

Cuenta con 2 reguladores MPPT independientes. Todo esto nos permitirá disponer de una flexibilidad mayor en cuanto al planteamiento o diseño, e instalación de los paneles, ya que, junto a su gran voltaje de funcionamiento, nos permitirá diseñar una repartición de los paneles con 2 series de diferentes particularidades eléctricas o con distintas orientaciones a nivel físico, todas tendrán los mismos tamaños. Un tamaño muy sólido y cómodo en su manejo, además de contar con un diseño actual, para que se pueda instalar en cualquier lugar.

Consta de una entra USB para poder enchufar el emisor WIFI y proporcionar a la instalación en cuestión de conexión inalámbrica. El inversor integra una entrada de comunicaciones con 8 pines donde podremos enchufar todos los cables que se dirigen hacia el medidor de energía. Con esas lecturas el inversor trasladará todos los datos recopilados sobre la productividad obtenida y el gasto de la casa. Esta información estará al alcance de los clientes a través de una web donde podrá registrarse nuestra planta fotovoltaica en este caso. Es ahí donde tendremos ocasión de contar con todos los datos relativos al autoconsumo, elaboración y explotación de nuestra instalación solar conectada a la red.

El Inversor Red Growatt MIN 2500TL-XE aporta una enorme eficiencia en cuanto a su funcionamiento, proporcionando una cifra máxima del 98,2 %, que viene a ser una de las más altas para un inversor de conexión a red que tenga estas particularidades. Este inversor suministra una eficacia de su regulador MPPT del 99,9%, y un rendimiento europeo del 97,1. Con todo esto conseguiremos uno de los rendimientos del mercado más altos, y además muy económico, todo para que nuestra instalación solar fotovoltaica obtenga a un precio económico, la mejor producción.

Tiene asimismo una serie de certificados gracias a los que asegura su funcionamiento perfecto sobre los distintos estándares de redes eléctricas. Estas certificaciones de las que estábamos hablando previamente, son:CE, IEC62109, G98, G99, VFR2014, CEI0-21, VDE-AR-N4105, EN61727, IEC62116.

4.3.- Monitorización de la instalación

Los inversores Growatt no incorporan conectividad WiFi o LAN interna, por lo que hay que añadir este componente o el que mejor se ajuste a las particularidades de nuestra vivienda para poder conocer en tiempo real los datos de producción y también poder ver el histórico.

El accesorio de Monitorización Growatt Shine-Link-X es un componente que permite dotar a nuestro inversor Growatt de conectividad a internet mediante LAN sin necesidad de configurar ningún parámetro de la red. Mediante radiofrecuencia, el enlace entre la base y el adaptador del inversor es capaz de superar los 100m en campo abierto y llegar a los 20m en el caso de tener que sortear un par de muros.

No es necesario que se disponga de conexión Wifi en las proximidades de la instalación del inversor, mediante la Monitorización Growatt Shine-Link-X podremos conectar nuestro inversor Growatt X a internet para poder monitorizar su producción en el portal que la marca ofrece a sus clientes.

Gracias a ello, entraremos tanto en la aplicación móvil como en la web para poder ver toda la información referente a nuestra instalación: producción diaria, por horas, cronograma de consumo y de producción, histórico de datos, etc.

4.4.- Vatímetro

El Vatímetro Monofásico Growatt SPM es un medidor de energía fabricado por Eastron con una parametrización adecuada a los inversores de Growatt.

El vatímetro sirve para poder saber con precisión el consumo eléctrico que le pedimos a nuestra instalación. Esta información se le comunica al inversor de conexión a red mediante el protocolo Modbus. Ambos dispositivos se deben conectar para que el inversor tenga las lecturas adecuadas de la potencia que estamos requiriendo en nuestra instalación y para ello se ofrece ya con el cableado preparado para facilitar la conexión entre ambos componentes.

Gracias a la medición del consumo eléctrico y la rápida comunicación de la Interfaz, el inversor es capaz de limitar la potencia a lo que la vivienda está consumiendo en ese mismo instante.

Es un dispositivo que permite, si así lo deseamos no verter a la red el excedente de producción solar que no estamos utilizando. También sirve para poder medir el requerimiento de energía que tenemos en nuestra en la instalación.

instalación.

4.5.-Estructura de montaje

La estructura escogida dependerá de la inclinación de la cubierta, el material de esta y la inclinación escogida para los módulos. En el presente proyecto, nos encontramos con un tejado plano y con una orientación de los módulos de 30°, escogeremos una estructura que sirva para anclar directamente al hormigón del tejado y a la cual le podamos otorgar una inclinación de 30° con respecto a la horizontal del mismo.

Por todas estas razones se ha proyectado el uso de dos kit de estructura para soporte inclinado Sunfer 09V3.

La colocación de los paneles será en vertical, y admite paneles de 72 células, y con unas medidas máximas de 2279 x 1150mm, así como espesores entre 30 y 45mm.

Los materiales de la estructura están fabricados íntegramente en aluminio de alta calidad, mientras que la tornillería y accesorios están creados en acero inoxidable.

La aleación de la perfilería es EN AW 6005A T6, es una aleación de aluminio de alta resistencia.

Certificado ISO:9001 en diseño, fabricación, venta e instalación de estructuras de energía solar, así como disponen de marcado CE.

Ofrece hasta 15 años de garantía en su material en crudo y hasta 25 años en anodizado.

5.-Instalación eléctrica

La instalación eléctrica constará de diferentes partes, una de ellas corresponde a la de corriente continua CC, la cual, discurre de los paneles solares hasta la caja de protecciones que conecta con el inversor, la otra parte corresponde a la corriente alterna AC, discurre desde el inversor hasta el cuadro general de mando y protección de la vivienda pasando antes por las protecciones correspondientes.

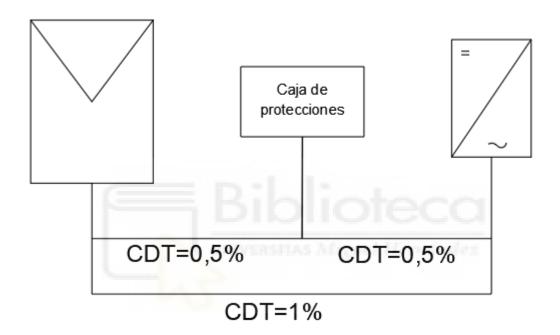
5.1-Instalación CC

La instalación se realizará bajo tubo protector rígido según norma UNE-EN 61386- 21:2005, fijado a la superficie mediante abrazaderas protegidas contra la corrosión y sujetas de manera sólida. La distancia entre fijaciones será como máximo de 0.5m y se añadirán fijaciones al inicio y fin de cambio de dirección y empalmes, así como a la entrada o salida de cajas en cumplimiento con lo establecido en la ITC-BT-21.

El cableado será de cobre con doble aislamiento y adecuado para su uso en intemperie cumpliendo con la norma UNE-21123. Los positivos y negativos de cada grupo de módulos se conducirán separados y protegidos de acuerdo con la normativa vigente.

Los conductores serán de cobre y tendrán la sección adecuada para evitar caídas de tensión y calentamientos. Concretamente, para cualquier condición de trabajo, los conductores deberán tener la sección suficiente para que la caída de tensión sea inferior del 1% en la parte de CC.

El cable deberá tener la longitud necesaria para no generar esfuerzos en los diversos elementos ni posibilidad de enganche por el tránsito normal de personas.

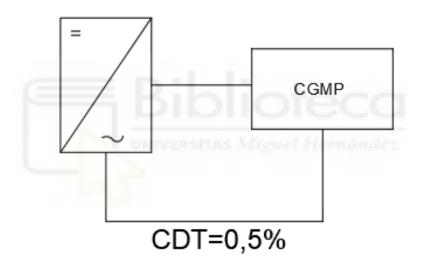

Se usará cable Cable Unifilar 6 mm² SOLAR PV ZZ-F Rojo y Negro.

Las protecciones de CC deberán cumplir con el Real Decreto 1699/2011.

La protección contra cortocircuito se realizará con un fusible de 15A/1000VDC 10x38 por rama de módulos que servirá para proteger el inversor en caso de una intensidad superior de la de funcionamiento. Los fusibles se instalarán en el cuadro de protecciones de CC mediante un portafusibles.

La protección contra sobretensiones se llevará a cabo con Limitador de sobretensiones transitorias Tipo 2 hasta 1000V DC MAXGE.

5.2-Instalación AC


Esta instalación discurrirá exclusivamente por el interior de la vivienda bajo tubo protector rígido según norma UNE-EN 50086-2-1, fijado a la superficie mediante abrazaderas protegidas contra la corrosión y sujetas de manera sólida. La distancia entre fijaciones será como máximo de 0.5m y se añadirán fijaciones al inicio y fin de cambio de dirección y empalmes, así como a la entrada o salida de cajas en cumplimiento con lo establecido en la ITC-BT-21.

Los conductores serán de cobre y tendrán la sección adecuada para evitar caídas de tensión y calentamientos. Concretamente, para cualquier condición de trabajo, los conductores deberán tener la sección suficiente para que la caída de tensión sea inferior del 0,5% en la parte de AC.

Se usará cable RZ1-K (AS) 3 x 4 mm²

Las protecciones contra cortocircuitos y sobrecargas serán llevadas a cabo por un interruptor magnetotérmico de dos polos de 16A. Se incluirá un interruptor diferencial integrado tipo A de 30mA cumpliendo asimismo con las protecciones contra contactos directos e indirectos que pueda haber en la instalación de CA.

6.-Puesta a tierra

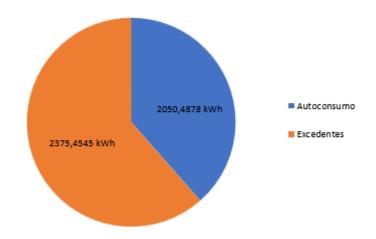
Para la puesta a tierra seguiremos las pautas indicadas tanto en el REBT como en el Pliego de Condiciones técnicas del IDEA.

En el Pliego de Condiciones Técnicas de Instalaciones fotovoltaicas conectada a red nos indica que todas las masas de la instalación fotovoltaica, tanto de la sección continua como de la alterna, estarán conectadas a una única tierra, será independiente de la del neutro de la empresa distribuidora. Dado que debemos poner a tierra tanto la parte de alterna como la de continua, consultaremos las condiciones necesarias indicadas en el Reglamento de Baja Tensión.

Según lo dispuesto en la ITC-BT-18, el electrodo de puesta a tierra debe dimensionarse para que cualquier masa no pueda dar lugar a tensiones de contacto superiores a 24V al encontrarse el campo generador instalado a la intemperie.

Sin embargo, la ITC-BT-26 indica que la resistencia obtenida debería ser inferior a 37 Ω para edificios sin pararrayos como es el caso.

Por lo que la resistencia a tierra a la que conectemos nuestra instalación deberá tener un valor inferior a 37 Ω y ser independiente de la tierra de la empresa distribuidora.


7.-Producción de la instalación

La instalación proyectada de 6 paneles tendrá una potencia nominal de 2,73kWp que generarán en un año promedio 5.325,94 kWh.

Por otra parte, el cliente tiene un consumo de 4.336,799 kWh al año.

En cambio, de los 5.325,94 kWh generados, serán auto consumidos 2.050,48 kWh con lo cual, el ratio de autoconsumo será del 38,5%. Este dato se obtiene con la resta de las curvas de consumo y las curvas de generación como se ha explicado en el apartado de: Anexos a la memoria 1-Dimensionamiento de la instalación.

Por lo tanto, el resto,3.275,45 kWh serán excedentes, que serán vertidos a red, ya que uno de los datos de partida exigidos por el cliente era la acogida al sistema de compensación simplificada.

8.-Justificación económica

Una vez realizados todos los cálculos necesarios explicados en el Anexo a la memoria-1-Dimensionamiento de la instalación, obtenemos el ahorro promedio que tendrá nuestro cliente con la instalación proyectada de 2,73 kWp de potencia nominal. Este ahorro será de un 84% aproximadamente.

Al ser una instalación fotovoltaica en la que, la suma de la energía eléctrica consumida por parte del consumidor asociado a la instalación es mayor al 80 % de la energía anual generada por la instalación podremos acogernos a las subvenciones descritas en el RD 477/21 en la que otorgarán una ayuda económica equivalente a 600 euros por kWp instalado. Este importe se le restará al total del presupuesto de ejecución por contrata y así conoceremos el coste total de la inversión a realizar.

Capítulo 1 ELEMENTOS DE LA INSTALACIÓN	1.971,22
Capítulo 2 CABLEADO Y PROTECCIONES	264,87
Capítulo 2.1 PARTE DC	96,74
Capítulo 2.2 PARTE AC	116,00
Capítulo 2.3 ACCESORIOS	52,13
Capítulo 3 PUESTA A TIERRA	34,20
Capítulo 4 MANO DE OBRA	800,00
Capítulo 5 DIMENSIONAMIENTO Y TRAMITACIÓN	1.100,00
Presupuesto de ejecución material	4170,29
21% IVA	875,76
Presupuesto de ejecución por contrata	5.046,05
Subvenciones al autoconsumo RD 477/21	-1.638,00
Total:	3.408,05

EL PRESUPUESTO ASCIENDE A LA CANTIDAD DE TRES MIL CUATROCIENTOS OCHO CON CINCO CÉNTIMOS

Una vez conocidos los valores de la inversión total a realizar y el ahorro promedio que otorga la instalación podemos realizar un análisis económico estableciendo los siguientes criterios:

- -Análisis a 15 años
- -Aumento anual del precio de la electricidad del 4%
- -Disminución anual de la producción de 0,40%
- -Precio actual del kWh en nuestro proyecto = 0,179317 euros
- -Tasa de autoconsumo del 38,50%

Realizado este análisis, obtenemos una recuperación del total de la inversión de cuatros años y medio aproximadamente.

I-ANEXOS A LA MEMORIA

1.-Dimensionamiento de la instalación

La instalación proyectada debe cumplir unos requisitos determinados impuestos por parte del cliente:

- Ahorro con respecto a su consumo actual de entre un 40 o 50%
- Payback (periodo de recuperación de la inversión) más corto posible
 - Acogiéndose al sistema de compensación simplificada

En base a estas condiciones dimensionaremos la instalación para satisfacer el deseo del cliente.

El proceso debe comenzar analizando el consumo del cliente, ya que de este depende el número de módulos necesarios para nuestra instalación.

Anteriormente, en el documento de la Memoria se ha explicado detalladamente la forma de obtener el consumo horario de un día promedio de cada mes del año y a su vez el consumo mensual y anual.

						CONSUM	O MENSUAL					
	ENERO	FEBRERO	MARZO	ABRIL	MAYO	JUNIO	JULIO	AGOSTO	SEPTIEMBRE	OCTUBRE	NOVIEMBRE	DICIEMBRE
kWh/mes	375,76	299,513	324,32	326,734	340,714	293,473	506,178	492,798	427,412	367,704	306,158	276,035
	ENERO	FEBRERO	MARZO	ABRIL	MAYO	JUNIO	JULIO	AGOSTO	SEPTIEMBRE	OCTUBRE	NOVIEMBRE	DICIEMBRE
KWh/mes	375,76	299,513	324,32	326,734	340,714	293,473	506,178	492,798	427,412	367,704	306,158	276,035
días	31	28	31	30	31	30	31	31	30	31	30	31
KWhłdía	12,12129	10,696893	10,461935	10,891133	10,990774	9,7824333	16,32832258	15,89671	14,24706667	11,861419	10,20526667	8,904354839

ı	KWhłaño
ı	4336,799

HORA	ENERO	FEBRERO	MARZO	ABRIL	MAYO	JUNIO	JULIO	AGOSTO	SEPTIEMBRE	OCTUBRE	NOVIEMBRE	DICIEMBRE
0:00	471,87097	406,07143	390,35484	420,8	461,12903	492,43333	698,2580645	420,19355	411,53333333	374,12903	320,8666667	352,1612903
1:00	308,6129	304,32143	312,35484	311,233333	354,41935	323,56667	1124,967742	1345,871	1277,566667	970,70968	216,6666667	242,7096774
2:00	245	297	316,06452	291,86667	340,16129	278,26667	1127,225806	1327,7097	1241,5333333	939,64516	177,5666667	192,4516129
3:00	229,29032	296	282,58065	286,2	316,41935	255,23333	1134,258065	1337,3871	1244,5	945,93548	161,6	187,0322581
4:00	236,90323	276,42857	285,6129	323,5	359,90323	257,9	861,9677419	1206,8387	1068,9	810,87097	171,93333333	181,7096774
5:00	226,64516	280,21429	255,64516	278,83333	325,19355	244,03333	327,5806452	347,25806	256,6333333	219,06452	710,5333333	169,9677419
6:00	224,93548	259,57143	258,3871	298,53333	293,58065	249,7	335,2580645	315,48387	248,4	447,93548	171,1666667	167,0967742
7:00	270,70968	257,89286	287,96774	284,16667	294,25806	238,73333	291,1290323	313,41935	232,2333333	229,58065	281,5	190,9032258
8:00	259,25806	317,32143	311,70968	361,46667	372,45161	333,13333	378,483871	413,22581	366,5666667	425,58065	378,7666667	338,2580645
9:00	750,51613	724,75	785,06452	703,13333	708,22581	483	527,7096774	438,6129	479,1333333	475,09677	911,13333333	796,7096774
10:00	497,77419	445,64286	365,16129	356,56667	351,35484	258,9	277,1935484	283,35484	255,2333333	238,35484	197,6	207,5806452
11:00	239,83871	363,25	283,51613	271,3	303,16129	248,76667	311,7419355	263,70968	258,1666667	205,58065	181,6666667	197,1612903
12:00	342,29032	405,67857	382,6129	350,06667	422,77419	435,56667	445,4193548	359	289,2	223,87097	244,73333333	279,2580645
13:00	434,3871	392,82143	356,64516	520,4	497,22581	403,76667	512,4516129	388	395,7333333	333,32258	322,7	294,516129
14:00	710,80645	595,67857	596,35484	724,86667	524,51613	385,46667	590,5483871	544,19355	504,7	438,74194	437,4	367,1612903
15:00	677,6129	552,85714	570,70968	849,96667	556,48387	575	1061,483871	847,74194	693,1666667	607,87097	536,7666667	442
16:00	776,70968	699,57143	634,45161	602,23333	603,64516	573,8	1387,677419	1252,871	861,2666667	517,93548	570,4666667	485,7419355
17:00	814,28091	641,5	593,16129	490,9	513,83871	483,83333	1169,677419	1131,129	736,7333333	564,29032	637,7333333	469,1612903
18:00	759,32258	478,39286	490,3871	509,53333	507,09677	476,1	941,9354839	890,77419	628,8666667	455,87097	489,4333333	538
19:00	748,3871	513,32143	411,64516	452,7	469,32258	498,03333	528,3548387	499,32258	507	421,45161	825,83333333	679,9677419
20:00	652,77419	549,57143	602,48387	494,36667	614,03226	567,13333	438,2580645	407,12903	448,6333333	510,03226	580,2	587,6129032
21:00	778,51613	535,82143	700,80645	635,43333	585,93548	584,5	563,6451613	491,74194	589,8666667	557,19355	492,6	576,516129
22:00	828,64516	529,64286	547,54839	588	634,09677	541,53333	611,0645161	525,25806	721,23333333	498,87097	661,5666667	700,4516129
23:00	636,22581	573,32143	447,35484	480,6	583,16129	589,46667	681,5806452	544,90323	527,2666667	443,25806	505,4	515,1935484

Día medio anual 434,9834613 591,083269 564,5409498 556,3697133 503,5390297 264,3744944 354,6852087 648,3590457 311,2264209 260,6549731 348,372587 404,330818 535,0362071 664,3050307 747,1975294 687,1865815 597,1427739 546,278309 537,6856119 591,0480223 615,65933062 543,972587 591,0480223 615,65933062 543,972587 546,278309 546,278000 546,278000 546,278000 546,27800 546,27800 546,27800

Una vez disponemos de esos valores nos centramos en el consumo anual 4336,799kWh/año, realizamos una estimación de cuantos kWp serían

necesarios ser instalados para satisfacer las necesidades de consumo que presenta nuestro proyecto. Para ello, consultamos la página PVGIS para conocer cuál es la producción anual de un 1kWp instalado en el emplazamiento de la vivienda con las condiciones impuestas anteriormente (Inclinación de los módulos=30° y Azimut=2°) y una estimación de pérdidas del 14%.

Provided inputs:	
Location [Lat/Lon]:	38.246,-0.582
Horizon:	Calculated
Database used:	PVGIS-SARAH2
PV technology:	Crystalline silicon
PV installed [kWp]:	1
System loss [%]:	14
Simulation outputs:	
	30
Slope angle [°]:	-
Azimuth angle [°]:	2
Yearly PV energy production [kW	'h]: 1630.3
Yearly in-plane irradiation [kWh/n	n ²]: 2093.3
Year-to-year variability [kWh]:	41.41

Con todas estas variables obtenemos un resultado de producción anual por kWp instalado de unos 1630,3 kWh/año. Por lo que si quisiéramos dimensionar una instalación que abasteciera todo el consumo de la vivienda deberíamos instalar:

kWp a instalar =
$$\frac{consumo\ anual}{producción\ anual\ por\ kWp\ instalado} = \frac{4336,799kWh}{1630,3}$$

= 2,67 kWp

Ya que los módulos utilizados para este proyecto son de 0,455 kWp necesitaríamos 5,85 módulos, para satisfacer el consumo completo de la vivienda.

Realizaremos el estudio de la instalación planteando 3 posibles casos para ver cuál de ellos se adapta mejor a nuestro proyecto y a los requisitos marcados por el cliente:

-1,82 kWp (4 módulos)

-2,275 kWp (5 módulos)

-2,73 kWp (6 módulos)

Explicaremos el método de cálculo de potencia generada por nuestra instalación con el tercer caso, es decir, con 2,73 kWp instalados, y al final de la explicación se mostrarán los resultados de los tres casos.

Comenzaremos definiendo las variables principales que utilizaremos para el cálculo de la potencia generada por nuestra instalación (Pca,inv):

- E: Irradiancia solar en W/m² con las condiciones descritas anteriormente.
 - Tamb: Temperatura del exterior en °C
 - Tc: Temperatura de las células solares en °C.
 - g: Coeficiente de temperatura de la potencia, en 1/°C.
 - TONC: Temperatura de operación nominal del módulo.
- Lcab: Pérdidas de potencia en los cableados de CC entre los paneles
 FV y la entrada del inversor, incluyendo, además, las pérdidas en fusibles,
 conmutadores, conexionados, etc.
 - Linv: Pérdidas generadas por el inversor.
 - Ltem: Pérdidas medias anuales por temperatura.
 - Lpol: Pérdidas de potencia debidas al polvo sobre los módulos FV.
- Ldis: Pérdidas de potencia por dispersión de parámetros entre módulos.
- Lref: Pérdidas de potencia por reflectancia angular espectral, cuando se utiliza un piranómetro como referencia de medidas. Si se utiliza una célula de tecnología equivalente (CTE), el término Lref es cero.

- Rto,var: Rendimiento, que incluye los porcentajes de pérdidas debidas a que los módulos fotovoltaicos operan, normalmente, en condiciones diferentes de las CEM.
 - ηinv : Rendimiento del inversor.
 - Po: Potencia nominal del generador en CEM, en W.
- Pcc,fov: Potencia de CC inmediatamente a la salida de los paneles FV, en W.
 - Pcc,inv: Potencia de CC a la entrada del inversor
 - Pca,inv: Potencia de CA a la salida del inversor

Como ya hemos explicado en el apartado 2.2.2 de la Memoria descriptiva con la ayuda del programa PVGIS, obtenemos los datos de Irradiancia(E) y Temperatura(Tamb).

						IRRADIANCIA(W/m2)						
HORA	ENERO	FEBRERO	MARZO	ABRIL	MAYO	JUNIO	JULIO	AGOSTO	SEPTIEMBRE	OCTUBRE	NOVIEMBRE	DICIEMBRE
0:00	0	0	0	0	0	0	0	0	0	0	0	0
1:00	0	0	0	0	0	0	0	0	0	0	0	0
2:00	0	0	0	0	0	0	0	0	0	0	0	0
3:00	0	0	0	0	0	0	0	0	0	0	0	0
4:00	0	0	0	0	0	0	0	0	0	0	0	0
5:00	0	0	0	0	7,46	20,09	6,95	0	0	0	0	0
6:00	0	0	1,01	41,17	85,21	92,82	76,26	51,06	22,67	0	0	0
7:00	0	21,21	121,1	204,39	254,05	264,57	245,81	216,57	188,88	149,27	53,79	0
8:00	195,66	236,77	320,8	395,04	446,18	461,01	449,35	419,99	396,81	348,07	265,79	196,47
9:00	384,87	435,49	524,56	585,66	630,07	645,83	639,56	618,61	571,75	525,52	435,29	378,29
10:00	552,09	596,91	661,71	730,6	773,64	802,99	788,75	779,51	731,27	661,32	570,04	529,01
11:00	639,19	705,8	774,1	820,4	869,9	894,89	898,31	885,28	811,49	741,28	649,25	628,06
12:00	684,72	735,66	781,3	837	889,29	927,54	931,66	936,12	844,35	758,04	671,43	655
13:00	648,04	731,83	765,87	806,33	834,74	882,96	902,67	893,41	810,79	725,95	623,37	613,55
14:00	567,56	640,97	673,99	708,7	735,22	781,87	814,82	786,75	685,69	607,6	506,55	510,46
15:00	418,25	499,76	522,44	554,85	573,57	623,88	660,94	631,48	541,14	435,87	346,44	354,55
16:00	228,23	302	342,04	366,52	389,84	437,48	466,05	433,45	331,53	233,95	145,12	140,12
17:00	0,26	62,88	147,84	177,94	204,38	242,34	259,87	223,99	132	19,81	0	0
18:00	0	0	0,5	21,22	48,93	73,65	79,6	47,03	3,07	0	0	0
19:00	0	0	0	0	0,14	4,5	3,85	0	0	0	0	0
20:00	0	0	0	0	0	0	0	0	0	0	0	0
21:00	0	0	0	0	0	0	0	0	0	0	0	0
22:00	0	0	0	0	0	0	0	0	0	0	0	0
23:00	0	0	0	0	0	0	0	0	0	0	0	0

						TEMPERATURA(°C)						
HORA	ENERO	FEBRERO	MARZO	ABRIL	MAYO	JUNIO	JULIO	AGOSTO	SEPTIEMBRE	OCTUBRE	NOVIEMBRE	DICIEMBRE
0:00	11,43	11,47	12,9	15,18	17,9	21,25	24,21	24,83	22,8	19,8	15,38	12,2
1:00	11,22	11,21	12,56	14,89	17,61	20,94	23,99	24,7	22,7	19,69	15,34	12,01
2:00	11,01	10,94	12,31	14,68	17,38	20,74	23,81	24,5	22,44	19,42	15,11	11,77
3:00	10,79	10,67	12,07	14,47	17,15	20,55	23,63	24,31	22,17	19,15	14,88	11,53
4:00	10,58	10,4	11,82	14,26	16,92	20,35	23,45	24,11	21,91	18,88	14,64	11,3
5:00	10,43	10,24	11,62	14,12	16,92	20,41	23,45	24,05	21,73	18,67	14,5	11,16
6:00	10,28	10,07	11,42	13,97	16,91	20,46	23,45	23,99	21,54	18,46	14,36	11,02
7:00	10,14	9,91	11,23	13,83	16,91	20,51	23,45	23,92	21,35	18,26	14,22	10,89
8:00	10,42	10,37	11,98	14,69	17,78	21,32	24,19	24,63	22,09	18,95	14,62	11,2
9:00	10,7	10,84	12,74	15,55	18,65	22,12	24,93	25,34	22,83	19,64	15,03	11,51
10:00	10,98	11,31	13,49	16,41	19,52	22,93	25,68	26,05	23,57	20,33	15,44	11,82
11:00	12	12,24	14,12	16,78	19,75	23,08	25,83	26,29	24,02	20,95	16,21	12,76
12:00	13,01	13,17	14,75	17,16	19,98	23,23	25,98	26,53	24,47	21,57	16,98	13,7
13:00	14,02	14,09	15,37	17,54	20,2	23,38	26,13	26,76	24,92	22,19	17,76	14,64
14:00	14,22	14,2	15,4	17,46	20,12	23,3	26,06	26,69	24,88	22,14	17,87	14,85
15:00	14,41	14,31	15,42	17,38	20,04	23,22	26	26,63	24,84	22,09	17,99	15,07
16:00	14,61	14,41	15,44	17,3	19,96	23,14	25,94	26,56	24,8	22,04	18,11	15,28
17:00	14,11	13,94	15,11	17,07	19,78	23	25,78	26,38	24,52	21,67	17,68	14,79
18:00	13,61	13,46	14,78	16,84	19,61	22,85	25,62	26,21	24,24	21,3	17,26	14,29
19:00	13,11	12,99	14,44	16,62	19,43	22,71	25,47	26,03	23,96	20,93	16,83	13,8
20:00	12,71	12,63	14,1	16,28	19,05	22,34	25,15	25,73	23,71	20,7	16,5	13,42
21:00	12,31	12,28	13,76	15,94	18,67	21,98	24,83	25,42	23,46	20,47	16,16	13,05
22:00	11,9	11,93	13,42	15,6	18,28	21,62	24,51	25,12	23,2	20,23	15,83	12,67
23:00	11,67	11,7	13,16	15,39	18,09	21,43	24,36	24,97	23	20,02	15,61	12,44

Una vez conocidos los datos de irradiancia y temperatura, proseguimos recaudando los datos particulares de los elementos escogidos para el dimensionado del proyecto. Estos datos se obtendrán de las fichas técnicas de cada elemento.

DATOSE	EL PANEL	
Referencia	Panel Solar 4	155W Ja Solar Mono P
Pp(W)	455	
Voc (V)	49,85	
Isc (A)	11,41	
Impp(A)	10,88	
Vmpp (V)	41,82	
Eficiencia del módulo	20,50%	
g	-0,0035	
TONC	45	
Alpha(A/C*)	0,00044	
Beta(V/C*)	-0,00272	
Largo(m)	2,112	
Ancho(m)	1,052	
Espesor(m)	0,035	
Precio panel	215,45	

DATOS INVERSOR										
REFERENCIA.	Inversor Red Growatt MIN 2500TL-XE									
Máx, potencia fotovoltaica recomendada	3500	W								
Máx. voltaje de CC(Voc)	500	V								
Tensión de arranque	100	V								
Máx. corriente de entrada(Impp)	12,5	A								
Máx, corriente de cortocircuito	16	A								
Potencia nominal de salida de CA	2500	W								
Máx. corriente de salida	11,3	A								
Voltaje nominal	360	V								
Máxima eficiencia	0,982									
Rend_eur.	0,971									
Eficiencia MPPT	0,999									
Rango de voltaje MPPT mín.(Vmpp)	80	V								
Rango de voltaje MPPT máx.(Vmpp)	500	V								
Voltaje de salida	230	V								
SEGUIMIENTO MPP 1										
Impp 1	12,5	A								
lsc 1	16	A								
SEGUIMIENTO MPP 2										
Impp 2	12,5	Α								
Iso 2	16	Α								

Para los valores de perdidas, tomaremos los datos medios anuales que aparecen propuestos en el Pliego de Condiciones Técnicas del IDAE, con los que podremos calcular la variable 'Rto,var':

Excepto para el valor de 'Linv' que se calculará utilizando la siguiente ecuación:

Linv=
$$1-\eta inv=1-0.982=0.018$$

El siguiente paso será el cálculo de 'Tcel', aplicando la siguiente fórmula y para la que necesitaremos los valores de Irradiancia, Tamb y TONC (valor característico del panel solar proyectado, indicado en la tabla anterior donde aparecen los valores característicos de los elementos utilizados para el proyecto).

$$Tc = Tamb + (TONC - 20) \times \frac{E}{800}$$

						Toel C						
HOF	RA ENERO	FEBRERO	MARZO	ABRIL	MAYO	JUNIO	JULIO	AGOSTO	SEPTIEMBRE	OCTUBRE	NOVIEMBRE	DICIEMBRE
0:0	0 11,43	11,47	12,9	15,18	17,9	21,25	24,21	24,83	22,8	19,8	15,38	12,2
1:0	0 11,22	11,21	12,56	14,89	17,61	20,94	23,99	24,7	22,7	19,69	15,34	12,01
2:0	0 11,01	10,94	12,31	14,68	17,38	20,74	23,81	24,5	22,44	19,42	15,11	11,77
3:0	0 10,79	10,67	12,07	14,47	17,15	20,55	23,63	24,31	22,17	19,15	14,88	11,53
4:0	0 10,58	10,4	11,82	14,26	16,92	20,35	23,45	24,11	21,91	18,88	14,64	11,3
5:0	0 10,43	10,24	11,62	14,12	17,15313	21,03781	23,66719	24,05	21,73	18,67	14,5	11,16
6:0	0 10,28	10,07	11,45156	15,25656	19,57281	23,36063	25,83313	25,58563	22,2484375	18,46	14,36	11,02
7:0	0 10,14	10,57281	15,01438	20,21719	24,84906	28,77781	31,13156	30,68781	27,2525	22,92469	15,900938	10,89
8:0	0 16,53438	17,76906	22,005	27,035	31,72313	35,72656	38,23219	37,75469	34,4903125	29,82719	22,925938	17,3396875
9:0	0 22,72719	24,44906	29,1325	33,85188	38,33969	42,30219	44,91625	44,67156	40,6971875	36,0625	28,632813	23,3315625
10:0	28,23281	29,96344	34,16844	39,24125	43,69625	48,02344	50,32844	50,40969	46,4221875	40,99625	33,25375	28,3515625
11:0	0 31,97469	34,29625	38,31063	42,4175	46,93438	51,04531	53,90219	53,955	49,3790625	44,115	36,499063	32,386875
12:0	34,4075	36,15938	39,16563	43,31625	47,77031	52,21563	55,09438	55,78375	50,8559375	45,25875	37,962188	34,16875
13:0	34,27125	36,95969	39,30344	42,73781	46,28563	50,9725	54,33844	54,67906	50,2571875	44,87594	37,240313	33,8134375
14:0	31,95625	34,23031	36,46219	39,60688	43,09563	47,73344	51,52313	51,27594	46,3078125	41,1275	33,699688	30,801875
15:0	27,48031	29,9275	31,74625	34,71906	37,96406	42,71625	46,65438	46,36375	41,750625	35,71094	28,81625	26,1496875
16:0	21,74219	23,8475	26,12875	28,75375	32,1425	36,81125	40,50406	40,10531	35,1603125	29,35094	22,645	19,65875
17:0	14,11813	15,905	19,73	22,63063	26,16688	30,57313	33,90094	33,37969	28,645	22,28906	17,68	14,79
18:0	00 13,61	13,46	14,79563	17,50313	21,13906	25,15156	28,1075	27,67969	24,3359375	21,3	17,26	14,29
19:0	13,11	12,99	14,44	16,62	19,43438	22,85063	25,59031	26,03	23,96	20,93	16,83	13,8
20:0	00 12,71	12,63	14,1	16,28	19,05	22,34	25,15	25,73	23,71	20,7	16,5	13,42
21:0	00 12,31	12,28	13,76	15,94	18,67	21,98	24,83	25,42	23,46	20,47	16,16	13,05
22:1	00 11,9	11,93	13,42	15,6	18,28	21,62	24,51	25,12	23,2	20,23	15,83	12,67
23:0	00 11,67	11,7	13,16	15,39	18,09	21,43	24,36	24,97	23	20,02	15,61	12,44

Una vez obtenidos los valores de temperatura que tendrán las células de los módulos fotovoltaicos cuando estén en funcionamiento calculamos la potencia de CC inmediatamente a la salida de los paneles FV(Pcc,fov), utilizando la siguiente fórmula:

$$Pcc, fov = Po \times Rto, var \times [1 - g \times (Tc - 25)] \times \frac{E}{100}$$

						Poc,fov W						
HORA	ENERO	FEBRERO	MARZO	ABRIL	MAYO	JUNIO	JULIO	AGOSTO	SEPTIEMBRE	OCTUBRE	NOVIEMBRE	DICIEMBRE
0:00	0	0	0	0	0	0	0	0	0	0	0	0
1:00	0	0	0	0	0	0	0	0	0	0	0	0
2:00	0	0	0	0	0	0	0	0	0	0	0	0
3:00	0	0	0	0	0	0	0	0	0	0	0	0
4:00	0	0	0	0	0	0	0	0	0	0	0	0
5:00	0	0	0	0	18,26319	49,87091441	17,41351	0	0	0	0	0
6:00	0	0	2,421895	100,1024	210,4233	232,3136234	192,5278	128,796	56,51724483	0	0	0
7:00	0	50,69557	294,1889	505,8949	639,1781	674,8038426	632,0527	556,021	479,2130193	373,0256	131,0925	0
8:00	477,9382	580,9331	799,0796	1001,511	1149,591	1204,061386	1183,528	1104,43	1032,062413	890,9944	664,21196	481,310777
9:00	961,1202	1094,138	1339,565	1519,948	1660,117	1724,188284	1722,179	1664,432	1518,330054	1374,103	1109,6808	946,70254
10:00	1405,492	1528,695	1719,164	1930,798	2074,908	2184,238559	2161,522	2136,758	1978,8341	1757,933	1476,4056	1347,28943
11:00	1648,301	1834,507	2039,411	2191,076	2357,896	2458,044402	2490,049	2454,343	2217,051892	1990,853	1700,1236	1621,88071
12:00	1780,387	1924,195	2064,265	2242,038	2417,003	2557,289876	2592,279	2610,374	2317,814571	2043,504	1766,8594	1701,73262
13:00	1684,235	1919,337	2024,427	2155,774	2257,822	2424,709173	2505,604	2482,582	2221,41229	1954,548	1636,4255	1592,12212
14:00	1463,494	1665,629	1764,689	1875,204	1967,975	2124,791666	2241,542	2162,609	1854,802561	1615,836	1313,9565	1311,0661
15:00	1061,994	1279,734	1346,182	1444,227	1509,352	1667,863801	1789,872	1708,475	1442,065118	1138,341	883,73619	896,094341
16:00	567,9688	757,1532	864,4133	934,7566	1005,87	1146,786799	1236,842	1148,802	864,2328109	597,8868	362,29718	346,127901
17:00	0,629566	153,2481	365,2908	444,2109	516,5837	621,9379449	674,546	580,3834	336,5205504	49,39424	0	0
18:00	0	0	1,213689	52,01516	121,5063	185,4963041	202,5551	119,4982	7,710099745	0	0	0
19:00	0	0	0	0	0,345555	11,24256062	9,711566	0	0	0	0	0
20:00	0	0	0	0	0	0	0	0	0	0	0	0
21:00	0	0	0	0	0	0	0	0	0	0	0	0
22:00	0	0	0	0	0	0	0	0	0	0	0	0
23:00	0	0	0	0	0	0	0	0	0	0	0	0

Al haber obtenido los valores de potencia a la salida de los módulos fotovoltaicos, podemos calcular la potencia a la entrada del inversor teniendo en cuenta las pérdidas que se producen por culpa del cable. Esta potencia se calculará utilizando la siguiente ecuación.

$$Pcc, inv = Pcc, fov \times (1 - Lcab)$$

						Podjiny W						
HORA	ENERO	FEBRERO	MARZO	ABRIL	MAYO	JUNIO	JULIO	AGOSTO	SEPTIEMBRE	OCTUBRE	NOVIEMBRE	DICIEMBRE
0:00	0	0	0	0	0	0	0	0	0	0	0	0
1:00	0	0	0	0	0	0	0	0	0	0	0	0
2:00	0	0	0	0	0	0	0	0	0	0	0	0
3:00	0	0	0	0	0	0	0	0	0	0	0	0
4:00	0	0	0	0	0	0	0	0	0	0	0	0
5:00	0	0	0	0	17,89793	48,87349612	17,06524	0	0	0	0	0
6:00	0	0	2,373457	98,10031	206,2149	227,6673509	188,6773	126,22	55,38689993	0	0	0
7:00	0	49,68166	288,3051	495,777	626,3946	661,3077657	619,4117	544,9006	469,6287589	365,5651	128,47065	0
8:00	468,3794	569,3145	783,098	981,4804	1126,599	1179,980158	1159,857	1082,342	1011,421165	873,1745	650,92772	471,684561
9:00	941,8978	1072,255	1312,774	1489,549	1626,914	1689,704518	1687,735	1631,143	1487,963453	1346,621	1087,4871	927,768489
10:00	1377,382	1498,121	1684,781	1892,182	2033,41	2140,553788	2118,292	2094,023	1939,257418	1722,775	1446,8775	1320,34364
11:00	1615,335	1797,817	1998,622	2147,254	2310,738	2408,883514	2440,248	2405,256	2172,710854	1951,036	1666,1212	1589,4431
12:00	1744,78	1885,711	2022,98	2197,197	2368,663	2506,144079	2540,433	2558,167	2271,45828	2002,634	1731,5222	1667,69797
13:00	1650,551	1880,951	1983,939	2112,658	2212,666	2376,21499	2455,492	2432,93	2176,984044	1915,457	1603,6969	1560,27968
14:00	1434,224	1632,317	1729,395	1837,7	1928,615	2082,295833	2196,711	2119,357	1817,70651	1583,52	1287,6773	1284,84478
15:00	1040,754	1254,14	1319,259	1415,342	1479,165	1634,506525	1754,074	1674,305	1413,223816	1115,574	866,06146	878,172454
16:00	556,6094	742,0101	847,125	916,0614	985,7528	1123,851063	1212,105	1125,826	846,9481547	585,929	355,05124	339,205343
17:00	0,616975	150,1832	357,985	435,3267	506,252	609,499186	661,0551	568,7757	329,7901394	48,40635	0	0
18:00	0	0	1,189415	50,97485	119,0761	181,786378	198,504	117,1082	7,55589775	0	0	0
19:00	0	0	0	0	0,338644	11,01770941	9,517335	0	0	0	0	0
20:00	0	0	0	0	0	0	0	0	0	0	0	0
21:00	0	0	0	0	0	0	0	0	0	0	0	0
22:00	0	0	0	0	0	0	0	0	0	0	0	0
23:00	0	0	0	0	0	0	0	0	0	0	0	0

Para finalizar, procedemos calculando la potencia que genera la instalación proyectada en un día promedio de cada mes separando las horas del día en los distintos periodos tarifarios de consumo eléctrico, una vez se han tenido en cuenta todos los factores que afectan a la producción del sistema. Para ello aplicaremos:

$$Pca = Pcc, inv \times (1 - Linv)$$

						DATOS Poa(W))					
HORA	ENERO	FEBRERO	MARZO	ABRIL	MAYO	JUNIO	JULIO	AGOSTO	SEPTIEMBRE	OCTUBRE	NOVIEMBRE	DICIEMBRE
0:00	0	0	0	0	0	0	0	0	0	0	0	0
1:00	0	0	0	0	0	0	0	0	0	0	0	0
2:00	0	0	0	0	0	0	0	0	0	0	0	0
3:00	0	0	0	0	0	0	0	0	0	0	0	0
4:00	0	0	0	0	0	0	0	0	0	0	0	0
5:00	0	0	0	0	17,57577	47,99377319	16,75807	0	0	0	0	0
6:00	0	0	2,330734	96,33451	202,503	223,5693386	185,2811	123,9481	54,38993573	0	0	0
7:00	0	48,78739	283,1156	486,853	615,1195	649,4042259	608,2623	535,0924	461,1754413	358,9849	126,15818	0
8:00	459,9486	559,0668	769,0022	963,8138	1106,32	1158,740515	1138,98	1062,86	993,2155842	857,4573	639,21102	463,194239
9:00	924,9436	1052,955	1289,144	1462,737	1597,63	1659,289837	1657,356	1601,783	1461,180111	1322,382	1067,9124	911,068656
10:00	1352,59	1471,155	1654,454	1858,123	1996,808	2102,02382	2080,162	2056,331	1904,350785	1691,765	1420,8337	1296,57745
11:00	1586,259	1765,456	1962,647	2108,604	2269,145	2365,523611	2396,324	2361,961	2133,602059	1915,917	1636,131	1560,83312
12:00	1713,374	1851,768	1986,566	2157,647	2326,027	2461,033485	2494,706	2512,12	2230,572031	1966,587	1700,3548	1637,67941
13:00	1620,841	1847,093	1948,228	2074,631	2172,838	2333,44312	2411,293	2389,137	2137,798332	1880,979	1574,8304	1532,19464
14:00	1408,408	1602,935	1698,266	1804,622	1893,9	2044,814508	2157,17	2081,208	1784,987792	1555,016	1264,4991	1261,71757
15:00	1022,02	1231,565	1295,512	1389,866	1452,54	1605,085408	1722,501	1644,168	1387,785787	1095,494	850,47236	862,36535
16:00	546,5905	728,6539	831,8768	899,5723	968,0092	1103,621744	1190,287	1105,562	831,7030879	575,3823	348,66031	333,099646
17:00	0,60587	147,4799	351,5413	427,4908	497,1394	598,5282006	649,1561	558,5378	323,8539169	47,53504	0	0
18:00	0	0	1,168006	50,05731	116,9328	178,5142232	194,931	115,0003	7,41989159	0	0	0
19:00	0	0	0	0	0,332548	10,81939064	9,346023	0	0	0	0	0
20:00	0	0	0	0	0	0	0	0	0	0	0	0
21:00	0	0	0	0	0	0	0	0	0	0	0	0
22:00	0	0	0	0	0	0	0	0	0	0	0	0
23:00	0	0	0	0	0	0	0	0	0	0	0	0

Al haber obtenido la potencia fotovoltaica generada por la instalación proyectada, debemos realizar una comparación con las curvas de consumo para conocer cual será nuestro valor de autoconsumo y de excedentes producidos. Para ello realizamos la resta del consumo de un día promedio de cada mes de la vivienda con la potencia generada por la instalación. Los valores positivos, serán los 'W' que se consumirán de la red y los valores negativos los valores excedentes, es decir la cantidad de 'W' que se verterán a red y no serán aprovechados.

LIODA					Comparación de cur	vas consumo y g	genereacion					
HORA	ENERO	FEBRERO	MARZO	ABRIL	MAYO	JUNIO	JULIO	AGOSTO	SEPTIEMBRE	OCTUBRE	NOVIEMBRE	DICIEMBRE
0:00 4	471,8709677	406,0714286	390,3548387	420,8	461,1290323	492,43333333	698,258065	420,1935484	411,53333333	374,1290323	320,8666667	352,1612903
1:00 30	308,6129032	304,3214286	312,3548387	311,23333333	354,4193548	323,5666667	1124,96774	1345,870968	1277,566667	970,7096774	216,6666667	242,7096774
2:00	245	297	316,0645161	291,8666667	340,1612903	278,2666667	1127,22581	1327,709677	1241,5333333	939,6451613	177,5666667	192,4516129
3:00 22	229,2903226	296	282,5806452	286,2	316,4193548	255,2333333	1134,25806	1337,387097	1244,5	945,9354839	161,6	187,0322581
4:00 23	236,9032258	276,4285714	285,6129032	323,5	359,9032258	257,9	861,967742	1206,83871	1068,9	810,8709677	171,9333333	181,7096774
5:00 2:	226,6451613	280,2142857	255,6451613	278,8333333	307,6177832	196,0395601	310,822579	347,2580645	256,6333333	219,0645161	710,53333333	169,9677419
6:00 22	224,9354839	259,5714286	256,0563623	202,1988274	91,07764036	26,13066139	149,976978	191,5357857	194,0100643	447,9354839	171,1666667	167,0967742
7:00 27	270,7096774	209,1054646	4,852107105	-202,6863209	-320,8613914	-410,670893	-317,13322	-221,67303	-228,942108	-129,404301	155,3418184	190,9032258
8:00 -	-200,69054	-241,7453746	-457,2925427	-602,3471015	-733,8685516	-825,607182	-760,49582	-649,633894	-626,648918	-431,876703	-260,444355	-124,936175
9:00 -1	-174,427479	-328,2047093	-504,0795631	-759,6035641	-889,4040853	-1176,28984	-1129,6464	-1163,16996	-982,046777	-847,285365	-156,7790451	-114,358979
10:00 -8	-854,815324	-1025,512046	-1289,293201	-1501,555859	-1645,45356	-1843,12382	-1802,9687	-1772,97589	-1649,11745	-1453,40976	-1223,233673	-1088,99681
11:00 -	-1346,42041	-1402,20633	-1679,131057	-1837,303527	-1965,983241	-2116,75694	-2084,5818	-2098,25178	-1875,43539	-1710,33671	-1454,464312	-1363,67183
12:00 -1	-1371,08332	-1446,089577	-1603,953088	-1807,580671	-1903,252496	-2025,46682	-2049,2861	-2153,11977	-1941,37203	-1742,71564	-1455,621482	-1358,42134
13:00 -	-1186,4536	-1454,272037	-1591,582782	-1554,230518	-1675,61182	-1929,67645	-1898,8417	-2001,13746	-1742,065	-1547,65649	-1252,130398	-1237,67851
14:00 -6	-697,601867	-1007,256566	-1101,911011	-1079,754993	-1369,383891	-1659,34784	-1566,6218	-1537,01469	-1280,28779	-1116,27429	-827,0991363	-894,55628
15:00 -3	-344,407545	-678,7078772	-724,8024746	-539,8992531	-896,0556845	-1030,08541	-661,01688	-796,42592	-694,61912	-487,622855	-313,7056917	-420,36535
16:00 2	230,1191997	-29,08251478	-197,4251764	-297,339002	-364,3640476	-529,821744	197,3903	147,3093995	29,56357877	-57,4468344	221,8063519	152,6422891
17:00 81	813,6750445	494,0201159	241,6199953	63,40917138	16,69926452	-114,694867	520,521339	572,5912535	412,8794165	516,7552843	637,7333333	469,1612903
18:00 75	759,3225806	478,3928571	489,2190909	459,4760262	390,1640108	297,5857768	747,004527	775,7738975	621,4467751	455,8709677	489,4333333	538
19:00 74	748,3870968	513,3214286	411,6451613	452,7	468,9900326	487,2139427	519,008816	499,3225806	507	421,4516129	825,8333333	679,9677419
20:00 65	652,7741935	549,5714286	602,483871	494,3666667	614,0322581	567,1333333	438,258065	407,1290323	448,63333333	510,0322581	580,2	587,6129032
21:00 7	778,516129	535,8214286	700,8064516	635,4333333	585,9354839	584,5	563,645161	491,7419355	589,8666667	557,1935484	492,6	576,516129
22:00 8:	828,6451613	529,6428571	547,5483871	588	634,0967742	541,53333333	611,064516	525,2580645	721,23333333	498,8709677	661,5666667	700,4516129
23:00 63	36,2258065	573,3214286	447,3548387	480,6	583,1612903	589,4666667	681,580645	544,9032258	527,2666667	443,2580645	505,4	515,1935484

Reuniendo los valores de la tabla anterior y multiplicándolos por los días del mes, obtenemos los nuevos valores de consumo de red y excedentes totales de cada mes en 'kWh'.

						1-011-0				VE1 1161-16116	
	Consumo red actual	Nuevo consumo red	Excedentes		Consumo red actual	Nuevo consumo red	Excedentes		Consumo red actual	Nuevo consumo red	Excedentes
P1	138,052	91,109	147,5219525	P1	116,278	63,83277535	222,8993346	P	101,181	65,00840325	216,2396962
P2	169,0757083	77,76862157	43,93095037	P2	139,389	38,2526772	131,8453641	P2	146,702	50,72828986	107,5080782
P3	68,633	68,633	0	P3	85,097	69,15255813	9,946703133	P3	179,439	170,8403019	6,868263238
Total:	375,7607083	237,5106216	191,4529029	Total:	340,764	171,2380107	364,6914018	Total:	427,322	286,576995	330,6160376
		FEBRERO				JUNIO				OCTUBRE	
	Consumo red actual	Nuevo consumo red	Excedentes		Consumo red actual	Nuevo consumo red	Excedentes		Consumo red actual	Nuevo consumo red	Excedentes
P1	103,166	58,159	149,1862397	P1	104,183	58,09299158	237,4507211	P1	91,316	60,281	200,0776765
P2	129,77	44,71556324	63,97991717	P2	118,957	33,93	160,0754064	P2	123,121	45,22541381	91,15568759
P3	66,57	65,20395301	0	P3	70,196	54,88710665	12,32012678	P3	153,074	145,957	4,011533316
Total:	299,506	168,0785163	213,1661569	Total:	293,336	146,9100982	409,8462542	Total:	367,511	251,4634138	295,2448974
		MARZO				JULIO				NOVIEMBRE	
	Consumo red actual	Nuevo consumo red	Excedentes		Consumo red actual	Nuevo consumo red	Excedentes		Consumo red actual	Nuevo consumo red	Excedentes
P1	111,391	68,32879182	191,0827639	P1	124,589	70,30541361	242,9060309	P1	100,043	71,642	161,5634959
P2	139,077	38,33221985	92,55083379	P2	198,655	62,3272608	127,6512101	P2	139,177	60,79519056	46,74084684
P3	74,058	65,20916255	0	P3	182,92	167,6317863	9,831129804	P3	66,355	62,57025455	0
Total:	324,526	171,8701742	283,6335977	Total:	506,164	300,2644607	380,3883708	Total:	305,575	195,0074451	208,3043427
		ABRIL				AGOSTO				DICIEMBRE	
	Consumo red actual	Nuevo consumo red	Excedentes		Consumo red actual	Nuevo consumo red	Excedentes		Consumo red actual		Excedentes
P1	107,711	61,25928078	201,0201173	P1	111,074	67,39299082	248,7900322	P1	104,179	73,845	156,5118234
P2	144,035	33,96027514	98,36831741	P2	176,636	55,49192024	128,5335783	P2	127,555	56,96091096	48,18072029

Estos resultados nos permiten calcular la posible factura que tendrá el cliente para cada mes, con una instalación de 2,73kWp y acogiéndose al sistema de compensación simplificada.

Mostraremos la factura actual del mes de Enero y la futura factura del mismo mes una vez la instalación esté funcionando. Con todo ello podemos calcular el porcentaje de ahorro que obtendrá el cliente.

En este proyecto, nuestro cliente presenta la tarifa 2.0TD, tras la consulta realizada a Iberdrola, la tarifa existente presenta un precio fijo para los tres periodos tarifarios de 0,179317 euros y podríamos acogernos a la compensación simplificada vendiendo los excedentes producidos por la instalación a precio de mercado por lo que fijamos como precio medio 0,135 euros para la venta del excedente.

	Factura si	n instalación fotovoltaica	MES: ENERO		
Tarifa:	2.0TD	Peridos contratados:	3	Distrubuidora:	Iberdrola
Precio fijo:					
	Días:	Precio:	Total:		
Alquiler equipos:	31	0,02663	0,82553		
Seguro Eléctrico:	31	6,95	6,95		
Total:			7,77553		
Precio Variable:					_
		Precio:	Días:	Total:	
Potencia	P1	0,11866	31	3,67846	
facturada	P2	0,00508	31	0,15748	
	P3	0	31	0	
					_
		Precio:	KWh:	Total:	
Energía	P1	0,179317	138,052	24,75507048	
facturada	P2	0,179317	169,0757083	30,31814879	
	P3	0,179317	68,633	12,30706366	
					_
Descuento consumo(%):	20%	67,38028294	J L	-13,47605659	
mpuesto electricidad:	[0,001	375,7607083	0,375760708	
Total:				58,11592706	
IVA reducido(10%):	10%	58,94145706	1 [5,894145706	
IVA(21%):	21%	6,95		1,4595	
Total factura:				73,24510276	

	Factura con 2	,73kWp inst. y compensación	MES: ENERO	1	
Tarifa:	2.0TD	Peridos contratados:	3	Distrubuidora:	Iberdrola
	_				
Precio fijo:					
	Días:	Precio:	Total:		
Alquiler equipos:	31	0,02663	0,82553]	
Seguro Eléctrico:	31	6,95	6,95]	
Total:			7,77553]	
Precio Variable:					
		Precio:	Días:	Total:	
Potencia	P1	0,11866	31	3,67846	
facturada	P2	0,00508	31	0,15748	
	P3	0	0	0	
		Precio:	KWh:	Total:	
Energía	P1	0,179317	91,109	16,33739255	
facturada	P2	0,179317	77,76862157	13,94523591	
	P3	0,179317	68,633	12,30706366	
		Precio:	KWh:	Total:	
Energía	P1	0,135	147,5219525	19,91546359	
vendida	P2	0,135	43,93095037	5,930678299	
	P3	0,135	0	0	
Total:				-25,84614189	
Descuento consumo(%):	20%	42,58969213		-8,517938426	
Impuesto electricidad:		0,001	237,5106216	0,237510622	
Total:				12,29906243	
IVA reducido(10%):	10%	13,12459243]	1,312459243	
IVA(21%):	21%	6,95	1	1,4595	
			•		'
Total factura:				22,84655168	
	_				

Una vez tenemos la simulación de factura para el mes de enero, realizamos una simulación en cada uno de los meses del año.

Obtenidas todas las simulaciones podremos obtener una estimación de ahorro anual con una instalación de 2,73 kWp.

2,73kWp	FACTURA ACTUAL	FACTURA CON 2,73kWp	AHORRO%
ENERO	74,032	22,84655168	69,13962654
FEBRERO	60,63208791	9,229704	84,7775257
MARZO	65,10396089	9,317583	85,68814728
ABRIL	65,26811034	9,28829	85,76902265
MAYO	67,68416221	9,317583	86,23373224
JUNIO	59,98249533	9,28829	84,514999
JULIO	93,96605019	9,317583	90,08409635
AGOSTO	91,83442064	9,317583	89,85393174
SEPTIEMBRE	81,27273139	9,812014881	87,92705165
OCTUBRE	71,93423269	9,650524664	86,5842391
NOVIEMBRE	61,9272597	13,42499532	78,32134768
DICIEMBRE	58,6547288	12,22051768	79,16533256
		·	84,00492104

Una vez realizada la explicación del procedimiento a seguir, realizamos dicho proceso para los tres casos posibles planteados anteriormente y a su vez realizaremos un análisis económico, para ver cual de los casos cumple mejor con los requisitos marcados por nuestro cliente.

<u>CASO 1</u>

En el caso 1, presentábamos una instalación de 1,82 kWp, es decir, con los módulos seleccionados para el proyecto necesitaríamos la utilización de 4 de ellos.

Una vez analizado esta posible instalación obtenemos los siguientes datos de ahorro anual:

1,823kWp	FACTURA ACTUAL	FACTURA CON 1,823kWp	AHORRO%
ENERO	74,032	39,27	46,95537065
FEBRERO	60,63208791	25,23854333	58,37427969
MARZO	65,10396089	20,41816632	68,63759741
ABRIL	65,26811034	16,89450813	74,11521791
MAYO	67,68416221	13,6566013	79,82304743
JUNIO	59,98249533	9,28829	84,514999
JULIO	93,96605019	34,5502705	63,23111333
AGOSTO	91,83442064	34,68796781	62,22770551
SEPTIEMBRE	81,27273139	33,60607154	58,65024964
OCTUBRE	71,93423269	30,10277005	58,15237207
NOVIEMBRE	61,9272597	29,32067205	52,65304457
DICIEMBRE	58,6547288	27,45506417	53,19207039

63,37725563 % AHORRO MEDIO

Capítulo 1 ELEMENTOS DE LA INSTALACIÓN	1.629,48
Capítulo 2 CABLEADO Y PROTECCIONES	264,87
Capítulo 2.1 PARTE DC	96,74
Capítulo 2.2 PARTE AC	116,00
Capítulo 2.3 ACCESORIOS	52,13
Capítulo 3 PUESTA A TIERRA	34,20
Capítulo 4 MANO DE OBRA	800,00
Capítulo 5 DIMENSIONAMIENTO Y TRAMITACIÓN	1.100,00
Presupuesto de ejecución material	3.828,55
21% IVA	803,37
Presupuesto de ejecución por contrata	4.631,92
Subvenciones al autoconsumo RD 477/21	-1.093,80
Total:	3.538,12

CASO 2

En el segundo caso, presentábamos una instalación de 2,275 kWp, es decir, con los módulos seleccionados para el proyecto necesitaríamos la utilización de 5 de ellos.

Una vez realizado todo el proceso anteriormente explicado, esta instalación presenta el siguiente ahorro anual:

2,275kWp	FACTURA ACTUAL	FACTURA CON 2,275kWp	AHORRO%
ENERO	74,032	31,03610041	58,07745243
FEBRERO	60,63208791	16,65833278	72,52554983
MARZO	65,10396089	9,55996971	85,31584011
ABRIL	65,26811034	9,28829	85,76902265
MAYO	67,68416221	9,317583	86,23373224
JUNIO	59,98249533	9,28829	84,514999
JULIO	93,96605019	20,38567387	78,30527746
AGOSTO	91,83442064	21,07244146	77,05387445
SEPTIEMBRE	81,27273139	22,21901176	72,6611726
OCTUBRE	71,93423269	20,1652442	71,96711017
NOVIEMBRE	61,9272597	21,3483786	65,52668614
DICIEMBRE	58,6547288	19,81460932	66,21822362

75,34741173 % AHORRO MEDIO

Capítulo 1 ELEMENTOS DE LA INSTALACIÓN	1.800,35
Capítulo 2 CABLEADO Y PROTECCIONES	264,87
Capítulo 2.1 PARTE DC	96,74
Capítulo 2.2 PARTE AC	116,00
Capítulo 2.3 ACCESORIOS	52,13
Capítulo 3 PUESTA A TIERRA	34,20
Capítulo 4 MANO DE OBRA	800,00
Capítulo 5 DIMENSIONAMIENTO Y TRAMITACIÓN	1.100,00
Presupuesto de ejecución material	3.999,42
21% IVA	839,88
Presupuesto de ejecución por contrata	4.839,30
Subvenciones al autoconsumo RD 477/21	-1.365,00
Total:	3.474,30

Caso 3

En el tercer caso, presentábamos una instalación de 2,73 kWp, es decir, con los módulos seleccionados para el proyecto necesitaríamos la utilización de ellos.

Una vez realizado todo el proceso anteriormente explicado, esta instalación presenta el siguiente ahorro anual:

2,73kWp	FACTURA ACTUAL	FACTURA CON 2,73kWp	AHORRO%
ENERO	74,032	22,84655168	69,13962654
FEBRERO	60,63208791	9,229704	84,7775257
MARZO	65,10396089	9,317583	85,68814728
ABRIL	65,26811034	9,28829	85,76902265
MAYO	67,68416221	9,317583	86,23373224
JUNIO	59,98249533	9,28829	84,514999
JULIO	93,96605019	9,317583	90,08409635
AGOSTO	91,83442064	9,317583	89,85393174
SEPTIEMBRE	81,27273139	9,812014881	87,92705165
OCTUBRE	71,93423269	9,650524664	86,5842391
NOVIEMBRE	61,9272597	13,42499532	78,32134768
DICIEMBRE	58,6547288	12,22051768	79,16533256
			0.4.00400404

84,00492104 % AHORRO MEDIO

Capítulo 1 ELEMENTOS DE LA INSTALACIÓN	1.971,22
Capítulo 2 CABLEADO Y PROTECCIONES	264,87
Capítulo 2.1 PARTE DC	96,74
Capítulo 2.2 PARTE AC	116,00
Capítulo 2.3 ACCESORIOS	52,13
Capítulo 3 PUESTA A TIERRA	34,20
Capítulo 4 MANO DE OBRA	800,00
Capítulo 5 DIMENSIONAMIENTO Y TRAMITACIÓN	1.100,00
Presupuesto de ejecución material	4170,29
21% IVA	875,76
Presupuesto de ejecución por contrata	5.046,05
Subvenciones al autoconsumo RD 477/21	-1.638,00
Total:	3.408,05

Una vez calculado el presupuesto en cada uno de los casos, teniendo en cuenta las subvenciones vigentes marcadas por RD 477/21 y teniendo el ahorro que nos ofrecerían los tres posibles casos de instalación procedemos a realizar un análisis económico imponiendo una serie de requisitos:

- -Análisis a 15 años
- -Aumento anual del precio de la electricidad del 4%
- -Disminución anual de la producción de 0,40%
- -Precio actual del kWh en nuestro proyecto = 0,179317 euros
- -Tasa de autoconsumo del 38,50%

Caso 1

1,82kWp	Consumo anual en kWh	Producción fotovoltaica kV	Coste consumo anual	Precio consumo	Ahorro anual	Ganancias	Recuperación de la inversión
AÑO 1	4336,799	3550,628178	777,6617863	0,179317	63%	493,0375725	-3045,082427
AÑO 2	4336,799	3536,425665	808,7682577	0,18648368	63,00%	509,5240024	-2535,558425
AÑO3	4336,799	3522,279963	841,118988	0,193949267	62,60%	526,5404865	-2009,017939
AÑO 4	4336,799	3508,190843	874,7637476	0,201707238	62,20%	544,103051	-1464,914888
AÑO 5	4336,799	3494,158079	909,7542975	0,209775527	61,80%	562,2281558	-902,6867318
AÑO 6	4336,799	3480,181447	946,1444694	0,218166548	61,40%	580,9327042	-321,7540276
AÑO 7	4336,799	3466,260721	983,9902481	0,22689321	61,00%	600,2340514	278,4800238
AÑO8	4336,799	3452,395678	1023,349858	0,235968939	60,60%	620,150014	898,6300378
AÑOB	4336,799	3438,586096	1064,283852	0,245407696	60,20%	640,6988791	1539,328917
AÑO 10	4336,799	3424,831751	1106,855206	0,255224004	59,80%	661,8994135	2201,22833
AÑO 11	4336,799	3411,132424	1151,129415	0,265432964	59,40%	683,7708724	2884,999203
AÑO 12	4336,799	3397,487895	1197,174591	0,276050283	59,00%	706,3330089	3591,332212
AÑO 13	4336,799	3383,897943	1245,061575	0,287092294	58,60%	729,6060829	4320,938295
AÑO 14	4336,799	3370,362351	1294,864038	0,298575986	58,20%	753,6108701	5074,549165
AÑO 15	4336,799	3356,880902	1346,6586	0,310519026	57,80%	778,3686705	5852,917835

Realizado el análisis correspondiente, observamos que con una instalación de 1,82kWp presentamos un payback(recuperación de la inversión) de 6 años y medio aproximadamente,.

Caso 2

2,275kWp	Consumo anual en kWh	Producción fotovoltaica kv	Coste consumo anual	Precio consumo	Ahorro anual	Ganancias	Recuperación de la inversión
AÑO 1	4336,799	4438,285223	777,6617863	0,179317	75%	583,2463397	-2891,05366
AÑO 2	4336,799	4420,532082	808,7682577	0,18648968	74,60%	603,3411203	-2287,71254
AÑO 3	4336,799	4402,849953	841,118988	0,193949267	74,20%	624,1102891	-1663,602251
AÑO 4	4336,799	4385,238554	874,7637476	0,201707238	73,80%	645,5756457	-1018,026605
AÑO 5	4336,799	4367,697599	909,7542975	0,209775527	73,40%	667,7596543	-350,2669508
AÑO 6	4336,799	4350,226809	946,1444694	0,218166548	73,00%	690,6854626	340,4185118
AÑO 7	4336,799	4332,825902	983,9902481	0,22689321	72,60%	714,3769202	1054,795432
AÑO 8	4336,799	4315,494598	1023,349858	0,235968939	72,20%	738,8585975	1793,654029
AÑO 9	4336,799	4298,23262	1064,283852	0,245407696	71,80%	764,155806	2557,809835
AÑO 10	4336,799	4281,039689	1106,855206	0,255224004	71,40%	790,2946174	3348,104453
AÑO 11	4336,799	4263,91553	1151,129415	0,265432964	71,00%	817,3018845	4165,406337
AÑO 12	4336,799	4246,859868	1197,174591	0,276050283	70,60%	845,2052615	5010,611599
AÑO 13	4336,799	4229,872429	1245,061575	0,287092294	70,20%	874,0332256	5884,644825
AÑO 14	4336,799	4212,952939	1294,864038	0,298575986	69,80%	903,8150985	6788,459923
AÑO 15	4336,799	4196,101127	1346,6586	0,310519026	69,40%	934,5810681	7723,040991

Realizado el análisis correspondiente, observamos que con una instalación de 2,275kWp presentamos un payback(recuperación de la inversión) de 5 años y medio aproximadamente.

Caso 3

2,73kWp	Consumo anual en kWh	Producción fotovoltaica kW	Coste consumo anual	Precio consumo	Ahorro anual	Ganancias	Recuperación de la inversión
AÑO 1	4336,799	5325,942267	777,6617863	0,179317	84%	653,2359005	-2754,8141
AÑO 2	4336,799	5304,638498	808,7682577	0,18648968	83,60%	676,1302635	-2078,683836
AÑO 3	4336,799	5283,419944	841,118988	0,193949267	83,20%	699,8109981	-1378,872838
AÑO 4	4336,799	5262,286264	874,7637476	0,201707238	82,80%	724,304383	-654,568455
AÑO 5	4336,799	5241,237119	909,7542975	0,209775527	82,40%	749,6375411	95,06908609
AÑO 6	4336,799	5220,272171	946,1444694	0,218166548	82,00%	775,8384649	870,907551
AÑO 7	4336,799	5199,391082	983,9902481	0,22689321	81,60%	802,9360425	1673,843593
AÑO 8	4336,799	5178,593518	1023,349858	0,235968939	81,20%	830,9600848	2504,803678
AÑO 9	4336,799	5157,879144	1064,283852	0,245407696	80,80%	859,9413527	3364,745031
AÑO 10	4336,799	5137,247627	1106,855206	0,255224004	80,40%	889,911586	4254,656617
AÑO 11	4336,799	5116,698637	1151,129415	0,265432964	80,00%	920,9035318	5175,560149
AÑO 12	4336,799	5096,231842	1197,174591	0,276050283	79,60%	952,9509747	6128,511123
AÑO 13	4336,799	5075,846915	1245,061575	0,287092294	79,20%	986,0887674	7114,599891
AÑO 14	4336,799	5055,543527	1294,864038	0,298575986	78,80%	1020,352862	8134,952753
AÑO 15	4336,799	5035,321353	1346,6586	0,310519026	78,40%	1055,780342	9190,733095

Realizado el análisis correspondiente, observamos que con una instalación de 2,73kWp presentamos un payback(recuperación de la inversión) de 4 años y medio aproximadamente.

Para finalizar, al haber realizado el análisis económico de los tres posibles casos podemos observar cual es el que más se adecua con los requisitos marcados por el cliente.

-Requisitos:

- Acogida al sistema de compensación simplificada: Presente en los tres casos de instalación posibles.

- Ahorro con respecto a su consumo actual de entre un 40 o 50%: Este requisito estaría cubierto por las tres posibles instalaciones ya que el

menor ahorro conseguido se encontraría en el Caso 1 (1,82kWp instalados) con un 63,37%

- Payback (periodo de recuperación de la inversión) más corto posible: Gracias a su elevado porcentaje de ahorro promedio y un coste de la instalación menor gracias a las subvenciones pautadas por RD 477/21 el Caso 3 (2,73kWp instalados) sería la instalación con la que el cliente recuperaría su inversión en menor tiempo, aproximadamente en 4,5 años.

En conclusión, el módelo de instalación escogido será el Caso 3 el cual presenta una instalación de 2,73 Kwp, ya que es el que más se adapta a los requisitos exigidos por nuestro cliente.

2.-Cálculo de conexionado de los paneles fotovoltaicos

Una vez determinado el tamaño óptimo del proyecto con 6 módulos, debemos calcular la conexión en serie-paralelo de los paneles fotovoltaicos para que cumplan con los parámetros de entrada del inversor.

Las ramas de los módulos conectados en serie se denominan strings, y se debe determinar la cantidad de paneles por string para que la instalación pueda operar dentro del rango MPPT del inversor durante el mayor tiempo posible. Es decir, el inversor siempre encontrará el punto de máxima potencia y el rango de tensión de entrada para su funcionamiento será el mayor posible.

Además, hay que tener en cuenta que en las condiciones de funcionamiento más extremas no se superará ni la intensidad ni la tensión máxima permitida por el inversor. Para ello, la tensión y la intensidad se calculan en sus puntos extremos de funcionamiento, es decir, en el caso más frío (invierno mañana) y el más caluroso (verano mediodía) con la temperatura de funcionamiento más alta.

Utilizando datos de la estación meteorológica más cercana al Servicio Meteorológico Nacional en el Aeropuerto de Elche-Alicante, la temperatura máxima alcanzada fue de 41,4°C y la mínima de -3,8°C. Calcularemos Tcel para una temperatura ambiente de 42°C para verano mediodía y tomaremos una Tcel=0°C para invierno por la mañana.

Resumen de variables a utilizar en los siguientes cálculos:

- Voc,STC: Tensión a circuito abierto del string en condiciones STC.
- Vmpp,STC: Tensión en el punto de máxima potencia del string en condiciones STC.
- **Isc,STC:** Corriente a circuito abierto del string en condiciones STC.
- Impp,STC: Corriente en el punto de máxima potencia del string en condiciones STC.
- **Pp,STC**: Potencia producida por el string en condiciones STC.
- Tcel: Temperatura de la célula del panel solar fotovoltaico.
- TONC: Temperatura de operación de la célula.
- Isc,módulo ver. y Isc,módulo inv.: Corriente a circuito abierto del módulo en las condiciones más desfavorables de verano e invierno.
- Alpha: Coeficiente de temperatura Isc.
- Voc,módulo ver. y Voc,módulo inv.: Tensión a circuito abierto del módulo en las condiciones más desfavorables de verano e invierno.
- Beta: Coeficiente de temperatura Voc.
- Impp,módulo ver. y Impp,módulo inv.: Corriente en el punto de máxima potencia del módulo en las condiciones más desfavorables de verano e invierno.
- Vmpp,módulo ver. y Vmpp,módulo inv.: Tensión en el punto de máxima potencia del módulo en las condiciones más desfavorables de verano e invierno.
- Pp,módulo ver. y Pp,módulo inv.: Potencia del módulo en las condiciones más desfavorables de verano e invierno.
- g: Coeficiente de temperatura Pmpp
- Voc,verano: Tensión a circuito abierto del string en las condiciones más desfavorables de verano.
- Voc,invierno: Tensión a circuito abierto del string en las condiciones más desfavorables de invierno.
- Vmpp,verano: Tensión en el punto de máxima potencia del string en las condiciones más desfavorables de verano.

- Vmpp,invierno: Tensión en el punto de máxima potencia del string en las condiciones más desfavorables de invierno.
- Isc,verano: Corriente a circuito abierto del string en las condiciones más desfavorables de verano.
- Isc,invierno: Corriente a circuito abierto del string en las condiciones más desfavorables de invierno.
- Impp,verano: Corriente en el punto de máxima potencia del string en las condiciones más desfavorables de verano.
- Impp,invierno: Corriente en el punto de máxima potencia del string en las condiciones más desfavorables de invierno.
- Pp,verano: Potencia producida por el string en las condiciones más desfavorables de verano.
- Pp,invierno: Potencia producida por el string en las condiciones más desfavorables de invierno.

1º-Calcularemos: "Voc, Vmpp, Impp, Isc, Pp" en relación con el número de módulos en serie y las ramas en paralelo para conectarlos al MPP1 en condiciones STC.

Voc, STC(MPP1) = Voc, $m\acute{o}dulo \times N\acute{u}m$. $m\acute{o}dulos$ en $serie = 49,85 \times 6 = 299,1 V$

(Estos valores deben cumplir: Tensión de arranque< Voc,STC<Voc,inversor)

100<Voc,STC<500 CUMPLE

Vmpp, STC(MPP1) = Vmpp, $m\'odulo \times N\'um$. m'odulos en serie = 41,82 × 6 = 250,92 V

(Estos valores deben cumplir: Rango de voltaje MPPT mín.

Vmpp,STC<Rango de voltaje MPPT máx.)

80<Vmpp,STC<500 CUMPLE

Isc, STC(MPP1) = Isc, $m\acute{o}dulo \times N\acute{u}m$. $ramas\ en\ paralelo = 11,41 \times 1 = 11,41\ A$

(Estos valores deben cumplir: Isc,inversor.> Isc,STC)

16>Isc,STC CUMPLE

Impp, STC(MPP1) = Impp, $m\'odulo \times N\'um. ramas en paralelo = 10,88 \times 1 = 10,88 \text{ A}$

(Estos valores deben cumplir: Impp,inversor.> Impp,STC)

12,5>Isc,STC CUMPLE

Pp, STC(MPP1) = Pp, módulos
$$\times$$
 (Núm. ramas en paralelo \times Núm. módulos en serie) = $455 \times (1 \times 6) = 2730 \text{ W}$

(Estos valores deben cumplir: Pp,STC(MPP1)< Máx. potencia fotvoltaica,inversor)

Pp,STC(MPP1)<3500 CUMPLE

	EN CONDICIONES STC									
	Módulos en serie	Ramas en paralelo	Suma parcial	Vmax. CC(Voc	Vmpp	Impp	Isc	Pp		
MPP1	6	1	6	299,1	250,92	10,88	11,41	2730		
MPP2	0	1	0	0	0	10,88	11,41	0		
		Suma total	6			Potencia d	ampo fotov	2730		

(Resumen de los cálculos realizados)

2º-Calcularemos: "Voc, Vmpp, Impp, Isc, Pp" del módulo en las condiciones desfavorables (invierno mañana y verano mediodía). Para ello debemos calcular primero "Temperatura de la célula(Tcel)".

Tcel, verano =
$$Tamb + (TONC - 20) \times \frac{E}{800} = 42 + (45 - 20) \times \frac{1000}{800} = 73,25 \, {}^{\circ}C$$

Tcel, invierno =
$$0 \, {}^{\circ}C$$

Isc, módulo ver. =
$$Isc$$
, $módulo \times (1 + Alpha \times (Tcel, verano - 25)) $\times (\frac{E}{1000})$
= $11,41 \times (1 + 0,00044 \times (73,25 - 25)) \times (\frac{1000}{1000}) = 11,65A$$

Isc, módulo inv. =
$$Isc$$
, $módulo \times \left(1 + Alpha \times (Tcel, invierno - 25)\right) \times \left(\frac{E}{1000}\right)$
= $11,41 \times \left(1 + 0,00044 \times (0 - 25)\right) \times \left(\frac{500}{1000}\right) = 5,64 A$

Voc, módulo ver. =
$$Voc$$
, $módulo \times (1 + (Beta \times (Tcel, verano - 25))$
= $49,85 \times (1 + ((-0,00272) \times (73,25 - 25))) = 43,31 V$

Voc, módulo inv. =
$$Voc$$
, $módulo \times (1 + (Beta \times (Tcel, inv - 25))$
= $49,85 \times (1 + ((-0,00272) \times (0 - 25))) = 53,24 V$

Impp, módulo ver.

=
$$Impp, m\'odulo \times (1 + Alpha \times (Tcel, verano - 25)) \times (\frac{E}{1000})$$

= $10,88 \times (1 + 0,00044 \times (73,25 - 25)) \times (\frac{1000}{1000}) = 11,11 A$

Impp, módulo inv. =
$$Impp$$
, módulo × $(1 + Alpha × (Tcel, inv - 25)) × $(\frac{E}{1000})$
= $10,88 × (1 + 0,00044 × (0 - 25)) × $(\frac{500}{1000})$ = 5,38 $A$$$

Vmpp, módulo ver. =
$$Vmpp$$
, $módulo \times (1 + (Beta \times (Tcel, verano - 25)))$
= $41,82 \times (1 + ((-0,00272) \times (73,25 - 25))) = 36,33 V$

Vmpp, módulo inv. =
$$Vmpp$$
, $módulo \times (1 + (Beta \times (Tcel, inv - 25)))$
= $41,82 \times (1 + ((-0,00272) \times (0 - 25))) = 44,66 V$

Pp, módulo ver. =
$$Pp$$
, módulo × $\left(1 + g \times (Tcel, verano - 25)\right) \times \left(\frac{E}{1000}\right)$
= $455 \times (1 + ((-0.0035) \times (73.25 - 25))) \times \left(\frac{1000}{1000}\right) = 378.16 W$

Pp, módulo inv. =
$$Pp$$
, módulo × $(1 + g \times (Tcel, inv - 25)) × $(\frac{E}{1000})$
= $455 \times (1 + ((-0.0035) \times (0 - 25))) × $(\frac{500}{1000})$ = $247.4 W$$$

		CONDICIONES AMBIENTALES			MÓDULO				
		Irradiancia	Temp, ambiente	Temp, Celula	Isc	Vmax, CC(Voc)	Impp	Vmpp	Pp
Ve	erano	1000	42	73,25	11,6522343	43,307686	11,1109824	36,33154	378,1619
Inv	ierno	500	-3,8	0	5,642245	53,2398	5,38016	44,66376	247,4063

(Resumen de los cálculos realizados)

3º- Calcularemos: "Voc, Vmpp, Impp, Isc, Pp" en relación con el número de módulos en serie y las ramas en paralelo para conectar al MPP1 en las condiciones más desfavorables.

Voc, verano(MPP1) =
$$Voc$$
, $m\'odulo ver. \times N\'um. m\'odulos en serie = $43,31 \times 6$
= $259,85 V$$

Voc, invierno(MPP1) =
$$Voc$$
, $m\'odulo$ inv.× $N\'um$. $m\'odulos$ en $serie$ = 53,24 × 6 = 319,44 V

(Estos valores deben cumplir: Tensión de arranque< Voc,invierno y verano<Voc,inversor)

100<Voc,invierno y verano<500 CUMPLE

Vmpp, verano(MPP1) = Vmpp, $m\'odulo\ ver. \times N\'um$. $m\'odulos\ en\ serie = 36,33 \times 6$ = 217,99 V

Vmpp, invierno(MPP1) =
$$Vmpp$$
, $m\'odulo~inv. \times N\'um. m\'odulos~en~serie$
= $44,665 \times 6 = 267,98~V$

(Estos valores deben cumplir: Rango de voltaje MPPT mín.< Vmpp,invierno y verano<Rango de voltaje MPPT máx.)

80<Vmpp,invierno y verano<500 CUMPLE

Isc, verano(MPP1) = Isc, módulo ver.× Núm. ramas en paralelo =
$$11,65 \times 1 = 11,65 \text{ A}$$

Isc, invierno(MPP1) = Isc, módulo inv. \times Núm. ramas en paralelo = 5,64 \times 1 = 5.64 A

(Estos valores deben cumplir: Isc,inversor.> Isc,invierno y verano)

16>lsc,invierno y verano **CUMPLE**

Impp, verano(MPP1) = Impp, módulo ver.
$$\times$$
 Núm. ramas en paralelo = $11,11 \times 1 = 11,11 \text{ A}$

Impp, invierno(MPP1) = Impp, módulo inv.
$$\times$$
 Núm. ramas en paralelo = $5.38 \times 1 = 5.38 \text{ A}$

(Estos valores deben cumplir: Impp,inversor.> Impp,invierno y verano)

12,5>lsc,invierno y verano **CUMPLE**

Pp, verano(MPP1) = Pp, $m\'odulos \times (N\'um. ramas en paralelo <math>\times$ $N\'um. m\'odulos en serie) = 217,99 <math>\times (1 \times 6) = 2268,97W$

Pp, invierno(MPP1) = Pp, $m\'odulos \times (N\'um. ramas en paralelo <math>\times$ $N\'um. m\'odulos en serie) = 247,41 \times (1 \times 6) = 1484,43 W$

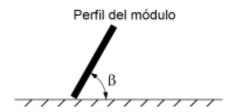
(Estos valores deben cumplir: Pp,verano(MPP1) y Pp,invierno(MPP1) < Máx. potencia fotvoltaica,inversor)

Pp,verano(MPP1) y Pp,invierno(MPP1) <3500 CUMPLE

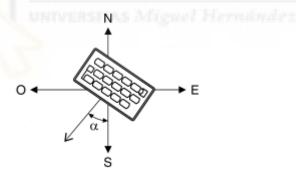
When a label of MPP1 to the contract of the co							
lsc	Vmax. CC(Voc)	Impp	Vmpp	Pp			
11,65223	259,846116	11,11098	217,9893	2268,971			
5,642245	319,4388	5,38016	267,9826	1484,438			

(Resumen de los cálculos realizados)

En conclusión, tras realizar todos los cálculos necesarios tanto en condiciones STC como en las condiciones más desfavorables, el inversor escogido nos permitirá instalar 1 string de 6 módulos en serie conectado a un solo MPPt (MPP1).



3.-Cálculos de perdidas por orientación e inclinación


El objeto de este anexo es determinar los límites en la orientación e inclinación de los módulos de acuerdo con las pérdidas máximas permisibles por este concepto en el Pliego de Condiciones Técnicas del IDEA.

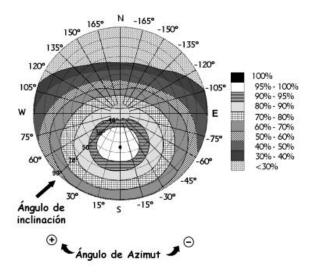
Las pérdidas por este concepto se calcularán en función de:

- Ángulo de inclinación β, definido como el ángulo que forma la superficie de los módulos con el plano horizontal.

- Ángulo de azimut ", definido como el ángulo entre la proyección sobre el plano horizontal de la normal a la superficie del módulo y el meridiano del lugar.

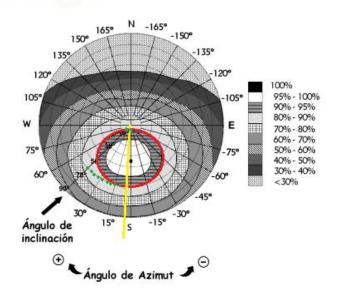
Datos del proyecto:

-Latitud(Φ): 38,2463246°


-Azimut(a): +2°

-Inclinación(β): 30°

Conocido el azimut, determinamos los límites para la inclinación en el caso de Φ =41°. En este proyecto nos encontramos en un caso general por lo que las



pérdidas máximas por este concepto son del 10 %. Para el cálculo de estos límites nos ayudaremos de la siguiente figura:

Ya que las máximas pérdidas permitidas son del 10%, debemos seleccionar los rangos 90%-95%(circulo rojo), marcamos el azimut de nuestro proyecto (línea amarilla), por último, unimos los puntos de intersección(entre el círculo rojo y la línea amarilla) a la línea que nos indica los límites de inclinación a 41°. Hayamos los siguientes valores:

-Inclinación máxima(41°): 60° -Inclinación mínima(41°): 2°

El siguiente paso, es corregir las inclinaciones obtenidas para la latitud de nuestro proyecto:

-Inclinación máxima = Inclinación (Φ = 41°) – (41° – Φ del proyecto)

Inclinación máxima= 60°- (41°-38,2463246°)= 57,2463246°

-Inclinación mínima = Inclinación (Φ = 41°) – (41° – Φ del proyecto) [O valor mínimo]

Inclinación mínima= 2°- (41°-38,2463246°)= 57,2463246°= -0,75367

(Elegimos 0 ya que es el valor mínimo de inclinación)

En conclusión, la inclinación de los paneles estará entre 57,2463246° y 0°. Dado que la instalación ha sido proyectada con una inclinación de 30º se estará cumpliendo con lo impuesto en el Pliego de Condiciones Técnicas del IDAE.

4.-Cálculo de sombras y distancia entre filas de módulos.

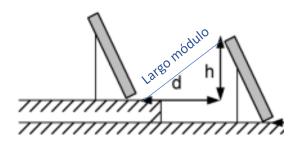
Una vez obtenido el dimensionamiento de la instalación y conocidos la cantidad de módulos a utilizar en el proyecto, se procede con el estudio de las sombras circundantes y la distancia entre filas de módulos para evitar las pérdidas de producción debido a estos factores.

 Comenzaremos calculando la distancia mínima entre filas de módulos según indica el Pliego de Condiciones Técnicas del IDEA.

Datos necesarios:

-Latitud: 38,24632°

-Largo del módulo solar: 2,112 m


-Inclinación módulos: 30º

-K: factor adimensional dependiente de la latitud del lugar. Interpolamos entre 37° y 39° utilizando el valor de nuestra latitud y obtenemos un valor de k=2,3843

Latitud	29°	37°	39°	41°	43°	45°
<u>k</u>	1,600	2,246	2,475	2,747	3,078	3,487

Una vez conocidos todos los datos necesarios, procedemos a calcular la distancia mínima entre módulos:

-1º Calculamos el valor de h utilizando el seno del ángulo y el largo del módulo:

$$h = sen\left(30\frac{\pi}{180}\right) \times Largo\ del\ m\'odulo = 1,056\ m$$

-2º: Calculamos la distancia mínima que debe haber entre las filas de módulos:

$$d = h \times K = 2.52 m$$

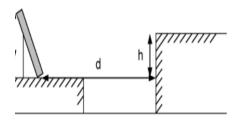
En conclusión, las 2 filas de 3 módulos cada una, deberán estar a una distancia de 2,52 m mínimo para evitar pérdidas.

-Realizaremos el cálculo de la distancia mínima a la que deberían estar los paneles con respecto al muro que rodea el contorno del tejado.

Datos necesarios:

-Latitud: 38,24632°

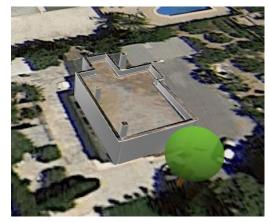
-Altura del muro: 0,7 m


-Inclinación módulos: 30º

-K: factor adimensional dependiente de la latitud del lugar. Interpolamos entre 37° y 39° utilizando el valor de nuestra latitud y obtenemos un valor de k=2,3843

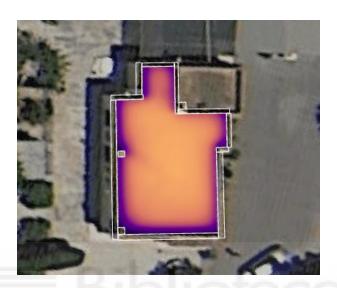
Latitud	29°	37°	39°	41°	43°	45°
k	1,600	2,246	2,475	2,747	3,078	3,487

Una vez conocidos todos los datos necesarios, procedemos a calcular la distancia mínima de los módulos con el muro:

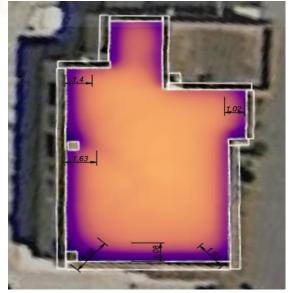


-Calcularemos d utilizando la siguiente ecuación:

$$d = h \times K = 1,67 m$$


Continuaremos realizando un análisis de las sombras circundantes, utilizando SolarEdge Designer, un programa que nos permite representar los objetos que pueden producir sombras en la zona de actuación y mostrarnos la irradiancia considerando esos objetos.

-1º Comenzamos representando la vivienda y los objetos circundantes en 3D:



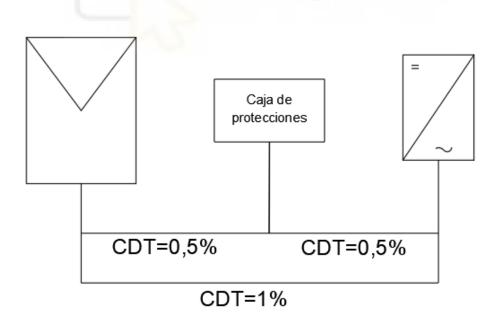
-2º Una vez tenemos la representación d la vivienda en 3D, activamos la muestra de irradiancia en el lugar representado: La zona anaranjada nos indica los lugares donde la irradiancia sería máxima, en cambio las zonas púrpuras indican aquellos lugares donde los objetos que rodean el tejado producirían sombras y por lo tanto la eficiencia de la instalación se vería reducida.

-3º Al estar la representación a escala, podemos realizar las mediciones de los lugares donde la irradiancia no sería máxima a causa de los objetos

circundantes:

En conclusión, con la realización de este estudio podemos conocer el lugar en el cual la instalación de los módulos sería óptima y reduciríamos este tipo de perdidas en la instalación proyectada.

5.-Calculo de la sección de los conductores


Es este apartado se calcula la sección necesaria para todo el cableado que utilizaremos en la instalación.

Para determinar la sección del cableado a utilizar se seguirán dos criterios:

-Criterio de máxima intensidad admisible: Ésta deberá ser la máxima intensidad que pueda proporcionar el generador mayorada un 125% siguiendo las indicaciones de la ITC-BT 40.

-Criterio de máxima caída de tensión admisible: Según lo establecido en el Pliego de Condiciones técnicas del IDAE la caída d tensión no podrá ser superior al 1% en la parte de CC y 0,5% en la parte de CA.

-Comenzaremos calculando la sección del cable de la parte de corriente continua(CC): Constará de dos partes; del string de 6 módulos en serie a la caja de protecciones en la que se impondrá una caída de tensión del 0,5% y de la caja de protecciones al inversor donde se impondrá el otro 0,5%.

-1º Módulos-caja de protecciones:

Según Pliego de Condiciones Técnicas del IDEA:

-Caída De Tensión máx.: 0,5%

-Conductividad del cobre: 56 m/Ωmm²

-Voc del string: 49,85 V x 6= 299,1 V

- Δ U: Voltaje considerando la caída de tensión impuesta $(\frac{0.5}{100}x299.1 = 1,4955)$

-Isc del string: 11,41 A x 1= 11,41 A

-Distancia: 10 m

-Sección: $S = \frac{2 \times D \times Isc\ del\ string}{Conductividad \times \Delta U} = \frac{2 \times 10 \times 11,41}{56 \times 1,4955} = 4,087\ \text{mm}^2$

 Según ITC-BT-40: Consultando la tabla del ITC-BT-19 se usará el método de instalación B1 con doble conductor y asilamiento de PVC.

-Sección: 4,087 mm²

-I máx.: Isc del string x 1,25= 14,26 A

-Para una sección de cable de 4 mm² la intensidad máxima admisible es de 30 A por lo que estaríamos conforme a lo establecido en la norma.

En resumidas cuentas, utilizaremos un cable de sección 6 mm² sobredimensionando la sección del cable para evitar posibles fallas en cuanto a caídas de tensión.

-2º Caja de protecciones-inversor:

Según Pliego de Condiciones Técnicas del IDEA:

-Caída De Tensión máx.: 0,5%

-Conductividad del cobre: 56 m/Ωmm²

-Voc del string: 49,85 V x 6= 299,1 V

- Δ U: Voltaje considerando la caída de tensión impuesta $(\frac{0.5}{100}x299.1=1.4955)$

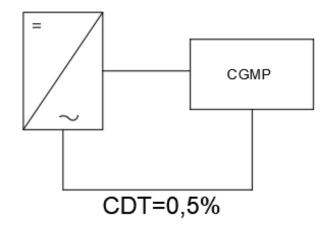
-Isc del string: 11,41 A x 1= 11,41 A

-Distancia: 5 m

-Sección:
$$S = \frac{2 \times D \times Isc \ del \ string}{Conductividad \times \Delta U} = \frac{2 \times 10 \times 11,41}{56 \times 1,4955} = 1,3624 \ \text{mm}^2$$

 Según ITC-BT-40: Consultando tabla de intensidades admisibles presente en el ITC-BT-19 se usará el método de instalación B1 con doble conductor y asilamiento de PVC.

-Sección: 1,3624 mm² sección comercial 1,5 mm²


-I máx.: Isc del string x 1,25= 14,26 A

-Para una sección de cable de 1,5 mm² la intensidad máxima admisible es de 15 A por lo que estaríamos conforme a lo establecido en la norma.

En esta parte utilizaremos un cable de sección 6 mm² para utilizar la misma sección que en la parte anterior y así sobredimensionando la sección del cable para evitar posibles fallas en cuanto a caídas de tensión.

-Calcularemos la sección del cable de la parte de corriente alterna (AC): Es la parte que discurre desde el inversor hasta el Cuadro General de Mando y Protección e impondremos una CDT máx. de 0,5%.

-1º Módulos-caja de protecciones:

- Según Pliego de Condiciones Técnicas del IDEA:
 - -Caída De Tensión máx.: 0,5%

-Conductividad del cobre: 56 m/Ωmm²

-V a la salida del inversor: 230 V

- ▲ U: Voltaje considerando la caída de tensión impuesta

$$(\frac{0.5}{100}x230 = 1.15)$$

-l a la salida del inversor: 11,3 A

-Distancia: 5 m

-Sección:
$$S = \frac{2 \times D \times Isalida}{Conductividad \times \Delta U} = \frac{2 \times 5 \times 11,3}{56 \times 1,15} = 1,7546 \text{ mm}^2$$

- Según ITC-BT-40: Consultando la tabla del ITC-BT-19 se usará el método de instalación B1 con doble conductor y aislamiento de PVC.
 - -Sección: 1,7546 mm², sección comercial 2,5 mm²
 - -I máx.: I salida del inversor x 1,25= 14,125 A
 - -Para una sección de cable de 2,5 mm² la intensidad máxima admisible es de 21 A por lo que estaríamos conforme a lo establecido en la norma.

Utilizaremos un cable de sección 4 mm² sobredimensionando la sección del cable para evitar posibles fallas en cuanto a caídas de tensión.

6.-Cálculo de puesta a tierra

Para la puesta a tierra seguiremos las pautas indicadas tanto en el REBT como en el Pliego de Condiciones técnicas del IDEA.

En el Pliego de Condiciones Técnicas de Instalaciones fotovoltaicas conectada a red nos indica que todas las masas de la instalación fotovoltaica, tanto de la sección continua como de la alterna, estarán conectadas a una única tierra, será independiente de la del neutro de la empresa distribuidora. Dado que debemos poner a tierra tanto la parte de alterna como la parte de continua de nuestra instalación, consultaremos las condiciones necesarias indicadas en el Reglamento de Baja Tensión.

Según lo dispuesto en la ITC-BT-18, el electrodo de puesta a tierra debe dimensionarse para que cualquier masa no pueda dar lugar a tensiones de contacto superiores a 24V al encontrarse el campo generador instalado a la intemperie.

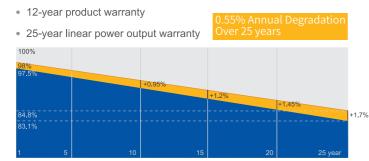
Sin embargo, la ITC-BT-26 indica que la resistencia obtenida debería ser inferior a 37Ω para edificios sin pararrayos como es el caso.

Una vez consultada la normativa a cumplir, medimos los valores en ohmios que presenta la resistencia a tierra de la vivienda. El resultado fue inferior a 37 Ω por lo que tanto los módulos como el inversor podrán ir conectados a la tierra de la vivienda sin necesidad de la instalación de una nueva pica de puesta a tierra.

-Puesta a tierra en módulos(Corriente Continua): Irán unidos a sus estructuras y una vez todos conectados entre si, se empalmará un cable hasta la toma de tierra de la vivienda.

-Puesta a tierra salida del inversor(Corriente Alterna):Saldrá un cable de la salida del inversor directamente a tierra del edificio.

7.-Fichas técnicas



Less shading and lower resistive loss

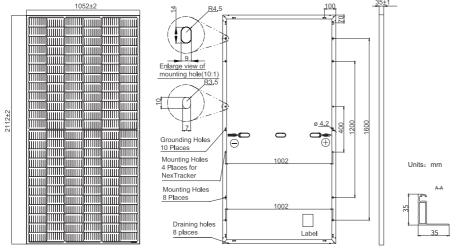
Better mechanical loading tolerance

Superior Warranty

■ New linear power warranty ■ Standard module linear power warranty

Comprehensive Certificates

- IEC 61215, IEC 61730,UL 61215, UL 61730
- ISO 9001: 2015 Quality management systems
- ISO 14001: 2015 Environmental management systems
- ISO 45001:2018 Occupational health and safety management systems
- IEC TS 62941: 2016 Terrestrial photovoltaic (PV) modules Guidelines for increased confidence in PV module design qualification and type approval



MECHANICAL DIAGRAMS

SPECIFICATIONS

Cell	Mono
Weight	24.7kg±3%
Dimensions	2112±2mm×1052±2mm×35±1mm
Cable Cross Section Siz	te 4mm² (IEC) , 12 AWG(UL)
No. of cells	144 (6×24)
Junction Box	IP68, 3 diodes
Connector	QC 4.10(1000V) QC 4.10-35(1500V)
Cable Length (Including Connector)	Portrait: 300mm(+)/400mm(-); Landscape: 1200mm(+)/1200mm(-)
Packaging Configuration	31pcs/pallet 682pcs/40ft Container

Remark: customized frame color and cable length available upon request

FI FCTRI	\sim A I	DADABAE	TEDO.	AT OTO

LLLO INIOAL I AIVAILLI L	NO AL OLO					
TYPE	JAM72S20 -445/MR	JAM72S20 -450/MR	JAM72S20 -455/MR	JAM72S20 -460/MR	JAM72S20 -465/MR	JAM72S20 -470/MR
Rated Maximum Power(Pmax) [W]	445	450	455	460	465	470
Open Circuit Voltage(Voc) [V]	49.56	49.70	49.85	50.01	50.15	50.31
Maximum Power Voltage(Vmp) [V]	41.21	41.52	41.82	42.13	42.43	42.69
Short Circuit Current(Isc) [A]	11.32	11.36	11.41	11.45	11.49	11.53
Maximum Power Current(Imp) [A]	10.80	10.84	10.88	10.92	10.96	11.01
Module Efficiency [%]	20.0	20.3	20.5	20.7	20.9	21.2
Power Tolerance			0~+5W			
Temperature Coefficient of Isc(α_Isc)			+0.044%/°C			
T			0.0700/106			

-0.272%/°C Temperature Coefficient of Voc(β_Voc)

Temperature Coefficient of Pmax(γ_Pmp) -0.350%/°C

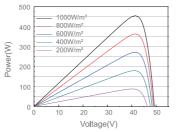
STC Irradiance 1000W/m², cell temperature 25°C, AM1.5G

Remark: Electrical data in this catalog do not refer to a single module and they are not part of the offer. They only serve for comparison among different module types.

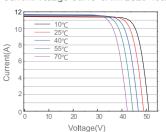
ELECTRICAL PARAMETERS AT NOCT JAM72S20 JAM72S20 JAM72S20 JAM72S20 JAM72S20 JAM72S20 **TYPE** -445/MR -450/MR -455/MR -460/MR -465/MR -470/MR Rated Max Power(Pmax) [W] 336 340 344 348 355 352 Open Circuit Voltage(Voc) [V] 46.90 47.38 46.65 47.15 47.61 47.84 Max Power Voltage(Vmp) [V] 38.95 39.19 39.44 39.68 40.10 Short Circuit Current(Isc) [A] 9.20 9.25 9.29 9.33 9.38 9.42 Max Power Current(Imp) [A] 8.64 8.68 8.72 8.76 8.86 Irradiance 800W/m², ambient temperature 20°C, wind speed 1m/s, AM1.5G NOCT

*For NexTracker installations ,Maximum Static Load, Front is 1800Pa while Maximum Static Load, Back is 1800Pa.

OPERATING	CONDITIONS


Maximum System Voltage	1000V/1500V DC
Operating Temperature	-40 °C ~+85 °C
Maximum Series Fuse Rating	20A
Maximum Static Load,Front* Maximum Static Load,Back*	5400Pa(112 lb/ft²) 2400Pa(50 lb/ft²)
NOCT	45±2℃
Safety Class	Class II
Fire Performance	UL Type 1

CHARACTERISTICS


Current-Voltage Curve JAM72S20-455/MR

Current-Voltage Curve JAM72S20-455/MR

R R O W C

Datasheet	MIN 2500TL-XE	MIN 3000TL-XE	MIN 3600TL-XE	MIN 4200TL-XE	MIN 4600TL-XE	MIN 5000TL-XE	MIN 6000TL-X
Input Data							
Max. recommended PV power	3500W	4200W	5040W	5880W	6440W	7000W	8100W
(for module STC) Max. DC voltage	500V	500V	550V	550V	550V	550V	550V
Start voltage	100V	100V	100V	100V	100V	100V	100V
MPPT voltage range/							
nominal voltage	80V-500V /360V	80V-500V /360V	80V-550V /360V	80V-550V /360V	80V-550V /360V	80V-550V /360V	80V-550V /360V
Max. input current	12.5A/12.5A	12.5A/12.5A	12.5A/12.5A	12.5A/12.5A	12.5A/12.5A	12.5A/12.5A	12.5A/12.5A
Max. short-circuit current	16A/16A	16A/16A	16A/16A	16A/16A	16A/16A	16A/16A	16A/16A
Number of independent MPP trackers / strings per MPP tracker	2/1	2/1	2/1	2/1	2/1	2/1	2/1
Output (AC)							
Rated AC output power	2500W	3000W	3600W	4200W	4600W	5000W	6000W
Max. AC apparent power	2500VA	3000VA	3600VA	4200VA	4600VA	5000VA	6000VA
Max. output current	11.3A	13.6A	16A	19A	20.9A	22.7A	27.2A
AC nominal voltage	230V(160V-300V)	230V(160V-300V)	230V(160V-300V)	230V(160V-300V)	230V(160V-300V)	230V(160V-300V)	230V(160V-300
AC grid frequency	50Hz/60Hz, ± 5Hz	50Hz/60Hz, ± 5Hz	50Hz/60Hz, ± 5Hz	50Hz/60Hz, ± 5Hz	50Hz/60Hz, ± 5Hz	50Hz/60Hz, ± 5Hz	50Hz/60Hz, ±5H
Adjustable power factor	0.8leading	0.8leading	0.8leading	0.8leading	0.8leading	0.8leading	0.8leading
	0.8lagging	0.8lagging	0.8lagging	0.8lagging	0.8lagging	0.8lagging	0.8lagging
THDi	<3%	<3%	<3%	<3%	<3%	<3%	<3%
AC connection	Single phase	Single phase	Single phase	Single phase	Single phase	Single phase	Single phase
Efficiency							
Max.efficiency	98.2%	98.2%	98.2%	98.4%	98.4%	98.4%	98.4%
Euro weighted efficiency	97.1%	97.1%	97.2%	97.5%	97.5%	97.5%	97.5%
MPPT efficiency	99.9%	99.9%	99.9%	99.9%	99.9%	99.9%	99.9%
Protection Devices							
DC reverse polarity protection	yes	yes	yes	yes	yes	yes	yes
DC switch	yes	yes	yes	yes	yes	yes	yes
DC surge protection	Type II	Type II	Type II	Type II	Type II	Type II	Type II
Output over current protection	yes	yes	yes	yes	yes	yes	yes
AC surge protection-varistor	ves	yes	yes	yes	yes	yes	yes
Ground fault monitoring	yes	yes	yes	yes	yes	yes	yes
Grid monitoring	yes	yes	yes	yes	yes	yes	yes
Integrated all - pole sensitive leakage current monitoring unit	yes	yes	yes	yes	yes	yes	yes
General Data							
Dimensions (W / H / D) in mm	375/350/160	375/350/160	375/350/160	375/350/160	375/350/160	375/350/160	375/350/160
Weight	10.8KG	10.8KG	10.8KG	10.8KG	10.8KG	10.8KG	10.8KG
Operating temperature range	-25°C +60°C		-25°C +60°C	-25°C +60°C	-25°C +60°C	-25°C +60°C	-25°C +60
Noise emission (typical)	≤35 dB(A)	≤35 dB(A)	≤35 dB(A)	≤35 dB(A)	≤35 dB(A)	≤35 dB(A)	≤35 dB(A)
Altitude	4000m	4000m	4000m	4000m	4000m	4000m	4000m
Self-Consumption night	< 1W	< 1W	< 1W	< 1W	< 1W	< 1W	< 1W
Topology	Transformerless	Transformerless	Transformerless	Transformerless	Transformerless	Transformerless	Transformerles
Cooling concept	Nature Convection	Nature Convection	Nature Convection	Nature Convection	Nature Convection	Nature Convection	Nature Convect
Environmental Protection Rating	IP65	IP65	IP65	IP65	IP65	IP65	IP65
Relative humidity	100%	100%	100%	100%	100%	100%	100%
Features		1111111011	H4/MC4(opt)	H4/MC4(opt)	H4/MC4(opt)	H4/MC4(opt)	H4/MC4(opt)
DC connection	H4/MC4(opt)	H4/MC4(opt)			, - (-)	, (-)	, (50.)
DC connection	H4/MC4(opt) Connector	H4/MC4(opt) Connector	, , ,	Connector	Connector	Connector	Connector
DC connection AC connection	Connector	Connector	Connector	Connector OLED+LED	Connector OLED+LED	Connector OLED+LED	Connector OLED+LED
DC connection			, , ,	Connector OLED+LED yes / yes / opt / opt / opt	Connector OLED+LED yes / yes / opt / opt / opt	Connector OLED+LED yes / yes / opt / opt / opt	Connector OLED+LED yes / yes / opt / opt / opt / op

Datasheet	ShineLink-X
Communication Interface	
Rf433	Yes
Rf433(in free-field conditions)	Up to 120 m
Rf433(two walls blocking)	20 m
Power Supply	
Power consumption	<2W standby, <5W peak
AC power supply input voltage	196V~250V
AC power supply input frequency	50/60Hz
General Specifications	
Dimensions(L/H/W)mm	105/85/26mm
Weight	< 1kg
Mounting options	Tabletop/wall-mount
Degree of protection	IP30
Status display	LED
Ambient temperature range	-20 to 65 °C
Humidity	0-95% (non condensing)
Features	UNIVERSITAS DITERET FIRMANIES
Graphical user interface	Android/IOS APP
Remote firmware upgrades	Yes
Max. number of devices to monitor	8(RF433)
Warranty	1 years

CE

Leading - edge Technology

- ► High accuracy measurement
- ▶ Energy meter for both PV and battery systems
- ► Support RF communication with Raillog
- ► Single-phase and three-phase meter optional
- Quick plug-and-play installation
- ▶ Support Zero-export function with Growatt inverters
- ► Energy manager with ShineLink

Datasheet	Growatt SPM	Growatt TPM
Inputs (voltage and current)		
Normal voltage	230V	230V/400V
Normal current/Max. current	10A/100A	10/100A
voltage range	176~276V AC (L-N)	100~289V(L-N) 173~500(L-L)
Frequency	50/60Hz (±10%)	50/60Hz (±10%)
Start up current	40mA	40mA
Connection cross-section	≤25mm²	≤25mm²
Torque for screw terminals	2.0Nm	2.0Nm

General data

Dimensitions	36*99*63mm	72*100*66mm
Weight	0.2KG	0.42KG
Operation temperation range	−25 °C +55 °C	−25 °C +55 °C
Relative Humidity	0~95%	0~95%
Mounting	DIN Rail (Indoor)	DIN Rail (Indoor)
Display	LCD	LCD
Self-consumption	<2W	<2W
Measurement accuracy	1%	1%
Communication	RS485	RS485

Certificate

CE, RoHS

Ficha técnica

Soporte inclinado abierto para cubierta plana

- Soporte inclinado para cubierta de hormigón o subestructura.
- Anclaje a hormigón.
- Soporte premontado.
- Disposición de los módulos: Vertical.
- Valido para espesores de módulos de 30 hasta 45 mm.
- Tornillería de anclaje no incluida.
- Kits disponibles de 1 hasta 6 módulos.
- Inclinación estándar 15° y 30°.

Hasta 150 Km/h (Ver documento de velocidades del Viento:

Materiales: Perfilería de aluminio EN AW 6005A T6

Tornillería de acero inoxidable A2-70

Comprobar el buen estado y la capacidad portante de la cubierta antes de cualquier instalación.

Comprobar la impermeabilidad de la fijación una vez colocada.

Dos opciones:

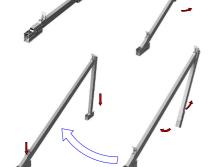
Para módulos de hasta 2279x1150 - Sistema Kit

2279x1150

(Ver página 2)

Para módulos de hasta 2400x1350 - Sistema PS

2400x1350


(Ver página 3)

7 Nm
20 Nm
40 Nm
10 Nm

Apriete de las uniones y anclaje al suelo mediante tornillo de hasta M10.

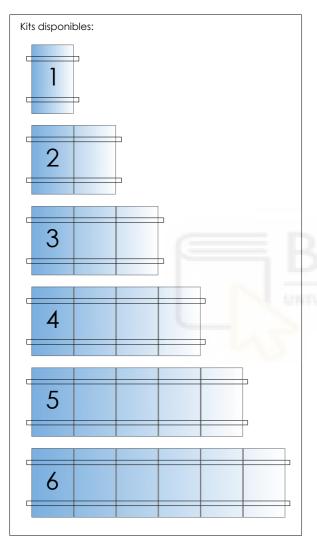
1 por cada lado)

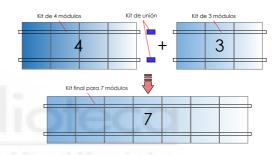
Detalle fijación G1 a triángulo (Son necesarios 2 fijaciones por perfil,

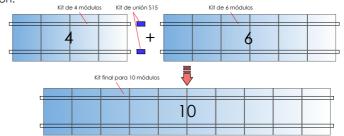
1776

1604

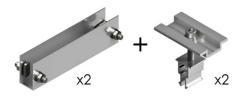
Seguridad:







EJEMPLOS DE CONFIGURACIÓN


Para realizar una fila de 7 módulos se realizaría con 1 Kit de 4 + 1 Kit de 3 + 1 Kit de unión

Para realizar una fila de 10 módulos se realizaría con 1 kit de 4 + 1 Kit de 6 + 1 Kit de unión.

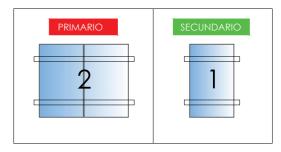
S15 Kit de unión

* Por dilataciones se recomienda no exceder de más de 20 metros por fila

Ficha técnica - Sistema PS

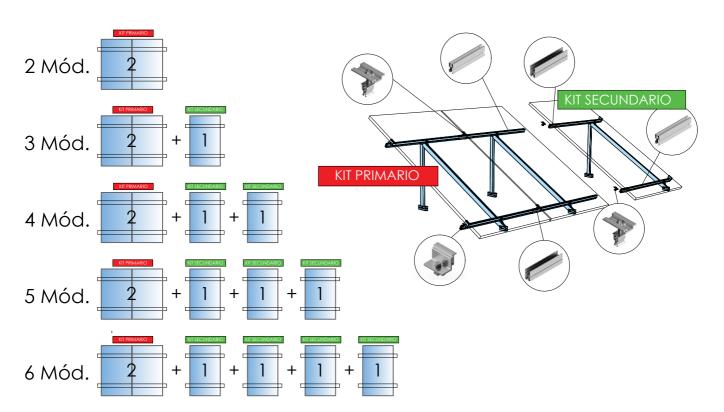
Para módulos de gran formato hasta 1350

Página 3


Sistema modular para instalaciones con módulos de gran formato de hasta 2400x1350.

El sistema consta de 1 kit primario y X número de kit secundario

El Kit primario es un Kit para 2 módulos.


El Kit secundario es un producto complementario de 1 módulo para unirse al Kit primario al incorporar el Kit de unión.

Kits disponibles:

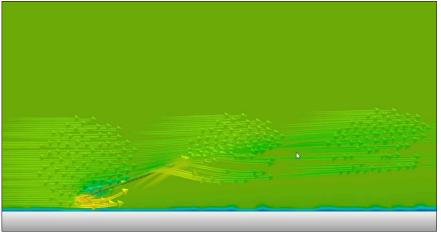
EJEMPLOS DE CONFIGURACIÓN

* Por dilataciones se recomienda no exceder de más de 20 metros por fila

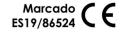
Velocidades de viento

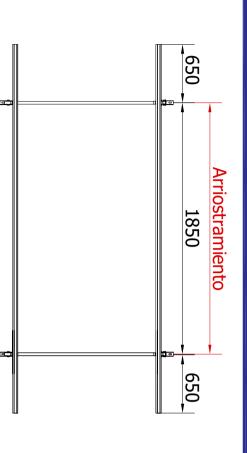
Soporte inclinado abierto para cubierta plana

09V

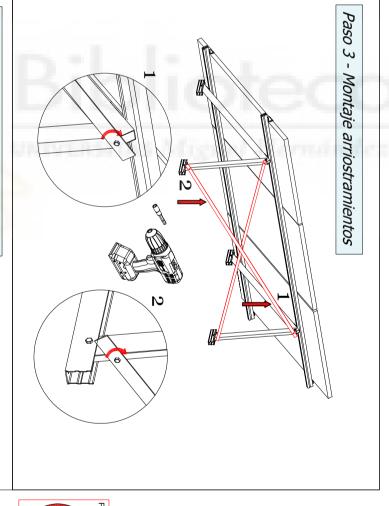


- Cargas de viento: Según túnel del viento en modelo computacional CFD
- Cálculo estructural: Modelo computacional comprobado mediante EUROCÓDIGO 9 "PROYECTO ESTRUCTURAS DE ALUMINIO"


	Cuadro de velocidades máx. admisibles de viento								
	Inclinación	Tamaño del módulo	1	2	3	4	5	6	nº de módulos
	De 5° a 30°	<2000x1000	150	150	150	150	150	150	Vala cidad
KIT	De 3° d 30°	<2279x1150	150	150	150	130	150	150	
NII	35°	<2000x1000	150	150	150	150	150	150	Velocidad de viento
		<2279x1150	150	150	150	130	130	150	km/h
SIST	SISTEMA PS <2400x1350 130								


Tabla 1 - Velocidades máximas de viento admisibles.

- Para garantizar la resistencia a la velocidad máxima de diseño se deberán utilizar anclajes adecuados y utilizar el lastre indicado por el fabricante para cada situación.


Flujo viento - En estructura inclinada.

Soporte incl cubierta pla na. Módulo 2000. inado abierto para

 $\frac{x}{2}$

00

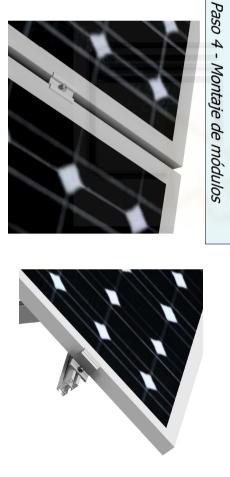
1750

15° - 1436 30° - 1278

15° - 1638 30° - 1480

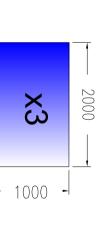
Triángulo plegado

Paso 1 - Montaje Triángulo


hasta su posición final

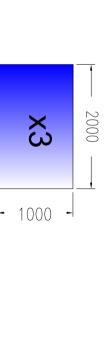
Despliegue fácil del triángulo

Apriete de las uniones y anclaje al suelo mediante tornillo de hasta M10


Se deben atornillar los cuatro puntos de anclaje

X2

PLANO DE MONTAJE


x2 - 2100 mm. x2 - 1050 mm.

Tornillo Presor Tornillo M8 Hexagonal Tornillo M10 Hexagional Tornillo M6.3 Hexagonal

7 Nm 20 Nm 40 Nm 10 Nm

Par de apriete:

? x4

x2 - 2000 mm.

Nos reservamos el derecho a realizar modificaciones en el producto en cualquier momento sin aviso previo si desde nuestro punto de vista son necesarias para la mejora de la calidad. Las ilustraciones pueden ser sólo ejemplos y, por tanto, la imagen que aparece puede diferir del producto suministrado.

Para más información, solicite ficha de anclajes, reacciones y manuales de montaje y mantenimiento.

III-PLIEGO DE CONDICIONES TÉCNICAS

1-Objeto

Este documento, sirve para fijar las condiciones técnicas mínimas que deben cumplir las instalaciones solares fotovoltaicas conectadas a red que se realicen en el ámbito de actuación del IDAE (proyectos, líneas de apoyo, etc.). Además, pretende servir de guía para instaladores y fabricantes de equipos, definiendo las especificaciones mínimas que debe cumplir una instalación para asegurar su calidad, en beneficio del usuario y del propio desarrollo de esta tecnología.

Nos ayudará a valorar la calidad final de la instalación en cuanto a su rendimiento, producción e integración.

El ámbito de aplicación de este documento se extiende a todos los sistemas mecánicos, eléctricos y electrónicos que forman parte de la instalación solar fotovoltaica.

Cuando la situación lo requiera y por algún suceso no previsto, en el presente proyecto se podrán adoptar soluciones distintas a las planteadas en este documento, siempre y cuando, la nueva solución esté suficientemente justificada y no implique una disminución de las calidades exigidas. Asimismo, cualquier cambio en el presente proyecto deberá ponerse en conocimiento de la Dirección Técnica de la obra para que pueda ser aprobado.

2-Normativa

2.1-Generales

-Ley 54/1997, de 27 de noviembre, del Sector Eléctrico.

-Norma UNE-EN 62466: Sistemas fotovoltaicos conectados a red. Requisitos mínimos de documentación, puesta en marcha e inspección de un sistema.

-Resolución de 31 de mayo de 2001 por la que se establecen modelo de contrato tipo y modelo de factura para las instalaciones solares fotovoltaicas conectadas a la red de baja tensión.

-Real Decreto 1663/2000, de 29 de septiembre, sobre conexión de instalaciones fotovoltaicas a la red de baja tensión.

-Real Decreto 1955/2000, de 1 de diciembre, por el que se regulan las actividades de transporte, distribución, comercialización, suministro y procedimientos de autorización de instalaciones de energía eléctrica.

-Real Decreto 842/2002, de 2 de agosto, por el que se aprueba el Reglamento Electrotécnico para Baja Tensión (B.O.E. de 18-9-2002).

-Real Decreto 314/2006, de 17 de marzo, por el que se aprueba el Código Técnico de la Edificación.

-Real Decreto 661/2007, de 25 de mayo, por el que se regula la actividad de producción de energía eléctrica en régimen especial.

-Real Decreto 1110/2007, de 24 de agosto, por el que se aprueba el Reglamento Unificado de puntos de medida del sistema eléctrico.

-Real Decreto 1578/2008, de 26 de septiembre, de retribución de la actividad de producción de energía eléctrica mediante tecnología solar fotovoltaica para instalaciones posteriores a la fecha límite de mantenimiento de la retribución del Real Decreto 661/2007, de 25 de mayo, para dicha tecnología.

2.2-Sistemas generadores fotovoltaicos

-Deberán incorporar el marcado CE, según la Directiva 2006/95/CE del Parlamento Europeo y del Consejo, de 12 de diciembre de 2006, relativa a la aproximación de las legislaciones de los Estados miembros sobre el material eléctrico destinado a utilizarse con determinados límites de tensión.

-UNE-EN 61215: Módulos fotovoltaicos (FV) de silicio cristalino para uso terrestre. Cualificación del diseño y homologación.

-UNE-EN 61646: Módulos fotovoltaicos (FV) de lámina delgada para aplicaciones terrestres. Cualificación del diseño y aprobación de tipo.

-UNE-EN 62108. Módulos y sistemas fotovoltaicos de concentración (CPV). Cualificación del diseño y homologación.

-Los módulos que se encuentren integrados en la edificación, aparte de que deben cumplir la normativa indicada anteriormente, además deberán cumplir con lo previsto en la Directiva 89/106/CEE del Consejo de 21 de diciembre de 1988 relativa a la aproximación de las disposiciones legales, reglamentarias y administrativas de los Estados miembros sobre los productos de construcción.

2.3-Estructuras de soporte

-Si están construidas con perfiles de acero laminado conformado en frío, cumplirán las normas UNE-EN 10219-1 y UNE-EN 10219-2 para garantizar todas sus características mecánicas y de composición química.

-Si es del tipo galvanizada en caliente, cumplirá las normas UNE-EN ISO 14713 (partes 1, 2 y 3) y UNE-EN ISO 10684 y los espesores cumplirán con los mínimos exigibles en la norma UNE-EN ISO 1461.

-En el caso de utilizarse seguidores solares, estos incorporarán el marcado CE y cumplirán lo previsto en la Directiva 98/37/CE del Parlamento Europeo y del Consejo, de 22 de junio de 1998, relativa a la aproximación de legislaciones de los Estados miembros sobre máquinas, y su normativa de desarrollo, así como la Directiva 2006/42/CE del Parlamento Europeo y del Consejo, de 17 de mayo de 2006 relativa a las máquinas.

2.4-Inversores

-UNE-EN 62093: Componentes de acumulación, conversión y gestión de energía de sistemas fotovoltaicos. Cualificación del diseño y ensayos ambientales.

-UNE-EN 61683: Sistemas fotovoltaicos. Acondicionadores de potencia. Procedimiento para la medida del rendimiento.

-IEC 62116. Testing procedure of islanding prevention measures for utility interactive photovoltaic inverters.

-Han de cumplir con la Directiva 2004/108/CE del Parlamento Europeo y del Consejo, de 15 de diciembre de 2004, relativa a la aproximación de las legislaciones de los Estados miembros en materia de compatibilidad electromagnética.

- El cálculo del rendimiento se realizará de acuerdo con la norma UNE-EN 6168: Sistemas fotovoltaicos. Acondicionadores de potencia. Procedimiento para la medida del rendimiento.

2.5-Cableado

-Todo el cableado de continua será de doble aislamiento y adecuado para su uso en intemperie, al aire o enterrado, de acuerdo con la norma UNE 21123.

2.6-Conexión a red

-Todas las instalaciones de hasta 100 kW cumplirán con lo dispuesto en el Real Decreto 1663/2000 (artículos 8 y 9) sobre conexión de instalaciones fotovoltaicas conectadas a la red de baja tensión.

2.7-Medidas

-Todas las instalaciones cumplirán con el Real Decreto 1110/2007, de 24 de agosto, por el que se aprueba el Reglamento Unificado de puntos de medida del sistema eléctrico.

2.8-Protecciones

-Todas las instalaciones cumplirán con lo dispuesto en el Real Decreto 1663/2000 (artículo 11) sobre protecciones en instalaciones fotovoltaicas conectadas a la red de baja tensión.

2.9-Puesta a tierra de las instalaciones fotovoltaicas

-Todas las instalaciones cumplirán con lo dispuesto en el Real Decreto 1663/2000 (artículo 12) sobre las condiciones de puesta a tierra en instalaciones fotovoltaicas conectadas a la red de baja tensión.

2.10-Armónicos y compatibilidad electromagnética

-Todas las instalaciones cumplirán con lo dispuesto en el Real Decreto 1663/2000 (artículo 13) sobre armónicos y compatibilidad electromagnética en instalaciones fotovoltaicas conectadas a la red de baja tensión.

3-Definiciones

3.1-Radiación solar

Energía procedente del Sol en forma de ondas electromagnéticas

3.2-Irradiancia

Densidad de potencia incidente en una superficie o la energía incidente en una superficie por unidad de tiempo y unidad de superficie. Se mide en kW/m2.

3.3-Irradiación

Energía incidente en una superficie por unidad de superficie y a lo largo de un cierto período de tiempo. Se mide en kWh/m2, o bien en MJ/m2.

3.4-Instalaciones fotovoltaicas

Aquellas que disponen de módulos fotovoltaicos para la conversión directa de la radiación solar en energía eléctrica sin ningún paso intermedio.

3.5-Instalaciones fotovoltaicas interconectadas

Aquellas que disponen de conexión física con las redes de transporte o distribución de energía eléctrica del sistema, ya sea directamente o a través de la red de un consumidor.

3.6-Línea y punto de conexión y medida

La línea de conexión es la línea eléctrica mediante la cual se conectan las instalaciones fotovoltaicas con un punto de red de la empresa distribuidora o con la acometida del usuario, denominado punto de conexión y medida.

3.7-Interruptor automático de la interconexión

Dispositivo de corte automático sobre el cual actúan las protecciones de interconexión.

3.8-Interruptor general

Dispositivo de seguridad y maniobra que permite separar la instalación fotovoltaica de la red de la empresa distribuidora.

3.9-Generador fotovoltaico

Asociación en paralelo de ramas fotovoltaicas.

3.10-Rama fotovoltaica

Subconjunto de módulos interconectados en serie o en asociaciones serie-paralelo, con voltaje igual a la tensión nominal del generador.

3.11-Inversor

Convertidor de tensión y corriente continua en tensión y corriente alterna. También se denomina ondulador.

3.12-Potencia nominal del generador

Suma de las potencias máximas de los módulos fotovoltaicos.

3.13-Potencia de la instalación fotovoltaica o potencia nominal

Suma de la potencia nominal de los inversores (la especificada por el fabricante) que intervienen en las tres fases de la instalación en condiciones nominales de funcionamiento.

3.14-Célula solar o fotovoltaica

Dispositivo que transforma la radiación solar en energía eléctrica.

3.15-Célula de tecnología equivalente (CTE)

Célula solar encapsulada de forma independiente, cuya tecnología de fabricación y encapsulado es idéntica a la de los módulos fotovoltaicos que forman la instalación.

3.16-Módulo o panel fotovoltaico

Conjunto de células solares directamente interconectadas y encapsuladas como único bloque, entre materiales que las protegen de los efectos de la intemperie.

3.17-Condiciones Estándar de Medida (CEM)

Condiciones de irradiancia y temperatura en la célula solar, utilizadas universalmente para caracterizar células, módulos y generadores solares y definidas del modo siguiente:

Irradiancia solar: 1000 W/m2

Distribución espectral: AM 1,5 G

- Temperatura de célula: 25 °C

3.18-Potencia pico

Potencia máxima del panel fotovoltaico en CEM.

3.19-TONC

Temperatura de operación nominal de la célula, definida como la temperatura que alcanzan las células solares cuando se somete al módulo a una irradiancia de 800 W/m2 con distribución espectral AM 1,5 G, la temperatura ambiente es de 20 °C y la velocidad del viento, de 1 m/s.

3.20-Integración arquitectónica de módulos fotovoltaicos

Cuando los módulos fotovoltaicos cumplen una doble función, energética y arquitectónica (revestimiento, cerramiento o sombreado) y, además, sustituyen a elementos constructivos convencionales. La colocación de módulos fotovoltaicos paralelos a la envolvente del edificio sin la doble funcionalidad, se denominará superposición y no se considerará integración arquitectónica. No se aceptarán, dentro del concepto de superposición, módulos horizontales

3.21-Revestimiento

Cuando los módulos fotovoltaicos constituyen parte de la envolvente de una construcción arquitectónica.

3.22-Cerramiento

Cuando los módulos constituyen el tejado o la fachada de la construcción arquitectónica, debiendo garantizar la debida estanquidad y aislamiento térmico.

3.23-Elementos de sombreado

Cuando los módulos fotovoltaicos protegen a la construcción arquitectónica de la sobrecarga térmica causada por los rayos solares, proporcionando sombras en el tejado o en la fachada.

4-Diseño

4.1-Diseño del generador fotovoltaico

4.1.1-Generalidades

El módulo fotovoltaico seleccionado cumplirá las especificaciones del apartado 2.2 y 5.2.

Todos los módulos que integren la instalación serán del mismo modelo, o en el caso de modelos distintos, el diseño debe garantizar

totalmente la compatibilidad entre ellos y la ausencia de efectos negativos en la instalación por dicha causa.

En aquellos casos excepcionales en que se utilicen módulos no cualificados, deberá justificarse debidamente y aportar documentación sobre las pruebas y ensayos a los que han sido sometidos. En cualquier caso, han de cumplirse las normas vigentes de obligado cumplimiento.

4.1.2-Orientación, inclinación y sombras

La orientación e inclinación del generador fotovoltaico y las posibles sombras sobre el mismo serán tales que las pérdidas sean inferiores a los límites de la siguiente tabla. Se considerarán tres casos: general, superposición de módulos e integración arquitectónica. En todos los casos han de cumplirse tres condiciones: pérdidas por orientación e inclinación, pérdidas por sombreado y pérdidas totales inferiores a los límites estipulados respecto a los valores óptimos.

	Orientación e inclinación (OI)	Sombras (S)	Total (OI+S)
General	10%	10%	15%
Superposición	20%	15%	30%
Integración arquitectónica	40%	20%	50%

Cuando, por razones justificadas, y en casos especiales en los que no se puedan instalar de acuerdo con el apartado, se evaluará la reducción en las prestaciones energéticas de la instalación, incluyéndose en la Memoria del Proyecto.

En todos los casos deberán evaluarse las pérdidas por orientación e inclinación del generador y sombras. Estos cálculos se harán siguiendo los anexos de cálculo de la Memoria.

4.2-Diseño del sistema de monitorización

El sistema de monitorización proporcionará medidas, como mínimo, de las siguientes variables:

- Voltaje y corriente CC a la entrada del inversor.
- Voltaje de fase/s en la red, potencia total de salida del inversor.
- Radiación solar en el plano de los módulos, medida con un módulo o una célula de tecnología equivalente.
 - Temperatura ambiente en la sombra.
- Potencia reactiva de salida del inversor para instalaciones mayores de 5 kWp.
- Temperatura de los módulos en integración arquitectónica y, siempre que sea posible, en potencias mayores de 5 kW.

Los datos se presentarán en forma de medias horarias. Los tiempos de adquisición, la precisión de las medidas y el formato de presentación se hará conforme al documento del JRC-*Ispra "Guidelines for the Assessment of* Photovoltaic Plants - *Document A"*, *Report* EUR16338 EN.

El sistema de monitorización sera fácilmente accesible para el usuario.

4.3-Integración arquitectónica

En el caso de pretender realizar una instalación integrada desde el punto de vista arquitectónico según lo estipulado en el punto 3.20, la Memoria de Diseño o Proyecto especificarán las condiciones de la construcción y de la instalación, y la descripción y justificación de las soluciones elegidas.

Las condiciones de la construcción se refieren al estudio de características urbanísticas, implicaciones en el diseño, actuaciones sobre la construcción, necesidad de realizar obras de reforma o ampliación, verificaciones estructurales, etc. que, desde el punto de vista del profesional competente en la edificación, requerirían su intervención.

Las condiciones de la instalación se refieren al impacto visual, la modificación de las condiciones de funcionamiento del edificio, la necesidad de

habilitar nuevos espacios o ampliar el volumen construido, efectos sobre la estructura, etc.

5-Componentes y materiales

5.1-Generalidades

Como principio general se ha de asegurar, como mínimo, un grado de aislamiento eléctrico de tipo básico clase I en lo que afecta tanto a equipos (módulos e inversores), como a materiales (conductores, cajas y armarios de conexión), exceptuando el cableado de continua, que será de doble aislamiento de clase 2 y un grado de protección mínimo de IP65.

La instalación incorporará todos los elementos y características necesarios para garantizar en todo momento la calidad del suministro eléctrico.

El funcionamiento de las instalaciones fotovoltaicas no deberá provocar en la red averías, disminuciones de las condiciones de seguridad ni alteraciones superiores a las admitidas por la normativa que resulte aplicable.

Asimismo, el funcionamiento de estas instalaciones no podrá dar origen a condiciones peligrosas de trabajo para el personal de mantenimiento y explotación de la red de distribución.

Los materiales situados en intemperie se protegerán contra los agentes ambientales, en particular contra el efecto de la radiación solar y la humedad.

Se incluirán todos los elementos necesarios de seguridad y protecciones propias de las personas y de la instalación fotovoltaica, asegurando la protección frente a contactos directos e indirectos, cortocircuitos, sobrecargas, así como otros elementos y protecciones que resulten de la aplicación de la legislación vigente.

En la Memoria de Diseño o Proyecto se incluirán las fotocopias de las especificaciones técnicas proporcionadas por el fabricante de todos los componentes.

Por motivos de seguridad y operación de los equipos, los indicadores, etiquetas, etc. de los mismos estarán en castellano y además, si procede, en alguna de las lenguas españolas oficiales del lugar de la instalación.

5.2-Sistemas generadores fotovoltaicos

Los módulos deberán cumplir toda la normativa descrita en el apartado 2.2.

Aquellos módulos que no puedan ser ensayados según las normas citadas en el apartado 2.2, deberán acreditar el cumplimiento de los requisitos mínimos establecidos en las mismas por otros medios, y con carácter previo a su inscripción definitiva en el registro de régimen especial dependiente del órgano competente. Será necesario justificar la imposibilidad de ser ensayados, así como la acreditación del cumplimiento de dichos requisitos, lo que deberá ser comunicado por escrito a la Dirección General de Política Energética y Minas, quien resolverá sobre la conformidad o no de la justificación y acreditación presentadas.

El módulo fotovoltaico llevará de forma claramente visible e indeleble el modelo y nombre o logotipo del fabricante, así como una identificación individual o número de serie trazable a la fecha de fabricación.

Se utilizarán módulos que se ajusten a las características técnicas descritas a continuación.

Los módulos deberán llevar los diodos de derivación para evitar las posibles averías de las células y sus circuitos por sombreados parciales y tendrán un grado de protección IP65.

Los marcos laterales, si existen, serán de aluminio o acero inoxidable.

Para que un módulo resulte aceptable, su potencia máxima y corriente de cortocircuito reales referidas a condiciones estándar deberán estar comprendidas en el margen del ± 3 % de los correspondientes valores nominales de catálogo.

Será rechazado cualquier módulo que presente defectos de fabricación como roturas o manchas en cualquiera de sus elementos así como falta de alineación en las células o burbujas en el encapsulante.

Será deseable una alta eficiencia de las células.

La estructura del generador se conectará a tierra.

Por motivos de seguridad y para facilitar el mantenimiento y reparación del generador, se instalarán los elementos necesarios (fusibles, interruptores, etc.) para la desconexión, de forma independiente y en ambos terminales, de cada una de las ramas del resto del generador.

Los módulos fotovoltaicos estarán garantizados por el fabricante durante un período mínimo de 10 años y contarán con una garantía de rendimiento durante 25 años.

5.3-Estructura soporte

Deberán cumplir la normativa descrita en el apartado 2.3.

Las estructuras soporte deberán cumplir las especificaciones de este apartado. En todos los casos se dará cumplimiento a lo obligado en el Código Técnico de la Edificación respecto a seguridad.

La estructura soporte de módulos ha de resistir, con los módulos instalados, las sobrecargas del viento y nieve, de acuerdo con lo indicado en el Código Técnico de la edificación y demás normativa de aplicación.

El diseño y la construcción de la estructura y el sistema de fijación de módulos, permitirá las necesarias dilataciones térmicas, sin transmitir cargas que puedan afectar a la integridad de los módulos, siguiendo las indicaciones del fabricante.

Los puntos de sujeción para el módulo fotovoltaico serán suficientes en número, teniendo en cuenta el área de apoyo y posición relativa, de forma que no se produzcan flexiones en los módulos superiores a las permitidas por el fabricante y los métodos homologados para el modelo de módulo.

El diseño de la estructura se realizará para la orientación y el ángulo de inclinación especificado para el generador fotovoltaico, teniendo en cuenta la facilidad de montaje y desmontaje, y la posible necesidad de sustituciones de elementos.

La estructura se protegerá superficialmente contra la acción de los agentes ambientales. La realización de taladros en la estructura se llevará a cabo antes de proceder, en su caso, al galvanizado o protección de la estructura.

La tornillería será realizada en acero inoxidable. En el caso de que la estructura sea galvanizada se admitirán tornillos galvanizados, exceptuando la sujeción de los módulos a la misma, que serán de acero inoxidable.

Los topes de sujeción de módulos y la propia estructura no arrojarán sombra sobre los módulos.

En el caso de instalaciones integradas en cubierta que hagan las veces de la cubierta del edificio, el diseño de la estructura y la estanquidad entre módulos se ajustará a las exigencias vigentes en materia de edificación.

Se dispondrán las estructuras soporte necesarias para montar los módulos, tanto sobre superficie plana (terraza) como integrados sobre tejado, cumpliendo lo especificado en el punto 4.1.2 sobre sombras. Se incluirán todos los accesorios y bancadas y/o anclajes.

La estructura soporte será calculada según la normativa vigente para soportar cargas extremas debidas a factores climatológicos adversos, tales como viento, nieve, etc.

5.4-Inversores

Deberán cumplir con la normativa descrita en el apartado 2.4.

Serán del tipo adecuado para la conexión a la red eléctrica, con una potencia de entrada variable para que sean capaces de extraer en todo

momento la máxima potencia que el generador fotovoltaico puede proporcionar a lo largo de cada día.

Las características básicas de los inversores serán las siguientes:

- -Principio de funcionamiento: fuente de corriente.
- -Autoconmutados.
- -Seguimiento automático del punto de máxima potencia del generador.
 - -No funcionarán en isla o modo aislado.

Los inversores cumplirán con las directivas comunitarias de Seguridad Eléctrica y Compatibilidad Electromagnética (ambas serán certificadas por el fabricante), incorporando protecciones frente a:

- -Cortocircuitos en alterna.
- -Tensión de red fuera de rango.
- -Frecuencia de red fuera de rango.
- -Sobretensiones, mediante varistores o similares.
- -Perturbaciones presentes en la red como microcortes, pulsos, defectos de ciclos, ausencia y retorno de la red, etc.

Cada inversor dispondrá de las señalizaciones necesarias para su correcta operación, e incorporará los controles automáticos imprescindibles que aseguren su adecuada supervisión y manejo.

Cada inversor incorporará, al menos, los controles manuales siguientes:

- -Encendido y apagado general del inversor.
- -Conexión y desconexión del inversor a la interfaz CA.

Las características eléctricas de los inversores serán las siguientes:

-El inversor seguirá entregando potencia a la red de forma continuada en condiciones de irradiancia solar un 10% superiores a las CEM. Además soportará picos de un 30% superior a las CEM durante períodos de hasta 10 segundos.

-El rendimiento de potencia del inversor (cociente entre la potencia activa de salida y la potencia activa de entrada), para una potencia de salida en corriente alterna igual al 50 % y al 100% de la potencia nominal, será como mínimo del 92% y del 94% respectivamente.

El autoconsumo de los equipos (pérdidas en "vacío") en "stand-by" o modo nocturno deberá ser inferior al 2 % de su potencia nominal de salida.

El factor de potencia de la potencia generada deberá ser superior a 0,95, entre el 25 % y el 100 % de la potencia nominal.

A partir de potencias mayores del 10 % de su potencia nominal, el inversor deberá inyectar en red.

Los inversores tendrán un grado de protección mínima IP 20 para inversores en el interior de edificios y lugares inaccesibles, IP 30 para inversores en el interior de edificios y lugares accesibles, y de IP 65 para inversores instalados a la intemperie. En cualquier caso, se cumplirá la legislación vigente.

Los inversores estarán garantizados para operación en las siguientes condiciones ambientales: entre 0 °C y 40 °C de temperatura y entre 0 % y 85 % de humedad relativa.

Los inversores para instalaciones fotovoltaicas estarán garantizados por el fabricante durante un período mínimo de 3 años.

5.5-Cableado

Deberán cumplir con la normativa descrita en el apartado 2.5.

Los positivos y negativos de cada grupo de módulos se conducirán separados y protegidos de acuerdo con la normativa vigente.

Los conductores serán de cobre y tendrán la sección adecuada para evitar caídas de tensión y calentamientos. Concretamente, para cualquier condición de trabajo, los conductores deberán tener la sección suficiente para que la caída de tensión sea inferior del 1,5 %.

El cable deberá tener la longitud necesaria para no generar esfuerzos en los diversos elementos ni posibilidad de enganche por el tránsito normal de personas.

5.6-Protecciones

En conexiones a la red trifásicas las protecciones para la interconexión de máxima y mínima frecuencia (51 Hz y 49 Hz respectivamente) y de máxima y mínima tensión (1,1 Um y 0,85 Um respectivamente) serán para cada fase.

5.7-Puesta a tierra de las instalaciones fotovoltaicas

Cuando el aislamiento galvánico entre la red de distribución de baja tensión y el generador fotovoltaico no se realice mediante un transformador de aislamiento, se explicarán en la Memoria de Diseño o Proyecto los elementos utilizados para garantizar esta condición.

Todas las masas de la instalación fotovoltaica, tanto de la sección continua como de la alterna, estarán conectadas a una única tierra. Esta tierra será independiente de la del neutro de la empresa distribuidora, de acuerdo con el Reglamento de Baja Tensión.

5.8-Medidas de seguridad

Las centrales fotovoltaicas, independientemente de la tensión a la que estén conectadas a la red, estarán equipadas con un sistema de protecciones que garantice su desconexión en caso de un fallo en la red o fallos internos en la instalación de la propia central, de manera que no 17 perturben el correcto

funcionamiento de las redes a las que estén conectadas, tanto en la explotación normal como durante el incidente.

La central fotovoltaica debe evitar el funcionamiento no intencionado en isla con parte de la red de distribución, en el caso de desconexión de la red general. La protección anti-isla deberá detectar la desconexión de red en un tiempo acorde con los criterios de protección de la red de distribución a la que se conecta, o en el tiempo máximo fijado por la normativa o especificaciones técnicas correspondientes. El sistema utilizado debe funcionar correctamente en paralelo con otras centrales eléctricas con la misma o distinta tecnología, y alimentando las cargas habituales en la red, tales como motores.

Todas las centrales fotovoltaicas con una potencia mayor de 1 MW estarán dotadas de un sistema de teledesconexión y un sistema de telemedida. La función del sistema de teledesconexión es actuar sobre el elemento de conexión de la central eléctrica con la red de distribución para permitir la desconexión remota de la planta en los casos en que los requisitos de seguridad así lo recomienden. Los sistemas de teledesconexión y telemedida serán compatibles con la red de distribución a la que se conecta la central fotovoltaica, pudiendo utilizarse en baja tensión los sistemas de telegestión incluidos en los equipos de medida previstos por la legislación vigente.

Las centrales fotovoltaicas deberán estar dotadas de los medios necesarios para admitir un reenganche de la red de distribución sin que se produzcan daños. Asimismo, no producirán sobretensiones que puedan causar daños en otros equipos, incluso en el transitorio de paso a isla, con cargas bajas o sin carga. Igualmente, los equipos instalados deberán cumplir los límites de emisión de perturbaciones indicados en las normas nacionales e internacionales de compatibilidad electromagnética.

6-Recepeción y pruebas

El instalador entregará al usuario un documento-albarán en el que conste el suministro de componentes, materiales y manuales de uso y mantenimiento de la instalación. Este documento será firmado por duplicado por ambas partes, conservando cada una un ejemplar. Los manuales entregados al usuario

estarán en alguna de las lenguas oficiales españolas para facilitar su correcta interpretación.

Antes de la puesta en servicio de todos los elementos principales (módulos, inversores, contadores) éstos deberán haber superado las pruebas de funcionamiento en fábrica, de las que se levantará oportuna acta que se adjuntará con los certificados de calidad.

Las pruebas a realizar por el instalador, con independencia de lo indicado con anterioridad en este PCT, serán como mínimo las siguientes:

- -Funcionamiento y puesta en marcha de todos los sistemas.
- -Pruebas de arranque y parada en distintos instantes de funcionamiento.
- -Pruebas de los elementos y medidas de protección, seguridad y alarma, así como su actuación, con excepción de las pruebas referidas al interruptor automático de la desconexión.
- -Determinación de la potencia instalada, de acuerdo con el procedimiento descrito en el anexo I.

Concluidas las pruebas y la puesta en marcha se pasará a la fase de la Recepción Provisional de la Instalación. No obstante, el Acta de Recepción Provisional no se firmará hasta haber comprobado que todos los sistemas y elementos que forman parte del suministro han funcionado correctamente durante un mínimo de 240 horas seguidas, sin interrupciones o paradas causadas por fallos o errores del sistema suministrado, y además se hayan cumplido los siguientes requisitos:

-Entrega de toda la documentación requerida en este PCT, y como mínimo la recogida en la norma UNE-EN 62466: Sistemas fotovoltaicos conectados a red. Requisitos mínimos de documentación, puesta en marcha e inspección de un sistema.

-Retirada de obra de todo el material sobrante.

-Limpieza de las zonas ocupadas, con transporte de todos los desechos a vertedero.

Durante este período el suministrador será el único responsable de la operación de los sistemas suministrados, si bien deberá adiestrar al personal de operación.

Todos los elementos suministrados, así como la instalación en su conjunto, estarán protegidos frente a defectos de fabricación, instalación o diseño por una garantía de tres años, salvo para los módulos fotovoltaicos, para los que la garantía mínima será de 10 años contados a partir de la fecha de la firma del acta de recepción provisional.

No obstante, el instalador quedará obligado a la reparación de los fallos de funcionamiento que se puedan producir si se apreciase que su origen procede de defectos ocultos de diseño, construcción, materiales o montaje, comprometiéndose a subsanarlos sin cargo alguno. En cualquier caso, deberá atenerse a lo establecido en la legislación vigente en cuanto a vicios ocultos.

7-Requerimientos técnicos del contrato de mantenimiento

7.1-Generalidades

Se realizará un contrato de mantenimiento preventivo y correctivo de al menos tres años.

El contrato de mantenimiento de la instalación incluirá todos los elementos de la misma, con las labores de mantenimiento preventivo aconsejados por los diferentes fabricantes.

7.2-Programa de mantenimiento

El objeto de este apartado es definir las condiciones generales mínimas que deben seguirse para el adecuado mantenimiento de las instalaciones de energía solar fotovoltaica conectadas a red.

Se definen dos escalones de actuación para englobar todas las operaciones necesarias durante la vida útil de la instalación para asegurar el funcionamiento, aumentar la producción y prolongar la duración de la misma:

- -Mantenimiento preventivo.
- -Mantenimiento correctivo.

Plan de mantenimiento preventivo: operaciones de inspección visual, verificación de actuaciones y otras, que aplicadas a la instalación deben permitir mantener dentro de límites aceptables las condiciones de funcionamiento, prestaciones, protección y durabilidad de la misma.

Plan de mantenimiento correctivo: todas las operaciones de sustitución necesarias para asegurar que el sistema funciona correctamente durante su vida útil. Incluye:

-La visita a la instalación en los plazos indicados en el punto 7.3.5 y cada vez que el usuario lo requiera por avería grave en la misma.

-El análisis y elaboración del presupuesto de los trabajos y reposiciones necesarias para el correcto funcionamiento de la instalación.

-Los costes económicos del mantenimiento correctivo, con el alcance indicado, forman parte del precio anual del contrato de mantenimiento. Podrán no estar incluidas ni la mano de obra ni las reposiciones de equipos necesarias más allá del período de garantía.

El mantenimiento debe realizarse por personal técnico cualificado bajo la responsabilidad de la empresa instaladora.

El mantenimiento preventivo de la instalación incluirá, al menos, una visita (anual para el caso de instalaciones de potencia de hasta 100 kWp y semestral para el resto) en la que se realizarán las siguientes actividades:

-Comprobación de las protecciones eléctricas.

-Comprobación del estado de los módulos: comprobación de la situación respecto al proyecto original y verificación del estado de las conexiones.

-Comprobación del estado del inversor: funcionamiento, lámparas de señalizaciones, alarmas, etc.

-Comprobación del estado mecánico de cables y terminales (incluyendo cables de tomas de tierra y reapriete de bornas), pletinas, transformadores, ventiladores/extractores, uniones, reaprietes, limpieza.

Realización de un informe técnico de cada una de las visitas, en el que se refleje el estado de las instalaciones y las incidencias acaecidas.

Registro de las operaciones de mantenimiento realizadas en un libro de mantenimiento, en el que constará la identificación del personal de mantenimiento (nombre, titulación y autorización de la empresa).

7.3-Garantías

7.3.1-Ámbito general

Sin perjuicio de cualquier posible reclamación a terceros, la instalación será reparada de acuerdo con estas condiciones generales si ha sufrido una avería a causa de un defecto de montaje o de cualquiera de los componentes, siempre que haya sido manipulada correctamente de acuerdo con lo establecido en el manual de instrucciones.

La garantía se concede a favor del comprador de la instalación, lo que deberá justificarse debidamente mediante el correspondiente certificado de garantía, con la fecha que se acredite en la certificación de la instalación.

7.3.2-Plazos

El suministrador garantizará la instalación durante un período mínimo de 3 años, para todos los materiales utilizados y el procedimiento empleado en su montaje. Para los módulos fotovoltaicos, la garantía mínima será de 10 años.

Si hubiera de interrumpirse la explotación del suministro debido a razones de las que es responsable el suministrador, o a reparaciones que el suministrador haya de realizar para cumplir las estipulaciones de la garantía, el plazo se prolongará por la duración total de dichas interrupciones.

7.3.3-Condiciones económicas

La garantía comprende la reparación o reposición, en su caso, de los componentes y las piezas que pudieran resultar defectuosas, así como la mano de obra empleada en la reparación o reposición durante el plazo de vigencia de la garantía.

Quedan expresamente incluidos todos los demás gastos, tales como tiempos de desplazamiento, medios de transporte, amortización de vehículos y herramientas, disponibilidad de otros medios y eventuales portes de recogida y devolución de los equipos para su reparación en los talleres del fabricante.

Asimismo, se deben incluir la mano de obra y materiales necesarios para efectuar los ajustes y eventuales reglajes del funcionamiento de la instalación.

Si en un plazo razonable el suministrador incumple las obligaciones derivadas de la garantía, el comprador de la instalación podrá, previa notificación escrita, fijar una fecha final para que dicho suministrador cumpla con sus obligaciones. Si el suministrador no cumple con sus obligaciones en dicho plazo último, el comprador de la instalación podrá, por cuenta y riesgo del suministrador, realizar por sí mismo las oportunas reparaciones, o contratar para ello a un tercero, sin perjuicio de la reclamación por daños y perjuicios en que hubiere incurrido el suministrador.

7.3.4-Anulación de la garantía

La garantía podrá anularse cuando la instalación haya sido reparada, modificada o desmontada, aunque sólo sea en parte, por personas ajenas al suministrador o a los servicios de asistencia técnica de los fabricantes

no autorizados expresamente por el suministrador, salvo lo indicado en el punto 7.3.3.

7.3.5-Lugar y tiempo de la prestación

Cuando el usuario detecte un defecto de funcionamiento en la instalación lo comunicará fehacientemente al suministrador. Cuando el suministrador considere que es un defecto de fabricación de algún componente, lo comunicará fehacientemente al fabricante.

El suministrador atenderá cualquier incidencia en el plazo máximo de una semana y la resolución de la avería se realizará en un tiempo máximo de 10 días, salvo causas de fuerza mayor debidamente justificadas.

Las averías de las instalaciones se repararán en su lugar de ubicación por el suministrador. Si la avería de algún componente no pudiera ser reparada en el domicilio del usuario, el componente deberá ser enviado al taller oficial designado por el fabricante por cuenta y a cargo del suministrador.

El suministrador realizará las reparaciones o reposiciones de piezas a la mayor brevedad posible una vez recibido el aviso de avería, pero no se responsabilizará de los perjuicios causados por la demora en dichas reparaciones siempre que sea inferior a 10 días naturales

IV-PRESUPUESTO

Presupuesto parcial nº 1 ELEMENTOS DE LA INSTALACIÓN

Nº Ud Descripción
 1.1 Ud El Panel Solar 455W JA Solar Mono Perc ofrece una gran potencia para nuestro sistema solar fotovoltaico. Cuenta con una eficiencia de hasta el 20,4% y está formado por células monocristalinas PERC que le otorgan una producción superior y mejor rendimiento térmico. Se trata de una placa de gran calidad del fabricante JA Solar. Datos característicos:

 Potencia del Panel Solar: 455W
 Tipo de Célula del Panel Solar: Monocristalino PERC
 Rigidez del Panel Solar: Rígido
 Dimensiones del Panel Solar: 2112 x 1052 x 35 mm

Tensión Máxima Potencia: 41.82V Corriente en Cortocircuito ISC: 11.41A

Eficiencia del Módulo: 20.4%

Amperios Máximos de Salida IMP: 10.88A Tensión en Circuito Abierto: 49.85V

Voltaje de Trabajo del Panel Solar: 24V Peso del Panel Solar: 25Kg

Marco del Panel Solar: Blanco y Gris Garantía del Panel Solar: 25 años

Total Ud: 6.000 170.87 **1.025.22**

1.2 Ud El Inversor Red Growatt MIN 2500TL-XE es un nuevo modelo de inversor de uno de los mayores fabricantes de inversores a nivel mundial, Growatt. Es un producto de gran calidad y con un diseño muy compacto y moderno. Este el modelo monofásico de inferior potencia dentro de la gama MIN-XE, habiendo modelos de hasta 6000W. Toda esta familia de inversores dispone de 2 seguidores MPPT y un amplísimo rango de funcionamiento. Estos inversores se conectan a la red eléctrica del lugar donde estén instalados para inyectar la energía que producen los paneles y ahorrar en la factura de electricidad. Ofrecen unas excelentes características para un plazo de amortización corto gracias a su ajustado precio.

Datos característicos:

- Potencia máxima recomendada a conectar: 3500W.
- Voltaje máximo en CC: 500V.
- Voltaje de arranque: 100V.
- Rango de voltaje del MPPT: 80 500V.
- Voltaje nominal de funcionamiento: 360V.
- Intensidad máxima de entrada: 12.5A en cada MPPT.
- Intensidad máxima de cortocircuito: 16A.
- Número de seguidores MPPT: 2.
- Entradas fotovoltaicas para cada MPPT: 1

Total Ud: 1,000 500,00 **500,00**

1.3 Ud Dispositivo de Monitorización Growatt Shine-Link X sirve para poder dotar de conectividad a internet a un inversor Growat de la gama MIN-X. Con este dispositivo no es necesario disponer de Wifi, ya que en el complemento de monitorización se dispone de dos componentes: una base que se conecta a una toma de corriente y al router que dispone de internet y por otro lado un adaptador que se conecta al inversor. Entre ambos se establece un enlace automático que dota de internet al inversor para poder monitorizar su funcionamiento en el portal que el fabricante ofrece.

Total Ud: 1,000 27,63 **27,63**

1.4 **Ud** El kit de estructura en aluminio para 3 paneles en vertical – 30º Sobre suelo. Sunfer 09V3_30 está fabricado en aluminio EN AW 6005A T6 de alta resistencia, diseñado específicamente para ser colocado en cubiertas planas u otro tipo de subestructuras de hormigón.

Es un soporte pre-montado con una inclinación estándar que se puede regular a 15º o 30º para colocar los paneles en posición vertical. Admite módulos de un tamaño máximo de 2279 x 1150 mm y un espesor de entre 30 y 45 mm, lo cubre una amplia gama de modelos y fabricantes, como los paneles de Victron que puedes encontrar en nuestra web.

Esta estructura de Sunfer está diseñada para soportar vientos de hasta 150 Km/h, que en la escala de Beaufort equivale a un viento huracanado capaz de hacer volar vehículos

Incluye tornillería de acero inoxidable A2-70 para su montaje. No incluye tornillería para su anclaje a superficie.

Total Ud : 2,000 154,68 **309,36**

1.5 Ud El Vatímetro Monofásico Growatt SPM es un medidor de energía fabricado por Eastron con una parametrización adecuada a los inversores de Growatt. El vatímetro sirve para poder saber con precisión el consumo eléctrico que le pedimos a nuestra instalación. Esta información se le comunica al inversor de conexión a red mediante el protocolo Modbus. Este modelo es compatible con los inversores Growatt Monofásicos que ofrecemos en nuestra web. Ambos dispositivos se deben conectar para que el inversor tenga las lecturas adecuadas de la potencia que estamos requiriendo en nuestra instalación y para ello se ofrece ya con el cableado preparado para facilitar la conexión entre ambos componentes.

Total Ud: 1,000 98,17 **98,17**

1.6 Ud Los conectores Weidmuller PVStick, son los más recomendados en el caso de no tener una crimpadora para poder conectar los conectores habituales MC4. Son compatibles con todos los modelo de conectores que se ofrecen de serie en los paneles solares y no requiere de ningún tipo de herramienta para poder ensamblarlos en el cable.

Total Ud: 2,000 5,42 **10,84**

Total Presupuesto parcial nº 1 ELEMENTOS DE LA INSTALACIÓN: 1.971,22

Importe

Presupuesto parcial nº 2 CABLEADO Y PROTECCIONES

Ud Descripción

Νº

	- Ou	Descripcion		Wiedicion	FIECIO	iniporte
2.1 PA	RTE I	DC				
2.1.1	M	Cable Unifilar 6 mm2 Solar ZZ- cable de potencia especialment norma de referencia: EN50618	e concebido pa	ra instalaciones s	olares fotovoltai	
			Total m:	20,000	1,22	24,40
2.1.2	M	Cable Unifilar 6 mm2 Solar ZZ- cable de potencia especialment norma de referencia: EN50618	e concebido pa	ra instalaciones s	olares fotovoltai	
			Total m:	20,000	1,22	24,40
2.1.3	Ud	El fusible 15A 1000VDC consta bajo punto de fusión que reacc 15A, esta reacción corta la co dispositivos conectados. La ele determinado por el valor máxim por lo que el fusible se trata d reduciendo el riesgo de incend tanto, los fusibles hacen posible máximo valor que el aparato co	iona y se funde prriente eléctrica ección del valor o que puede so e un dispositivo io o destrucción e el paso consta	cuando la intensa y evita el sobre que determina la portar el resto de de protección de otros elemerante de la corriente	idad de corrient ecalentamiento reacción del fu elementos de la e la instalación ntos de la instala	e supera los del resto de sible debe ir a instalación, fotovoltaica, ación. Por lo
			Total Ud:		3,38	6,76
2.1.4	Ud	El portafusible 10x38 de diseño 1000V. El fusible cuenta con funcionamiento del fusible y est el caso de que se accione e portafusibles seguro para la inscon fusibles de hasta 30A de al sean 10x38. Se trata de un portafusibles que	n un pequeño tá fabricado con l fusible lo hao talación solar y to voltaje o 100 c cumple con la	conducto de va material autoext ga en condicione de fácil manejo.E 0V, y siempre que normativa vigente	rentilación que inguible que ase es seguras. Ade l portafusibles es las dimensione	optimiza el egura que en emás es un s compatible es del fusible
			Total Ud:	2,000	4,77	9,54
2.1.5	Ud	Limitador de sobretensiones: In Tiempo de respuesta: <25ns Onda de ensayo: 8/20µs Desenchufables con indicación Normativa internacional: VDE06 Protección de equipos eléctricos	de estado 375-6			orias. 31,64
			i otai ou .	·	·	<u> </u>
				Total 2.1 PAR	I E DC	96,74

Medición

Precio

2.2 PARTE AC

2.2.1 **M** Cable manguera 3 x 4mm2 se caracteriza por:

Denominación técnica: RZ1-K (AS).

Norma UNE: 21123-4.

Color de la cubierta exterior: verde. Tensión de servicio: 0,6 / 1kV.

Temperatura máxima de trabajo: 90 °C.

Presentación: Se puede adquirir en rollos o en cortes de la longitud deseada.

Reducida emisión de gases tóxicos NFC 20454.

Libre de halógenos UNE-EN 50267-2-1.

No propagación de la llama UNE-EN 60332-1-2.

No propagación del incendio UNE-EN 50266-2-4.

Baja emisión de humos opacos UNE-EN 61034-2.

Nula emisión de gases corrosivos UNE-EN 50267-2-2.

Resistencia a los rayos ultravioleta.

Resistencia a la absorción del agua.V

Resistencia al frío.

Cable flexible.

Alta Seguridad.

Número de conductores: 3.

Total Ud: 10,000 4,00 **40,00**

2.2.2 Ud Magnetotérmico IM 2P, 6KA, 16A, C STD Hyundai actúa como protección de la instalación incorporando una doble seguridad. Otorga protección térmica y protección magnética. Este modelo es de 2 polos, preparado para una frecuencia de red de 50 o 60Hz con una durabilidad superior a los 10.000 ciclos. Interrumpirá el paso de corriente cuando la intensidad supere la cifra delimitada por el nombre de este modelo, en su caso, 16A en corriente alterna a 230V.

Total Ud: 1,000 10,29 **10,29**

2.2.3 **Ud** Diferencial ID 2P, 25A, 30mA, A STD HYUNDAI es una protección esencial para prevenir derivaciones en nuestro circuito de corriente alterna. Este dispositivo actúa cuando detecta una diferencia en las lecturas provocada por una derivación. Este modelo tiene un límite de corriente de 25A.

Total Ud: 1.000 65.71 **65.71**

Total 2.2 PARTE AC 116,00

2.3 ACCESORIOS

2.3.1 **Ud** Caja de superficie 8 módulos cuenta con embarrados de tierra y neutro, una puerta con bisagra y un nivel interno para su fijación. Además cumple con la normativa vigente. La caja de superficie 8 módulos se caracteriza por estar fabricado de material ABS y estar preparada para ser instalada en una zona exterior. Es conveniente tener en cuenta que cuenta con una dimensiones de 155x200x95mm.

Total Ud: 2,000 19,26 **38,52**

2.3.2 **Ud** Tubo corrugado de PVC. Medidas: 32mm de diámetro y 50m de largo. Para instalaciones eléctricas emptradas de interior o exterior. Permite pasar por su interior 6 cables (1,5mm2 - 2,5mm2) o 5 cables (4mm2 - 6mm2)

Total Ud: 1,000 13,61 **13,61**

Total 2.3 ACCESORIOS 52,13

Total Presupuesto parcial nº 2 CABLEADO Y PROTECCIONES: 264,87

Presupuesto parcial nº 3 PUESTA A TIERRA

Νo	Ud Descripción	Medición	Precio	Importe
----	----------------	----------	--------	---------

3.1 M Cable unifilar 6 mm2 H07Z1-K (AS) Tierra es indicado para realizar instalaciones en viviendas, locales y oficinas, también en cuadros de control o alumbrado doméstico e industrial. En definitiva sus aplicaciones que requieran baja emisión de gases tóxicos y humos en caso de incendio. Algunos métodos adecuados para su instalación son: dentro de tubos, conductos, canaletas cerradas situados en superficies o empotrador. También se puede instalar como cableado interno de dispositivos o mecanismos eléctricos y en zonas de temperatura normal.

Total m: 30,000 1,14 **34,20**

Total Presupuesto parcial nº 3 PUESTA A TIERRA : 34,20

Presupuesto parcial nº 4 MANO DE OBRA

Nº	Ud	Descripción	Medición	Precio	Importe
4.1	Ud	Instalación de todos los elementos necesa	rios para el proy	/ecto	
		Total Ud:	1,000	800,00	800,00
		Total Presupuesto parcial n	4 MANO DE O	BRA:	800,00

Presupuesto parcial nº 5 TRAMITACIÓN Y DIMENSIONAMIENTO

No	Ud	Descripción	Medición	Precio	Importe
5.1	Ud	Proyecto de instalación, certificado marcha, certificado de instalación, inspecado de conexión con lberdrola Distribución.	cción inicial por	OCA (Organism	o de Control
		Total Ud:	1.000	1.000.00	1.000.00

5.2 **Ud** Legalización de la instalación fotovoltaica de autoconsumo según lo establecido en el RD 244/2019

Total Ud: 1,000 50,00 **50,00**

5.3 **Ud** Tramitación de subvenciones descritas en RD 477/21

Total Ud: 1,000 50,00 **50,00**

Total Presupuesto parcial nº 5 TRAMITACIÓN Y DIMENSIONAMIENTO:

1.100,00

Antes de realizar el sumatorio de todos los presupuestos parciales, comprobaremos los distintos requisitos para recibir las subvenciones ofrecidas por el RD 477/21 dentro de la Comunidad Valenciana, esta subvención ofrece unos 600 euros aproximadamente por kWp instalado.

Requisitos:

- a) Se consideran actuaciones subvencionables la realización de instalaciones de autoconsumo con fuentes de energía renovable, en el sector residencial, las administraciones públicas y el tercer sector, con o sin almacenamiento, cuando su fecha de inicio sea posterior al 30 de junio de 2021, de acuerdo con lo establecido en el apartado 6 del art.13 del RD 477/2021, de 29 de junio.
- b) Todas las instalaciones deberán contar con un sistema de monitorización de la energía eléctrica producida por la instalación objeto de subvención. Dicho sistema deberá mostrar como mínimo la producción energética renovable en términos diario, mensual y anual, y el correspondiente consumo energético para los mismos periodos. El sistema podrá mostrar datos adicionales como, por ejemplo, emisiones de CO2 evitadas y ahorro económico generado para la persona propietaria de la instalación.

Deberán disponer de una pantalla que muestre de forma actualizada estos datos, excepto para el sector residencial, en un lugar visible, y que deberá ser accesible a través de dispositivo móvil.

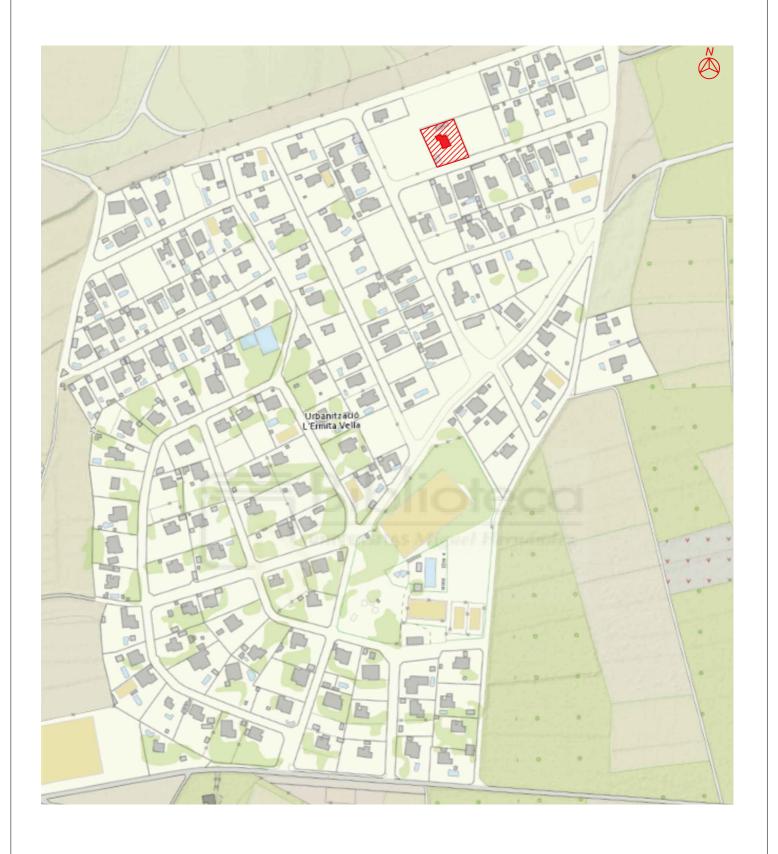
c) En cómputo anual, la suma de la energía eléctrica consumida por parte del consumidor o consumidores asociados a la instalación objeto de

ayuda debe ser igual o mayor al 80 % de la energía anual generada por la instalación.

-Consumo anual: 4336,799 kWh/año

-Producción anual estimada por la instalación proyectada: 5325,94 kWh/año

CONSUMO ANUAL ≥ 80% × PRODUCC. ANUAL


 $4336,799 \ge 4260,752$

Una vez comprobados los 3 requisitos principales de la convocatoria, vemos que cumplimos con todos ellos, por lo que subvencionarán al cliente con una cantidad aproximada de 1638 euros.

Capítulo 1 ELEMENTOS DE LA INSTALACIÓN	1.971,22
Capítulo 2 CABLEADO Y PROTECCIONES	264,87
Capítulo 2.1 PARTE DC	96,74
Capítulo 2.2 PARTE AC	116,00
Capítulo 2.3 ACCESORIOS	52,13
Capítulo 3 PUESTA A TIERRA	34,20
Capítulo 4 MANO DE OBRA	800,00
Capítulo 5 DIMENSIONAMIENTO Y TRAMITACIÓN	1.100,00
Presupuesto de ejecución material	4170,29
21% IVA	875,76
Presupuesto de ejecución por contrata	5.046,05
Subvenciones al autoconsumo RD 477/21	-1.638,00
Total:	3.408,05

EL PRESUPUESTO ASCIENDE A LA CANTIDAD DE TRES MIL CUATROCIENTOS OCHO CON CINCO CÉNTIMOS

V-PLANOS

INSTALACIÓN SOLAR FOTOVOLTAICA DE AUTOCONSUMO (TFG)

AUTOR: ALEJANDRO CABRERA MACIÁ

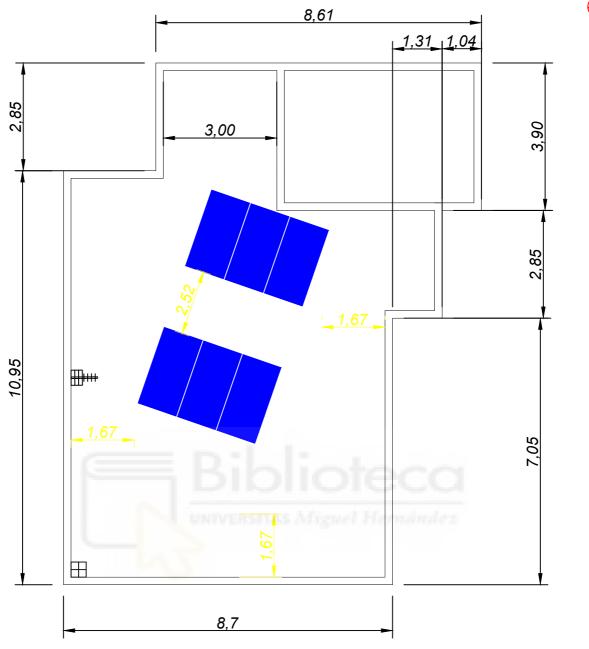
SITUACIÓN: VALVERDE,ELCHE (38°14'47.3"N 0°34'55.7"W)

PROMOTOR: JUAN TIRADO VILCHEZ

ESCALA: 1:1500 FECHA: 11/05/2022 VERSIÓN: V1

PLANO:SITUACIÓN PROYECTO Nº: 1

INSTALACIÓN SOLAR FOTOVOLTAICA DE AUTOCONSUMO (TFG)


AUTOR: ALEJANDRO CABRERA MACIÁ

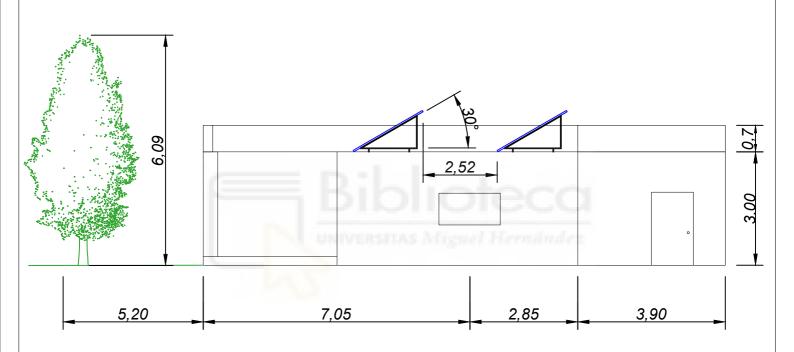

SITUACIÓN: VALVERDE,ELCHE (38°14'47.3"N 0°34'55.7"W)

PROMOTOR:JUAN TIRADO VILCHEZ

ESCALA: 1:500 FECHA: 11/05/2022 VERSIÓN: V1
PLANO:EMPLAZAMIENTO PROYECTO Nº: 2

— Cotas mínimas a cumplir.

INSTALACIÓN SOLAR FOTOVOLTAICA DE AUTOCONSUMO (TFG)

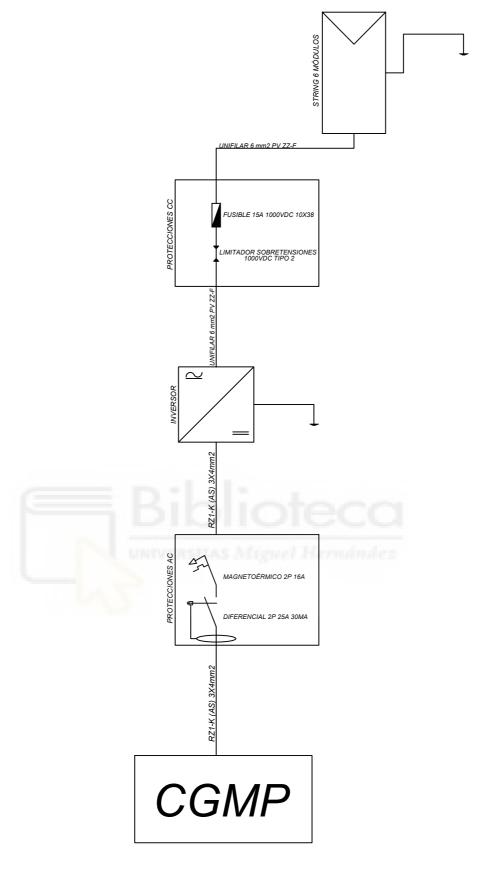

AUTOR: ALEJANDRO CABRERA MACIÁ

SITUACIÓN: VALVERDE, ELCHE (38°14'47.3"N 0°34'55.7"W)

PROMOTOR: JUAN TIRADO VILCHEZ

ESCALA: 1:100 FECHA: 11/05/2022 VERSIÓN: V1
PLANO: PLANTA DEL PROYECTO Nº:3

INSTALACIÓN SOLAR FOTOVOLTAICA DE AUTOCONSUMO (TFG)


AUTOR: ALEJANDRO CABRERA MACIÁ

SITUACIÓN: VALVERDE, ELCHE (38°14'47.3"N 0°34'55.7"W)

PROMOTOR:JUAN TIRADO VILCHEZ

ESCALA: 1:100 FECHA: 11/05/2022 VERSIÓN: V1

PLANO:SECCIÓN DEL PROYECTO Nº: 4

INSTALACIÓN SOLAR FOTOVOLTAICA DE AUTOCONSUMO (TFG)

SITUACIÓN: VALVERDE, ELCHE (38°14'47.3"N 0°34'55.7"W)

PROMOTOR: JUAN TIRADO VILCHEZ

ESCALA: FECHA: 11/05/2022 VERSIÓN: V1

PLANO:ESQUEMA UNIFILAR N°:5

