Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/11000/39310
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorFernández-Escamilla, Ana Mª-
dc.contributor.authorRousseau, Frederic-
dc.contributor.authorSchymkowitz, Joost-
dc.contributor.authorSerrano, Luis-
dc.contributor.otherDepartamentos de la UMH::Bioquímica y Biología Moleculares_ES
dc.date.accessioned2026-02-13T18:09:01Z-
dc.date.available2026-02-13T18:09:01Z-
dc.date.created2004-
dc.identifier.citationNature Biotechnology, Vol. 22, Nº 10 (2004)es_ES
dc.identifier.issn1546-1696-
dc.identifier.issn1087-0156-
dc.identifier.urihttps://hdl.handle.net/11000/39310-
dc.description.abstractWe have developed a statistical mechanics algorithm, TANGO, to predict protein aggregation. TANGO is based on the physico-chemical principles of b-sheet formation, extended by the assumption that the core regions of an aggregate are fully buried. Our algorithm accurately predicts the aggregation of a data set of 179 peptides compiled from the literature as well as of a new set of 71 peptides derived from human diseaserelated proteins, including prion protein, lysozyme and b2-microglobulin. TANGO also correctly predicts pathogenic as well as protective mutations of the Alzheimer b-peptide, human lysozyme and transthyretin, and discriminates between b-sheet propensity and aggregation. Our results confirm the model of intermolecular b-sheet formation as a widespread underlying mechanism of protein aggregation. Furthermore, the algorithm opens the door to a fully automated, sequence-based design strategy to improve the aggregation properties of proteins of scientific or industrial interest.es_ES
dc.formatapplication/pdfes_ES
dc.format.extent5es_ES
dc.language.isoenges_ES
dc.publisherNature Researches_ES
dc.rightsinfo:eu-repo/semantics/closedAccesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectProtein aggregationes_ES
dc.subjectphysico-chemical principleses_ES
dc.subjectalgorithmes_ES
dc.subject.otherCDU::5 - Ciencias puras y naturales::57 - Biología::576 - Biología celular y subcelular. Citologíaes_ES
dc.titlePrediction of sequence-dependent and mutational effects on the aggregation of peptides and proteinses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherversion10.1038/nbt1012es_ES
Aparece en las colecciones:
Artículos - Bioquímica y Biología Molecular


no-thumbnail
Ver/Abrir:

 nbt_tango.pdf



233,39 kB
Adobe PDF
Compartir:


Creative Commons La licencia se describe como: Atribución-NonComercial-NoDerivada 4.0 Internacional.