Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/11000/36765
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorRiosalido, Paula M.-
dc.contributor.authorArango-Ospina, Marcela-
dc.contributor.authorVelasquez, Pablo-
dc.contributor.authorMurciano, Angel-
dc.contributor.authorBoccaccini, Aldo R.-
dc.contributor.authorDe Aza, Piedad -
dc.contributor.otherDepartamentos de la UMH::Ciencia de Materiales, Óptica y Tecnología Electrónicaes_ES
dc.date.accessioned2025-06-10T12:39:31Z-
dc.date.available2025-06-10T12:39:31Z-
dc.date.created2025-
dc.identifier.citationBoletín de la Sociedad Española de Cerámica y Vidrio Volume 64, Issue 4, July–August 2025es_ES
dc.identifier.issn0366-3175-
dc.identifier.urihttps://hdl.handle.net/11000/36765-
dc.description.abstracttThis study proposes the modification of multilayer scaffolds based on the SiO2–CaO–P2O5system by incorporating bioactive ions, such as magnesium or lithium, with the aim ofenhancing the cellular processes involved in bone regeneration. Two types of scaffolds, CS04and CS05, were prepared, varying the amount of MgO (0.38; 0.49% w/w). The prepared scaf-folds exhibited an interconnected porous structure, with SiO2, Ca2P2O7and -Ca3(PO4)2aspredominant crystalline phases, a compressive strength of 1.8 MPa and a porosity above75%. Bioactivity tests demonstrated that minor variations in the amount of MgO altered thesurface topography and bioactive behaviour, resulting in a lamellar microstructure (CS04)and precipitation of hollow HA spheres (CS05). From a biological point of view, the scaffoldsproved to be biocompatible, as were their dissolution products at 10 and 100 mg/mL. Bothpromoted MC3T3-E1 cell proliferation, calcium deposition and osteoblastic differentiation,as reflected by increased ALP activity. In addition, they induced VEGF release in MC3T3-E1,thereby demonstrating their angiogenic potential. Taken together, these results suggest thatthe scaffolds possess optimal properties for bone regeneration applications.es_ES
dc.formatapplication/pdfes_ES
dc.format.extent15es_ES
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.rightsinfo:eu-repo/semantics/openAccesses_ES
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectMultilayer scaffoldses_ES
dc.subjectSol–geles_ES
dc.subjectBone regenerationes_ES
dc.subjectBiocompatiblees_ES
dc.subject.otherCDU::6 - Ciencias aplicadas::62 - Ingeniería. Tecnologíaes_ES
dc.titleBioactive scaffolds harnessing ionic modifications to promote osteogenesis and angiogenesis in bone regenerationes_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherversionhttps://doi.org/10.1016/j.bsecv.2025.100447es_ES
Aparece en las colecciones:
Artículos - Ciencia de los materiales, óptica y tecnología electrónica


Vista previa

Ver/Abrir:
 2025-BSECV Paula Aldo.pdf

3,92 MB
Adobe PDF
Compartir:


Creative Commons La licencia se describe como: Atribución-NonComercial-NoDerivada 4.0 Internacional.