Por favor, use este identificador para citar o enlazar este ítem:
https://hdl.handle.net/11000/36765
Registro completo de metadatos
Campo DC | Valor | Lengua/Idioma |
---|---|---|
dc.contributor.author | Riosalido, Paula M. | - |
dc.contributor.author | Arango-Ospina, Marcela | - |
dc.contributor.author | Velasquez, Pablo | - |
dc.contributor.author | Murciano, Angel | - |
dc.contributor.author | Boccaccini, Aldo R. | - |
dc.contributor.author | De Aza, Piedad | - |
dc.contributor.other | Departamentos de la UMH::Ciencia de Materiales, Óptica y Tecnología Electrónica | es_ES |
dc.date.accessioned | 2025-06-10T12:39:31Z | - |
dc.date.available | 2025-06-10T12:39:31Z | - |
dc.date.created | 2025 | - |
dc.identifier.citation | Boletín de la Sociedad Española de Cerámica y Vidrio Volume 64, Issue 4, July–August 2025 | es_ES |
dc.identifier.issn | 0366-3175 | - |
dc.identifier.uri | https://hdl.handle.net/11000/36765 | - |
dc.description.abstract | tThis study proposes the modification of multilayer scaffolds based on the SiO2–CaO–P2O5system by incorporating bioactive ions, such as magnesium or lithium, with the aim ofenhancing the cellular processes involved in bone regeneration. Two types of scaffolds, CS04and CS05, were prepared, varying the amount of MgO (0.38; 0.49% w/w). The prepared scaf-folds exhibited an interconnected porous structure, with SiO2, Ca2P2O7and -Ca3(PO4)2aspredominant crystalline phases, a compressive strength of 1.8 MPa and a porosity above75%. Bioactivity tests demonstrated that minor variations in the amount of MgO altered thesurface topography and bioactive behaviour, resulting in a lamellar microstructure (CS04)and precipitation of hollow HA spheres (CS05). From a biological point of view, the scaffoldsproved to be biocompatible, as were their dissolution products at 10 and 100 mg/mL. Bothpromoted MC3T3-E1 cell proliferation, calcium deposition and osteoblastic differentiation,as reflected by increased ALP activity. In addition, they induced VEGF release in MC3T3-E1,thereby demonstrating their angiogenic potential. Taken together, these results suggest thatthe scaffolds possess optimal properties for bone regeneration applications. | es_ES |
dc.format | application/pdf | es_ES |
dc.format.extent | 15 | es_ES |
dc.language.iso | eng | es_ES |
dc.publisher | Elsevier | es_ES |
dc.rights | info:eu-repo/semantics/openAccess | es_ES |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 Internacional | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
dc.subject | Multilayer scaffolds | es_ES |
dc.subject | Sol–gel | es_ES |
dc.subject | Bone regeneration | es_ES |
dc.subject | Biocompatible | es_ES |
dc.subject.other | CDU::6 - Ciencias aplicadas::62 - Ingeniería. Tecnología | es_ES |
dc.title | Bioactive scaffolds harnessing ionic modifications to promote osteogenesis and angiogenesis in bone regeneration | es_ES |
dc.type | info:eu-repo/semantics/article | es_ES |
dc.relation.publisherversion | https://doi.org/10.1016/j.bsecv.2025.100447 | es_ES |

Ver/Abrir:
2025-BSECV Paula Aldo.pdf
3,92 MB
Adobe PDF
Compartir:
La licencia se describe como: Atribución-NonComercial-NoDerivada 4.0 Internacional.