Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/11000/37443

Evaluation of Time-Series Models for Evapotranspiration Prediction in Smart Agriculture


no-thumbnailVer/Abrir:

 2025_Evaluation_of_Time-Series_Models_for_Evapotranspiration_Prediction_in_Smart_Agriculture (1).pdf



869,5 kB
Adobe PDF
Compartir:

Este recurso está restringido

Título :
Evaluation of Time-Series Models for Evapotranspiration Prediction in Smart Agriculture
Autor :
González Espinosa, Martín  
Sánchez, Virginia
Calafate, Carlos
López Espín, José J.
Cecilia, José M.
Editor :
IEEE
Departamento:
Departamentos de la UMH::Estadística, Matemáticas e Informática
Fecha de publicación:
2025
URI :
https://hdl.handle.net/11000/37443
Resumen :
—Evapotranspiration (ET0)—the sum of evaporation and plant transpiration—is a key variable for optimizing water use in precision agriculture. With increasing challenges due to climate change and water scarcity, accurate ET0 forecasting is essential for designing efficient irrigation systems that enhance productivity while conserving resources. This study evaluates advanced time-series models for ET0 forecasting—Nixtla TimeGPT1, Long Short-Term Memory Networks (LSTM), and Kolmogorov–Arnold Networks (KAN)—using IoT data from Campo de Cartagena (Murcia, Spain). Results show that KAN achieves superior performance for multi-step forecasting (MSE: 0.045), while Nixtla Linear excels in one-step predictions (MSE: 0.009). These findings provide practical insights into model selection for adaptive irrigation strategies under diverse climatic conditions.
Palabras clave/Materias:
forecasting
smart irrigation
TimeGPT
KAN
LSTM
Área de conocimiento :
CDU: Ciencias aplicadas
Tipo de documento :
info:eu-repo/semantics/conferenceObject
Derechos de acceso:
info:eu-repo/semantics/closedAccess
Attribution-NonCommercial-NoDerivatives 4.0 Internacional
DOI :
https://doi.org/10.1109/IE64880.2025.11130140
Publicado en:
2025, 21st International Conference on Intelligent Environments (IE) (pp. 1-8). IEEE.
Aparece en las colecciones:
Ponencias y comunicaciones



Creative Commons La licencia se describe como: Atribución-NonComercial-NoDerivada 4.0 Internacional.