Please use this identifier to cite or link to this item: https://hdl.handle.net/11000/35046
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMoragues, Raul-
dc.contributor.authorValero-Carreras, Daniel-
dc.contributor.authorAparicio, Juan-
dc.contributor.authorGUERRERO MARTÍNEZ, NADIA M.-
dc.contributor.otherDepartamentos de la UMH::Estadística, Matemáticas e Informáticaes_ES
dc.date.accessioned2025-01-20T18:41:52Z-
dc.date.available2025-01-20T18:41:52Z-
dc.date.created2024-
dc.identifier.citationComputers and Operations Researches_ES
dc.identifier.issn1873-765X-
dc.identifier.urihttps://hdl.handle.net/11000/35046-
dc.description.abstractIn the context of assessing the performance of decision-making units (companies, institutions, etc.), it is important to know the contribution or importance of each input to the generation of products and services in the production process. Identifying the degree of relevance of each input is a challenge from both an applied and a methodological point of view, especially within the field of non-parametric techniques, such as Data Envelopment Analysis (DEA), where the mathematical expression of the production function associated with the data generating process is not specified. This means that there is no specific coefficient to be estimated for each input, which makes it difficult to determine a ranking of importance of this type of variable compared to parametric methods, where a target function dependent on some parameters must be previously specified. Within this challenging context associated with the non-parametric approach to estimating technical efficiency, in this paper, we adapt several methods for identifying the importance of features used together with the Support Vector Machine technique in order to determine an importance ranking of the inputs in a productive process. The different adaptations developed in this article are computationally checked through a simulated experiment.es_ES
dc.formatapplication/pdfes_ES
dc.format.extent12es_ES
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.relation.ispartofseries163es_ES
dc.rightsinfo:eu-repo/semantics/openAccesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectData envelopment analysises_ES
dc.subjectSupport vector frontierses_ES
dc.subjectRanking inputses_ES
dc.subject.otherCDU::5 - Ciencias puras y naturales::51 - Matemáticases_ES
dc.titleEvaluating different methods for ranking inputs in the context of the performance assessment of decision making units: A machine learning approaches_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherversionhttps://doi.org/10.1016/j.cor.2023.106485es_ES
Appears in Collections:
Artículos Estadística, Matemáticas e Informática


Thumbnail

View/Open:
 1-s2.0-S0305054823003490-main.pdf

783,4 kB
Adobe PDF
Share:


Creative Commons ???jsp.display-item.text9???