Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/11000/37999
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorLa Merrill, Michele A.-
dc.contributor.authorSmith, Martyn T.-
dc.contributor.authorMcHale, Cliona M.-
dc.contributor.authorHeindel, Jerrold J.-
dc.contributor.authorAtlas, Ella-
dc.contributor.authorCave, Matthew C.-
dc.contributor.authorCollier, David-
dc.contributor.authorGuyton, Kathryn Z.-
dc.contributor.authorKoliwad, Suneil-
dc.contributor.authorNadal, Ángel-
dc.contributor.authorRhoder, Christopher J.-
dc.contributor.authorSargis, Robert M.-
dc.contributor.authorZeise, Lauren-
dc.contributor.authorBlumberg, Bruce-
dc.contributor.otherDepartamentos de la UMH::Fisiologíaes_ES
dc.date.accessioned2025-11-10T11:11:00Z-
dc.date.available2025-11-10T11:11:00Z-
dc.date.created2024-11-
dc.identifier.citationNature Reviews Endocrinology, Vol. 21 (2025)es_ES
dc.identifier.issn1759-5037-
dc.identifier.issn1759-5029-
dc.identifier.urihttps://hdl.handle.net/11000/37999-
dc.description.abstractMetabolism-disrupting agents (MDAs) are chemical, infectious or physical agents that increase the risk of metabolic disorders. Examples include pharmaceuticals, such as antidepressants, and environmental agents, such as bisphenol A. Various types of studies can provide evidence to identify MDAs, yet a systematic method is needed to integrate these data to help to identify such hazards. Inspired by work to improve hazard identification of carcinogens using key characteristics (KCs), we developed 12 KCs of MDAs based on our knowledge of processes underlying metabolic diseases and the effects of their causal agents: (1) alters function of the endocrine pancreas; (2) impairs function of adipose tissue; (3) alters nervous system control of metabolic function; (4) promotes insulin resistance; (5) disrupts metabolic signalling pathways; (6) alters development and fate of metabolic cell types; (7) alters energy homeostasis; (8) causes inappropriate nutrient handling and partitioning; (9) promotes chronic inflammation and immune dysregulation in metabolic tissues; (10) disrupts gastrointestinal tract function; (11) induces cellular stress pathways; and (12) disrupts circadian rhythms. In this Consensus Statement, we present the logic that revealed the KCs of MDAs and highlight evidence that supports the identification of KCs. We use chemical, infectious and physical agents as examples to illustrate how the KCs can be used to organize and use mechanistic data to help to identify MDAs.es_ES
dc.formatapplication/pdfes_ES
dc.language.isoenges_ES
dc.publisherNature Researches_ES
dc.rightsinfo:eu-repo/semantics/closedAccesses_ES
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectDyslipidaemiases_ES
dc.subjectMetabolic syndromees_ES
dc.subjectObesityes_ES
dc.subjectRisk factorses_ES
dc.subjectType 2 diabeteses_ES
dc.titleConsensus on the key characteristics of metabolism disruptorses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherversionhttps://doi.org/10.1038/s41574-024-01059-8es_ES
Aparece en las colecciones:
Artículos Fisiología


no-thumbnail
Ver/Abrir:

 Consensus on the key characteristics....pdf



2,37 MB
Adobe PDF
Compartir:


Creative Commons La licencia se describe como: Atribución-NonComercial-NoDerivada 4.0 Internacional.