Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/11000/6118
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorEscudero, Laureano F.-
dc.contributor.authorMonge Ivars, Juan Francisco-
dc.contributor.authorRomero Morales, Dolores-
dc.contributor.otherDepartamentos de la UMH::Estadística, Matemáticas e Informáticaes
dc.date.accessioned2020-07-28T07:40:37Z-
dc.date.available2020-07-28T07:40:37Z-
dc.date.created2017-07-15-
dc.date.issued2020-07-28-
dc.identifier.issn0305-0548-
dc.identifier.issn1873-765X-
dc.identifier.urihttp://hdl.handle.net/11000/6118-
dc.description.abstractIn this work a modeling framework and a solution approach have been presented for a multi-period stochastic mixed 0–1 problem arising in tactical supply chain planning (TSCP). A multistage scenario tree based scheme is used to represent the parameters’ uncertainty and develop the related Deterministic Equivalent Model. A cost risk reduction is performed by using a new time-consistent risk averse measure. Given the dimensions of this problem in real-life applications, a decomposition approach is proposed. It is based on stochastic dynamic programming (SDP). The computational experience is twofold, a compar- ison is performed between the plain use of a current state-of-the-art mixed integer optimization solver and the proposed SDP decomposition approach considering the risk neutral version of the model as the subject for the benchmarking. The add-value of the new risk averse strategy is confirmed by the compu- tational results that are obtained using SDP for both versions of the TSCP model, namely, risk neutral and risk averse.es
dc.description.sponsorshipThe authors would like to thank to the two anonymous review- ers for their help on clarifying some concepts presented in the manuscript and strongly improving its presentation-
dc.formatapplication/pdfes
dc.format.extent17es
dc.language.isoenges
dc.rightsinfo:eu-repo/semantics/openAccesses
dc.subjectTactical supply chain planninges
dc.subjectNonlinear separable objective functiones
dc.subjectMultistage stochastic integer optimizationes
dc.subjectRisk managementes
dc.subjectTime-consistencyes
dc.subjectStochastic nested decompositiones
dc.subject.other519.1 - Teoría general del análisis combinatorio. Teoría de grafoses
dc.titleOn the time-consistent stochastic dominance risk averse measure for tactical supply chain planning under uncertaintyes
dc.typeinfo:eu-repo/semantics/articlees
dc.identifier.doi10.1016/j.cor.2017.07.011-
dc.relation.publisherversionhttps://doi.org/10.1016/j.cor.2017.07.011-
Aparece en las colecciones:
Artículos Estadística, Matemáticas e Informática


Vista previa

Ver/Abrir:
 1-3_20_COR.pdf
855,69 kB
Adobe PDF
Compartir:


Creative Commons La licencia se describe como: Atribución-NonComercial-NoDerivada 4.0 Internacional.