Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/11000/39020

OntoEnrich: A Platform for the Lexical Analysis of Ontologies


no-thumbnailVer/Abrir:

 14.pdf



1,25 MB
Adobe PDF
Compartir:

Ver/Abrir:

 14_separatas.pdf



420,65 kB
Adobe PDF
Compartir:

Este recurso está restringido

Título :
OntoEnrich: A Platform for the Lexical Analysis of Ontologies
Autor :
Quesada-Martínez, Manuel
Fernández-Breis, Jesualdo Tomás
Stevens, Robert
Aussenac-Guilles, Nathalie
Editor :
Springer
Departamento:
Departamentos de la UMH::Estadística, Matemáticas e Informática
Fecha de publicación:
2014-11
URI :
https://hdl.handle.net/11000/39020
Resumen :
The content of the labels in ontologies is usually considered hidden semantics, because the domain knowledge of such labels is not available as logical axioms in the ontology. The use of systematic naming conventions as best practice for the design of the content of the labels generates labels with structural regularities, namely, lexical regularities. The structure and content of such regularities can help ontology engineers to increase the amount of machine-friendly content in ontologies, that is, to increase the number of logical axioms. In this paper we present a web platform based on the OntoEnrich framework, which detects and analyzes lexical regularities, providing a series of useful insights about the structure and content of the labels, which can be helpful for the study of the engineering of the ontologies and their axiomatic enrichment. Here, we describe its software architecture, and how it can be used for analyzing the labels of ontologies, which will be illustrated with some examples from our research studies.
Notas:
Lecture Notes in Artificial Intelligence (LNAI) - 8982
Palabras clave/Materias:
OntoEnrich
Lexical Analysis
Ontologies
Tipo de documento :
info:eu-repo/semantics/conferenceObject
Derechos de acceso:
info:eu-repo/semantics/restrictedAccess
Attribution-NonCommercial-NoDerivatives 4.0 Internacional
DOI :
10.1007/978-3-319-17966-7 25
Publicado en:
Knowledge Engineering and Knowledge Management - EKAW 2014 Satellite Events
Aparece en las colecciones:
Artículos - Estadística, Matemáticas e Informática



Creative Commons La licencia se describe como: Atribución-NonComercial-NoDerivada 4.0 Internacional.