Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/11000/38192

About the structure of attractors for a nonlocal Chafee-Infante problem


thumbnail_pdf
Ver/Abrir:
 About the Structure of Attractors for a Nonlocal.pdf

1,31 MB
Adobe PDF
Compartir:
Título :
About the structure of attractors for a nonlocal Chafee-Infante problem
Autor :
Caballero-Toro, Rubén
Carvalho, Alexandre N.
Marín-Rubio, Pedro
Valero, José
Editor :
MDPI
Departamento:
Departamentos de la UMH::Estadística, Matemáticas e Informática
Fecha de publicación:
2021-02
URI :
https://hdl.handle.net/11000/38192
Resumen :
In this paper, we study the structure of the global attractor for the multivalued semiflow generated by a nonlocal reaction-diffusion equation in which we cannot guarantee the uniqueness of the Cauchy problem. First, we analyse the existence and properties of stationary points, showing that the problem undergoes the same cascade of bifurcations as in the Chafee-Infante equation. Second, we study the stability of the fixed points and establish that the semiflow is a dynamic gradient. We prove that the attractor consists of the stationary points and their heteroclinic connections and analyse some of the possible connections.
Palabras clave/Materias:
Reaction-diffusion equations
Nonlocal equations
Global attractors
Multivalued dynamical systems
Structure of the attractor
Stability
Morse decomposition
Tipo de documento :
info:eu-repo/semantics/article
Derechos de acceso:
info:eu-repo/semantics/openAccess
Attribution-NonCommercial-NoDerivatives 4.0 Internacional
DOI :
https://doi.org/10.3390/math9040353
Publicado en:
Mathematics, Vol. 9, Nº4 (2021)
Aparece en las colecciones:
Artículos Estadística, Matemáticas e Informática



Creative Commons La licencia se describe como: Atribución-NonComercial-NoDerivada 4.0 Internacional.