Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/11000/38616

Incorporating Biotic Information in Species Distribution Models: A Coregionalized Approach

Título :
Incorporating Biotic Information in Species Distribution Models: A Coregionalized Approach
Autor :
Barber i Vallés, Josep Xavier
Conesa Guillén, David Valentín
López Quílez, Antonio
Martínez Minaya, Joaquín
Paradinas, Iosu
Pennino, Maria Grazia
Editor :
MDPI
Departamento:
Departamentos de la UMH::Estadística, Matemáticas e Informática
Fecha de publicación:
2021
URI :
https://hdl.handle.net/11000/38616
Resumen :
In this work, we discuss the use of a methodological approach for modelling spatial relationships among species by means of a Bayesian spatial coregionalized model. Inference and prediction is performed using the integrated nested Laplace approximation methodology to reduce the computational burden. We illustrate the performance of the coregionalized model in species interaction scenarios using both simulated and real data. The simulation demonstrates the better predictive performance of the coregionalized model with respect to the univariate models. The case study focus on the spatial distribution of a prey species, the European anchovy (Engraulis encrasicolus), and one of its predator species, the European hake (Merluccius merluccius), in the Mediterranean sea. The results indicate that European hake and anchovy are positively associated, resulting in improved model predictions using the coregionalized model.
Palabras clave/Materias:
bayesian hierarchical models
coregionalized models
fisheries
INLA
predation
SPDE
species interaction
Área de conocimiento :
CDU: Ciencias sociales: Demografía. Sociología. Estadística: Estadística
CDU: Ciencias puras y naturales: Matemáticas: Análisis
CDU: Ciencias puras y naturales: Biología: Ecología general y biodiversidad
Tipo de documento :
info:eu-repo/semantics/article
Derechos de acceso:
info:eu-repo/semantics/openAccess
Attribution-NonCommercial-NoDerivatives 4.0 Internacional
DOI :
https://doi.org/10.3390/math9040417
Publicado en:
Mathematics
Aparece en las colecciones:
Artículos - Estadística, Matemáticas e Informática



Creative Commons La licencia se describe como: Atribución-NonComercial-NoDerivada 4.0 Internacional.