Please use this identifier to cite or link to this item: https://hdl.handle.net/11000/37443
Full metadata record
DC FieldValueLanguage
dc.contributor.authorGonzález Espinosa, Martín-
dc.contributor.authorSánchez, Virginia-
dc.contributor.authorCalafate, Carlos-
dc.contributor.authorLópez Espín, José J.-
dc.contributor.authorCecilia, José M.-
dc.contributor.otherDepartamentos de la UMH::Estadística, Matemáticas e Informáticaes_ES
dc.date.accessioned2025-09-17T12:44:23Z-
dc.date.available2025-09-17T12:44:23Z-
dc.date.created2025-
dc.identifier.citation2025, 21st International Conference on Intelligent Environments (IE) (pp. 1-8). IEEE.es_ES
dc.identifier.urihttps://hdl.handle.net/11000/37443-
dc.description.abstract—Evapotranspiration (ET0)—the sum of evaporation and plant transpiration—is a key variable for optimizing water use in precision agriculture. With increasing challenges due to climate change and water scarcity, accurate ET0 forecasting is essential for designing efficient irrigation systems that enhance productivity while conserving resources. This study evaluates advanced time-series models for ET0 forecasting—Nixtla TimeGPT1, Long Short-Term Memory Networks (LSTM), and Kolmogorov–Arnold Networks (KAN)—using IoT data from Campo de Cartagena (Murcia, Spain). Results show that KAN achieves superior performance for multi-step forecasting (MSE: 0.045), while Nixtla Linear excels in one-step predictions (MSE: 0.009). These findings provide practical insights into model selection for adaptive irrigation strategies under diverse climatic conditions.es_ES
dc.formatapplication/pdfes_ES
dc.format.extent8es_ES
dc.language.isoenges_ES
dc.publisherIEEEes_ES
dc.rightsinfo:eu-repo/semantics/closedAccesses_ES
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectforecastinges_ES
dc.subjectsmart irrigationes_ES
dc.subjectTimeGPTes_ES
dc.subjectKANes_ES
dc.subjectLSTMes_ES
dc.subject.otherCDU::6 - Ciencias aplicadases_ES
dc.titleEvaluation of Time-Series Models for Evapotranspiration Prediction in Smart Agriculturees_ES
dc.typeinfo:eu-repo/semantics/conferenceObjectes_ES
dc.relation.publisherversionhttps://doi.org/10.1109/IE64880.2025.11130140es_ES
Appears in Collections:
Ponencias y comunicaciones


no-thumbnailView/Open:

 2025_Evaluation_of_Time-Series_Models_for_Evapotranspiration_Prediction_in_Smart_Agriculture (1).pdf



869,5 kB
Adobe PDF
Share:


Creative Commons ???jsp.display-item.text9???