Título : Robustness of dynamically gradient multivalued dynamical systems |
Autor : Caballero-Toro, Rubén Carvalho, Alexandre N. Marín-Rubio, Pedro Valero, José |
Editor : American Institute of Mathematical Sciences |
Departamento: Departamentos de la UMH::Estadística, Matemáticas e Informática |
Fecha de publicación: 2019-03 |
URI : https://hdl.handle.net/11000/38201 |
Resumen :
In this paper we study the robustness of dynamically gradient multivalued semifows. As an application, we describe the dynamical properties of a family of Chafee-Infante problems approximating a di erential inclusion
studied in [3], proving that the weak solutions of these problems generate a dynamically gradient multivalued semi
ow with respect to suitable Morse sets.
|
Notas: “This article has been published in a revised form in Discrete and Continuous Dynamical Systems Series B [http://dx.doi.org/10.3934/dcdsb.2019006]. This version is free to download for private research and study only. Not for redistribution, re-sale or use in derivative works.” |
Palabras clave/Materias: Attractors Reaction-diffusion equations Stability Dynamically gradient multivalued semiflows Morse decomposition Set-valued dynamical systems |
Tipo de documento : info:eu-repo/semantics/article |
Derechos de acceso: info:eu-repo/semantics/closedAccess Attribution-NonCommercial-NoDerivatives 4.0 Internacional |
DOI : http://dx.doi.org/10.3934/dcdsb.2019006 |
Publicado en: Discrete and Continuous Dynamical Systems - Series B, Vol. 24, Nº 3 (2019) |
Aparece en las colecciones: Artículos Estadística, Matemáticas e Informática
|