Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/11000/35309
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorAcién, Juan Manuel-
dc.contributor.authorCañizares Ramos, Eva-
dc.contributor.authorCandela, Héctor-
dc.contributor.authorGonzalez-Guzman, Miguel-
dc.contributor.authorArbona, Vicent-
dc.contributor.otherDepartamentos de la UMH::Biología Aplicadaes_ES
dc.date.accessioned2025-01-26T10:34:48Z-
dc.date.available2025-01-26T10:34:48Z-
dc.date.created2023-01-28-
dc.identifier.citationInternational Journal of Molecular Science 2023, 24(3), 2526es_ES
dc.identifier.issn1422-0067-
dc.identifier.issn1661-6596-
dc.identifier.urihttps://hdl.handle.net/11000/35309-
dc.description.abstractThe selection of plant genotypes with improved productivity and tolerance to environmental constraints has always been a major concern in plant breeding. Classical approaches based on the generation of variability and selection of better phenotypes from large variant collections have improved their efficacy and processivity due to the implementation of molecular biology techniques, particularly genomics, Next Generation Sequencing and other omics such as proteomics and metabolomics. In this regard, the identification of interesting variants before they develop the phenotype trait of interest with molecular markers has advanced the breeding process of new varieties. Moreover, the correlation of phenotype or biochemical traits with gene expression or protein abundance has boosted the identification of potential new regulators of the traits of interest, using a relatively low number of variants. These important breakthrough technologies, built on top of classical approaches, will be improved in the future by including the spatial variable, allowing the identification of gene(s) involved in key processes at the tissue and cell levels.es_ES
dc.formatapplication/pdfes_ES
dc.format.extent23es_ES
dc.language.isoenges_ES
dc.publisherMDPIes_ES
dc.rightsinfo:eu-repo/semantics/openAccesses_ES
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectquantitative trait locies_ES
dc.subjectmetabolomicses_ES
dc.subjectnetwork analysises_ES
dc.subjectplant breedinges_ES
dc.subjectproteomicses_ES
dc.subjecttranscriptomicses_ES
dc.subject.otherCDU::5 - Ciencias puras y naturales::57 - Biologíaes_ES
dc.titleFrom Classical to Modern Computational Approaches to Identify Key Genetic Regulatory Components in Plant Biologyes_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherversionhttps://doi.org/10.3390/ijms24032526es_ES
Aparece en las colecciones:
Artículos Biología Aplicada


Vista previa

Ver/Abrir:
 ijms-24-02526-v3.pdf

1,5 MB
Adobe PDF
Compartir:


Creative Commons La licencia se describe como: Atribución-NonComercial-NoDerivada 4.0 Internacional.