Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/11000/37872
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorWikman-Jorgensen, Philip Erick-
dc.contributor.authorRuiz, Ángel-
dc.contributor.authorGiner-Galvañ, Vicente-
dc.contributor.authorLlenas-García, Jara-
dc.contributor.authorSeguí-Ripoll, José Miguel-
dc.contributor.authorSalinas-Serrano, José María-
dc.contributor.authorBorrajo, Emilio-
dc.contributor.authorIbarra Sánchez, José María-
dc.contributor.authorGarcía-Sabater, José P.-
dc.contributor.authorMarin-Garcia, Juan A.-
dc.contributor.otherDepartamentos de la UMH::Medicina Clínicaes_ES
dc.date.accessioned2025-11-05T13:13:38Z-
dc.date.available2025-11-05T13:13:38Z-
dc.date.created2024-02-
dc.identifier.citationJournal of Industrial Engineering and Management, 17(1), 168-181 - February 2024es_ES
dc.identifier.isbn2013-0953-
dc.identifier.issn2013-8423-
dc.identifier.urihttps://hdl.handle.net/11000/37872-
dc.description.abstractPurpose: This study aims to address the pressing need for accurate forecasting of healthcare resource demands during the COVID-19 pandemic. It presents an approach that combines a stochastic Markov model and a discrete event simulation model to dynamically predict hospital admissions and daily occupancy of hospital and ICU beds. Design/methodology/approach: The research builds upon existing work related to predicting COVID-19 spread and patient influx to hospital emergency departments. The proposed model was developed and validated at San Juan de Alicante University Hospital from July 10, 2020, to January 10, 2022, and externally validated at Hospital Vega Baja. The model involves an admissions generator based on a stochastic Markov model, feeding data into a discrete event simulation model in the R programming language. The probabilities of hospital admission were calculated based on age-stratified positive SARS-COV-2 results from the health department’s catchment population. The discrete event simulation model simulates distinct patient pathways within the hospital to estimate bed occupancy for the upcoming week. The performance of the model was measured using the median absolute difference (MAD) between predicted and actual demand.Findings: When applied to data from San Juan hospital, the admissions generator demonstrated a MAD of 6 admissions/week (interquartile range [IQR] 2-11). The MAD between the model’s predictions and actual bed occupancy was 20 beds/day (IQR 5-43), equivalent to 5% of total hospital beds. For ICU occupancy, the MAD was 4 beds/day (IQR 2-7), constituting 25% of ICU beds. Evaluation with data from Hospital Vega Baja showcased an admissions generator MAD of 2.42 admissions/week (IQR 1.02-7.41).es_ES
dc.formatapplication/pdfes_ES
dc.format.extent14es_ES
dc.format.extent14es_ES
dc.language.isoenges_ES
dc.publisherOmnia Sciencees_ES
dc.rightsinfo:eu-repo/semantics/openAccesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectcovid-19es_ES
dc.subjectcovid-19es_ES
dc.subjectresource allocationes_ES
dc.subjecthospitalization forecastes_ES
dc.subjectplanning, managementes_ES
dc.subjectincidencees_ES
dc.subjectincidencees_ES
dc.subjectmathematical modeles_ES
dc.titleHospitalization Forecast to Inform COVID-19 Pandemic Planning and Resource Allocation Using Discrete Event Simulationes_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherversion10.3926/jiem.6404es_ES
Aparece en las colecciones:
Artículos Medicina Clínica


Vista previa

Ver/Abrir:
 Hospitalization Forecast to Inform COVID-19 Pandemic Planning and.pdf

536,33 kB
Adobe PDF
Compartir:


Creative Commons La licencia se describe como: Atribución-NonComercial-NoDerivada 4.0 Internacional.