Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/11000/4960

Alteraciones funcionales en la célula β pancreática debidas a la exposición persistente a dosis medioambientalmente relevantes de bisfenosl-A


Vista previa

Ver/Abrir:
 Tesis Doctoral Villar Pazos, Sabrina.pdf
6,49 MB
Adobe PDF
Compartir:
Título :
Alteraciones funcionales en la célula β pancreática debidas a la exposición persistente a dosis medioambientalmente relevantes de bisfenosl-A
Autor :
Villar Pazos, Sabrina
Tutor:
Nadal Navajas, Ángel
Departamento:
Departamentos de la UMH::Farmacología, Pediatría y Química Orgánica
Fecha de publicación:
2017-07-07
URI :
http://hdl.handle.net/11000/4960
Resumen :
El bisfenol-A (BPA) es el componente principal de los plásticos de policarbonato, se usa también como aditivo en la fabricación de muchos otros tipos de plásticos y para la producción de resinas epoxi. La presencia de BPA es generalizada en multitud de productos de consumo, en contacto directo con ...  Ver más
Bisphenol-A (BPA) is the main component of the polycarbonate plastics, and it is also used as an additive in the manufacture of many others types of plastics and epoxy resins. BPA is extensively present in daily consumer goods in close contact with food and beverages, and it is detected in the urine of 93% of USA citizens. BPA has been classified as an endocrine disruptor chemical (EDC), which acts like a xenoestrogen by binding to estrogen receptors ERα and ERβ. Epidemiological studies show that BPA exposure is linked to the development of some diseases, including metabolic disorders like diabetes mellitus and obesity. In the last decade, several works suggest that BPA could be involved in the etiology of type-2 diabetes, because it elicits insulin resistance and alters pancreatic β-cell function in BPA-treated mice. Previous works of our group have demonstrated that BPA increases the expression levels of the insulin gene, and that BPA-induced insulinotropic effects depends on rapid KATP inhibition. These mechanisms are mediated by ERα and ERβ extranuclear-initiated cascades respectively. The main goal of this project is to characterize how BPA chronic exposure could directly modulate the function of pancreatic β-cells and islets of Langerhans. To address this aim, we have established an in vitro long-lasting exposure model using dispersed β-cells and isolated islets of Langerhans, both maintained during 48 hours with BPA always present in the culture medium. We have used a multidisciplinary approach combining several experimental techniques: electrophysiological measurements (electrical activity, global currents and changes in membrane capacity), intracellular calcium recordings using fluorescent dyes, insulin secretion and mRNA expression levels using qPCR. Our results demonstrate that BPA causes significant alterations in β-cell function. BPA at a dose as low as 1 nM promotes changes in the shape of glucose-induced action potentials, decreasing its amplitude and increasing its width. Likewise, 1 nM BPA reduces calcium entry triggered by membrane depolarizations, both in response to glucose or non-metabolic stimuli. Nevertheless, a higher dose, 100 nM BPA, has no effect on our endpoint. Accordingly, we conclude that the relationship between BPA and its effects on calcium entry is non-monotonic. Nonmonotonicity is a common phenomenon in the field of EDCs. The exposure to 1 nM BPA alters in the same extent the exocytotic capacity and insulin secretion of pancreatic β-cells. Pharmacological dissection of macroscopic calcium current suggests that BPA-induced decrease on calcium influx is a consequence of R-type calcium current reduction. Using qPCR, we found that BPA reduces mRNA expression levels of R-type pore-forming subunit, and this transcriptional effect is produced by BPA at any tested doses, revealing a monotonic relationship at this regulation level. The effect of BPA on calcium entry is mimicked using a specific ERβ agonist (DPN), and abolished in β-cells from ERβ knockout mice. These findings suggest that the functional alterations promoted by low doses of BPA are mediated predominantly by ERβ. Disagreement between BPA-induced effects on calcium entry and transcriptional regulation of R-type calcium channel suggests the participation of a counteracting mechanism regulated by higher BPA doses. We found that high BPA doses (≥ 100 nM) potentiate voltage-gated calcium entry in pancreatic β-cells through extranuclear ERα-mediated PI3K-dependent mechanism. We conclude that the NMDR relationship between BPA exposure and calcium entry seems to be the outcome of the opposite effects mediated by ERβ and ERα on the processes regulating voltage-operated calcium currents in pancreatic β-cells.
Palabras clave/Materias:
Fisiología endocrina
Páncreas
Glucemia
Área de conocimiento :
CDU: Ciencias aplicadas: Medicina: Farmacología. Terapéutica. Toxicología. Radiología
Tipo de documento :
info:eu-repo/semantics/doctoralThesis
Derechos de acceso:
info:eu-repo/semantics/openAccess
Aparece en las colecciones:
Tesis doctorales - Ciencias e Ingenierías



Creative Commons La licencia se describe como: Atribución-NonComercial-NoDerivada 4.0 Internacional.