Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/11000/38870
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorRodrigues, Alexandre-
dc.contributor.authorGonzález Monsalve, Jonatan Andrey-
dc.contributor.authorMateu, Jorge-
dc.contributor.otherDepartamentos de la UMH::Estadística, Matemáticas e Informáticaes_ES
dc.date.accessioned2026-01-14T10:20:46Z-
dc.date.available2026-01-14T10:20:46Z-
dc.date.created2023-
dc.identifier.citationStochastic Environmental Research and Risk Assessmentes_ES
dc.identifier.issn1436-3259-
dc.identifier.issn1436-3240-
dc.identifier.urihttps://hdl.handle.net/11000/38870-
dc.description.abstractCrime data analysis is an essential source of information to aid social and political decisions makers regarding the allocation of public security resources. Computer-aided dispatch systems and technological advances in geographic information systems have made analysing and visualising historical spatial and temporal records of crimes a vital part of police operations and strategy. We look at our motivating crime problem as a spatio-temporal point pattern. Using a conditional approach based on properties of Poisson point processes, we transform the spatio-temporal point process prediction problem into a classification problem. We create spatio-temporal handcrafted features to link future and past events and use machine learning algorithms to learn behavioural patterns from the data. The fitted model is then used to carry out the reverse transformation, i.e. to perform spatio-temporal risk predictions based on the outcomes of the classification problem. Our procedure has theoretical formalism from point process theory and gains flexibility and computational efficiency inherited from the machine learning field. We show its performance under some simulated scenarios and a real application to spatio-temporal prediction and risk assessment of homicides in Bogota, Colombia.es_ES
dc.formatapplication/pdfes_ES
dc.format.extent14es_ES
dc.language.isoenges_ES
dc.publisherSpringeres_ES
dc.relation.ispartofseriesVol. 37es_ES
dc.rightsinfo:eu-repo/semantics/closedAccesses_ES
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectclassificationes_ES
dc.subjectcrime predictiones_ES
dc.subjectmachine learning classifierses_ES
dc.subjectperformance criterioes_ES
dc.subjectspatio-temporal pointes_ES
dc.subjectprocesseses_ES
dc.subject.otherCDU::5 - Ciencias puras y naturales::51 - Matemáticases_ES
dc.titleA conditional machine learning classification approach for spatio-temporal risk assessment of crime dataes_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherversionhttps://doi.org/10.1007/s00477-023-02420-5es_ES
Aparece en las colecciones:
Artículos - Estadística, Matemáticas e Informática


no-thumbnailVer/Abrir:

 2023 Rodrigues et al - A conditional machine learning classification approach.pdf



2,67 MB
Adobe PDF
Compartir:


Creative Commons La licencia se describe como: Atribución-NonComercial-NoDerivada 4.0 Internacional.