Please use this identifier to cite or link to this item: https://hdl.handle.net/11000/38617
Full metadata record
DC FieldValueLanguage
dc.contributor.authorEspaña Roch, Victor Javier-
dc.contributor.authorAparicio, Juan-
dc.contributor.authorBarber i Vallés, Josep Xavier-
dc.contributor.otherDepartamentos de la UMH::Estadística, Matemáticas e Informáticaes_ES
dc.date.accessioned2025-12-01T09:27:20Z-
dc.date.available2025-12-01T09:27:20Z-
dc.date.created2025-
dc.identifier.citationInternational Transactions in Operational Researches_ES
dc.identifier.issn1475-3995-
dc.identifier.issn0969-6016-
dc.identifier.urihttps://hdl.handle.net/11000/38617-
dc.description.abstractThis paper presents a novel approach to conduct non-parametric estimations of production technologies that adhere to the basic assumptions of production theory axioms, including free disposability in inputs and outputs and convexity. The methodology is rooted in adapting the highly effective machine learning techniques associated with Random Forest and the use of splines. The new method features a piecewise linear estimator analogous to data envelopment analysis (DEA); however, it distinguishes itself by addressing DEA's overfitting and lack of robustness via randomization of data and input variables in the construction of the models. In this paper, the virtues of employing machine learning techniques for assessing the efficiency of public services, particularly in the realm of educational institutions, are underscored. The new approach has the capability to predict outputs based on inputs, even for units not included in the observed sample. Furthermore, it enables the identification of the most relevant inputs in relation to output production. To demonstrate the advantages of our method, an estimation of the educational production function is conducted for Spanish regions utilizing data sourced from the Program for International Student Assessment.es_ES
dc.formatapplication/pdfes_ES
dc.format.extent24es_ES
dc.language.isoenges_ES
dc.publisherWileyes_ES
dc.relation.ispartofseriesVol. 32es_ES
dc.relation.ispartofseriesnº 5es_ES
dc.rightsinfo:eu-repo/semantics/closedAccesses_ES
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectdata envelopment analysises_ES
dc.subjectmachine learninges_ES
dc.subjectrandom forestes_ES
dc.subjectpredictiones_ES
dc.subjectimportance of variableses_ES
dc.subject.otherCDU::3 - Ciencias sociales::31 - Demografía. Sociología. Estadística::311 - Estadísticaes_ES
dc.subject.otherCDU::5 - Ciencias puras y naturales::51 - Matemáticas::517 - Análisises_ES
dc.titleAn adaptation of Random Forest to estimate convex non-parametric production technologies: an empirical illustration of efficiency measurement in educationes_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherversionhttps://doi.org/10.1111/itor.13561es_ES
Appears in Collections:
Artículos - Estadística, Matemáticas e Informática


no-thumbnailView/Open:

 Int Trans Operational Res - 2024 - España.pdf



1,34 MB
Adobe PDF
Share:


Creative Commons ???jsp.display-item.text9???