Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/11000/38845
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorAparicio, Juan-
dc.contributor.authorGonzález-Espinosa, Martín-
dc.contributor.authorLópez-Espín, José J.-
dc.contributor.authorPastor, Jesús T.-
dc.contributor.otherDepartamentos de la UMH::Estadística, Matemáticas e Informáticaes_ES
dc.date.accessioned2026-01-12T11:42:49Z-
dc.date.available2026-01-12T11:42:49Z-
dc.date.created2016-12-
dc.identifier.citationAdvances in Efficiency and Productivity, Chapter 9 (p. 195-224) (2016)es_ES
dc.identifier.urihttps://hdl.handle.net/11000/38845-
dc.description.abstractData Envelopment Analysis (DEA) is a well-known methodology for estimating technical efficiency from a set of inputs and outputs of Decision Making Units (DMUs). This paper is devoted to computational aspects of DEA models when the determination of the least distance to the Pareto-efficient frontier is the goal. Commonly, these models have been addressed in the literature by applying unsatisfactory techniques, based essentially on combinatorial NP-hard problems. Recently, some heuristics have been introduced to solve these situations. This work improves on previous heuristics for the generation of valid solutions. More valid solutions are generated and with lower execution time. A parameterized scheme of metaheuristics is developed to improve the solutions obtained through heuristics. A hyper-heuristic is used over the parameterized scheme. The hyper-heuristic searches in a space of metaheuristics and generates metaheuristics that provide solutions close to the optimum. The method is competitive versus exact methods, and has a lower execution time.es_ES
dc.formatapplication/pdfes_ES
dc.language.isoenges_ES
dc.publisherSpringeres_ES
dc.rightsinfo:eu-repo/semantics/closedAccesses_ES
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectData envelopment analysises_ES
dc.subjectClosest targetses_ES
dc.subjectMathematical programminges_ES
dc.subjectMetaheuristicses_ES
dc.subjectParameterized schemees_ES
dc.titleA Parameterized Scheme of Metaheuristics to Solve NP-Hard Problems in Data Envelopment Analysises_ES
dc.typeinfo:eu-repo/semantics/bookPartes_ES
dc.relation.publisherversion10.1007/978-3-319-48461-7_9es_ES
Aparece en las colecciones:
Artículos - Estadística, Matemáticas e Informática


no-thumbnailVer/Abrir:

 2016_A Parameterized Scheme of Metaheuristics to Solve NP-Hard Problems in Data Envelopment Analysis-196-225.pdf



1,7 MB
Adobe PDF
Compartir:


Creative Commons La licencia se describe como: Atribución-NonComercial-NoDerivada 4.0 Internacional.