Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/11000/38616
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorBarber i Vallés, Josep Xavier-
dc.contributor.authorConesa Guillén, David Valentín-
dc.contributor.authorLópez Quílez, Antonio-
dc.contributor.authorMartínez Minaya, Joaquín-
dc.contributor.authorParadinas, Iosu-
dc.contributor.authorPennino, Maria Grazia-
dc.contributor.otherDepartamentos de la UMH::Estadística, Matemáticas e Informáticaes_ES
dc.date.accessioned2025-12-01T09:16:05Z-
dc.date.available2025-12-01T09:16:05Z-
dc.date.created2021-
dc.identifier.citationMathematicses_ES
dc.identifier.issn2227-7390-
dc.identifier.urihttps://hdl.handle.net/11000/38616-
dc.description.abstractIn this work, we discuss the use of a methodological approach for modelling spatial relationships among species by means of a Bayesian spatial coregionalized model. Inference and prediction is performed using the integrated nested Laplace approximation methodology to reduce the computational burden. We illustrate the performance of the coregionalized model in species interaction scenarios using both simulated and real data. The simulation demonstrates the better predictive performance of the coregionalized model with respect to the univariate models. The case study focus on the spatial distribution of a prey species, the European anchovy (Engraulis encrasicolus), and one of its predator species, the European hake (Merluccius merluccius), in the Mediterranean sea. The results indicate that European hake and anchovy are positively associated, resulting in improved model predictions using the coregionalized model.es_ES
dc.formatapplication/pdfes_ES
dc.format.extent12es_ES
dc.language.isoenges_ES
dc.publisherMDPIes_ES
dc.relation.ispartofseriesVol. 9es_ES
dc.relation.ispartofseriesnº 4es_ES
dc.rightsinfo:eu-repo/semantics/openAccesses_ES
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectbayesian hierarchical modelses_ES
dc.subjectcoregionalized modelses_ES
dc.subjectfisherieses_ES
dc.subjectINLAes_ES
dc.subjectpredationes_ES
dc.subjectSPDEes_ES
dc.subjectspecies interactiones_ES
dc.subject.otherCDU::3 - Ciencias sociales::31 - Demografía. Sociología. Estadística::311 - Estadísticaes_ES
dc.subject.otherCDU::5 - Ciencias puras y naturales::51 - Matemáticas::517 - Análisises_ES
dc.subject.otherCDU::5 - Ciencias puras y naturales::57 - Biología::574 - Ecología general y biodiversidades_ES
dc.titleIncorporating Biotic Information in Species Distribution Models: A Coregionalized Approaches_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherversionhttps://doi.org/10.3390/math9040417es_ES
Aparece en las colecciones:
Artículos - Estadística, Matemáticas e Informática


Vista previa

Ver/Abrir:
 Incorporating Biotic Information in Species Distribution.pdf

1,06 MB
Adobe PDF
Compartir:


Creative Commons La licencia se describe como: Atribución-NonComercial-NoDerivada 4.0 Internacional.