Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/11000/38867

On measures of dissimilarity between point patterns: Classification based on prototypes and multidimensional scaling


no-thumbnailVer/Abrir:

 2015 Mateu et al On measures of dissimilarity between point patterns - Biometrical_Journal.pdf



1,16 MB
Adobe PDF
Compartir:

Este recurso está restringido

Título :
On measures of dissimilarity between point patterns: Classification based on prototypes and multidimensional scaling
Autor :
Mateu, Jorge
Schoenberg, Frederic Paik
Diez, David M.
González Monsalve, Jonatan Andrey
Lu, Weipeng
Editor :
Wiley
Departamento:
Departamentos de la UMH::Estadística, Matemáticas e Informática
Fecha de publicación:
2015
URI :
https://hdl.handle.net/11000/38867
Resumen :
This paper presents a collection of dissimilarity measures to describe and then classify spatial point patterns when multiple replicates of different types are available for analysis. In particular, we consider a range of distances including the spike-time distance and its variants, as well as cluster-based distances and dissimilarity measures based on classical statistical summaries of point patterns. We review and explore, in the form of a tutorial, their uses, and their pros and cons. These distances are then used to summarize and describe collections of repeated realizations of point patterns via prototypes and multidimensional scaling. We also show a simulation study to evaluate the performance of multidimensional scaling with two types of selected distances. Finally, a multivariate spatial point pattern of a natural plant community is analyzed through various of these measures of dissimilarity.
Palabras clave/Materias:
classification
K-function
multidimensional scaling
point patterns
prototypes
spike-time distance
Área de conocimiento :
CDU: Ciencias puras y naturales: Matemáticas
Tipo de documento :
info:eu-repo/semantics/article
Derechos de acceso:
info:eu-repo/semantics/closedAccess
Attribution-NonCommercial-NoDerivatives 4.0 Internacional
DOI :
https://doi.org/10.1002/bimj.201300150
Publicado en:
Biometrical Journal
Aparece en las colecciones:
Artículos - Estadística, Matemáticas e Informática



Creative Commons La licencia se describe como: Atribución-NonComercial-NoDerivada 4.0 Internacional.