Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/11000/38394
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorQuiles, Vicente-
dc.contributor.authorFerrero, Laura-
dc.contributor.authorIáñez, Eduardo-
dc.contributor.authorOrtiz, Mario-
dc.contributor.authorAzorín, José M.-
dc.contributor.otherDepartamentos de la UMH::Ingeniería Mecánica y Energíaes_ES
dc.date.accessioned2025-11-24T08:35:39Z-
dc.date.available2025-11-24T08:35:39Z-
dc.date.created2022-07-22-
dc.identifier.citationBiosensors, 2022, 12(8), 555es_ES
dc.identifier.issn2079-6374-
dc.identifier.urihttps://hdl.handle.net/11000/38394-
dc.description.abstractIn the EEG literature, there is a lack of asynchronous intention models that realistically propose interfaces for applications that must operate in real time. In this work, a novel BMI approach to detect in real time the intention to turn is proposed. For this purpose, an offline, pseudo-online and online analysis is presented to validate the EEG as a biomarker for the intention to turn. This article presents a methodology for the creation of a BMI that could differentiate two classes: monotonous walk and intention to turn. A comparison of some of the most popular algorithms in the literature is conducted. To filter the signal, two relevant algorithms are used: H∞ filter and ASR. For processing and classification, the mean of the covariance matrices in the Riemannian space was calculated and then, with various classifiers of different types, the distance of the test samples to each class in the Riemannian space was estimated. This dispenses with power-based models and the necessary baseline correction, which is a problem in realistic scenarios. In the cross-validation for a generic selection (valid for any subject) and a personalized one, the results were, on average, 66.2% and 69.6% with the best filter H∞. For the pseudo-online, the custom configuration for each subject was an average of 40.2% TP and 9.3 FP/min; the best subject obtained 43.9% TP and 2.9 FP/min. In the final validation test, this subject obtained 2.5 FP/min and an accuracy rate of 71.43%, and the turn anticipation was 0.21 s on averagees_ES
dc.formatapplication/pdfes_ES
dc.format.extent24es_ES
dc.language.isoenges_ES
dc.publisherMDPIes_ES
dc.rightsinfo:eu-repo/semantics/openAccesses_ES
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectintention turn directiones_ES
dc.subjectEEGes_ES
dc.subjectBMIes_ES
dc.subjectASRes_ES
dc.subjectH∞es_ES
dc.subjectreal timees_ES
dc.subject.otherCDU::6 - Ciencias aplicadas::62 - Ingeniería. Tecnologíaes_ES
dc.titleDecoding of Turning Intention during Walking Based on EEG Biomarkerses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherversionhttps://doi.org/10.3390/bios12080555es_ES
Aparece en las colecciones:
Artículos Ingeniería Mecánica y Energía


thumbnail_pdf
Ver/Abrir:
 Decoding of Turning Intention during Walking Based on EEG Biomarkers.pdf

1,73 MB
Adobe PDF
Compartir:


Creative Commons La licencia se describe como: Atribución-NonComercial-NoDerivada 4.0 Internacional.