Por favor, use este identificador para citar o enlazar este ítem:
https://hdl.handle.net/11000/37443
Evaluation of Time-Series Models for Evapotranspiration Prediction in Smart Agriculture
Ver/Abrir: 2025_Evaluation_of_Time-Series_Models_for_Evapotranspiration_Prediction_in_Smart_Agriculture (1).pdf
869,5 kB
Adobe PDF
Compartir:
Este recurso está restringido
Título : Evaluation of Time-Series Models for Evapotranspiration Prediction in Smart Agriculture |
Autor : González Espinosa, Martín  Sánchez, Virginia Calafate, Carlos López Espín, José J. Cecilia, José M. |
Editor : IEEE |
Departamento: Departamentos de la UMH::Estadística, Matemáticas e Informática |
Fecha de publicación: 2025 |
URI : https://hdl.handle.net/11000/37443 |
Resumen :
—Evapotranspiration (ET0)—the sum of evaporation
and plant transpiration—is a key variable for optimizing water
use in precision agriculture. With increasing challenges due to
climate change and water scarcity, accurate ET0 forecasting is
essential for designing efficient irrigation systems that enhance
productivity while conserving resources. This study evaluates advanced time-series models for ET0 forecasting—Nixtla TimeGPT1, Long Short-Term Memory Networks (LSTM), and Kolmogorov–Arnold Networks (KAN)—using IoT data from Campo
de Cartagena (Murcia, Spain). Results show that KAN achieves
superior performance for multi-step forecasting (MSE: 0.045),
while Nixtla Linear excels in one-step predictions (MSE: 0.009).
These findings provide practical insights into model selection for
adaptive irrigation strategies under diverse climatic conditions.
|
Palabras clave/Materias: forecasting smart irrigation TimeGPT KAN LSTM |
Área de conocimiento : CDU: Ciencias aplicadas |
Tipo de documento : info:eu-repo/semantics/conferenceObject |
Derechos de acceso: info:eu-repo/semantics/closedAccess Attribution-NonCommercial-NoDerivatives 4.0 Internacional |
DOI : https://doi.org/10.1109/IE64880.2025.11130140 |
Publicado en: 2025, 21st International Conference on Intelligent Environments (IE) (pp. 1-8). IEEE. |
Aparece en las colecciones: Ponencias y comunicaciones
|
La licencia se describe como: Atribución-NonComercial-NoDerivada 4.0 Internacional.