Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/11000/37995
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorTorres Vergara, Cristian-
dc.contributor.authorGarrigós, Ausiàs-
dc.contributor.authorBlanes, José Manuel-
dc.contributor.authorCasado, Pablo-
dc.contributor.authorMarroquí, David-
dc.contributor.otherDepartamentos de la UMH::Ciencia de Materiales, Óptica y Tecnología Electrónicaes_ES
dc.date.accessioned2025-11-10T10:34:44Z-
dc.date.available2025-11-10T10:34:44Z-
dc.date.created2023-
dc.identifier.citationIEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMSes_ES
dc.identifier.issn1557-9603-
dc.identifier.issn0018-9251-
dc.identifier.urihttps://hdl.handle.net/11000/37995-
dc.description.abstractThis work describes the implementation of three maximum peak power tracking methods devised for small satellites. The three methods are the analog oscillating maximum power point tracking, the analog global maximum peak power tracking, and the analog global maximum output power tracking. An interplanetary mission (Mars–Asteroid belt) with complex power–voltage solar array characteristics, including several local maximum power points, is considered to evaluate each peak power tracking technique. The three peak power tracking techniques have been integrated into an unregulated battery bus topology using synchronous buck converters as solar array regulators. High-reliability design is achieved using analog electronic parts with space-qualified counterparts. Each peak power tracking method has been optimized individually for the best performance and then compared with the others. The experimental validation suggests that the preferred method strongly depends on the expected power–voltage solar array characteristics and mission parameters.es_ES
dc.formatapplication/pdfes_ES
dc.format.extent13es_ES
dc.language.isoenges_ES
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)es_ES
dc.relation.ispartofseriesVol. 59es_ES
dc.relation.ispartofseriesnº 5es_ES
dc.rightsinfo:eu-repo/semantics/closedAccesses_ES
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectmaximum power point trackerses_ES
dc.subjectvoltage controles_ES
dc.subjectspace vehicleses_ES
dc.subjectsatelliteses_ES
dc.subjectbatterieses_ES
dc.subjectregulatorses_ES
dc.subjectcomputer architecturees_ES
dc.subject.otherCDU::6 - Ciencias aplicadas::62 - Ingeniería. Tecnologíaes_ES
dc.subject.otherCDU::6 - Ciencias aplicadas::62 - Ingeniería. Tecnología::621 - Ingeniería mecánica en general. Tecnología nuclear. Electrotecnia. Maquinaria::621.3 - Ingeniería eléctrica. Electrotecnia. Telecomunicacioneses_ES
dc.titleAnalog Maximum Peak Power Tracking Techniques for Small Satelliteses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherversionhttps://doi.org/10.1109/TAES.2023.3275935es_ES
Aparece en las colecciones:
Artículos - Ciencia de los materiales, óptica y tecnología electrónica


no-thumbnail
Ver/Abrir:

 3. Analog_Maximum_Peak_Power_Tracking_Techniques_for_Small_Satellites.pdf



7,22 MB
Adobe PDF
Compartir:


Creative Commons La licencia se describe como: Atribución-NonComercial-NoDerivada 4.0 Internacional.