Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/11000/34512
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorOrenes, Yolanda-
dc.contributor.authorRabasa, Alejandro-
dc.contributor.authorRodriguez-Sala, Jesus Javier-
dc.contributor.authorSanchez-Soriano, Joaquin-
dc.contributor.otherDepartamentos de la UMH::Estadística, Matemáticas e Informáticaes_ES
dc.date.accessioned2025-01-15T19:30:46Z-
dc.date.available2025-01-15T19:30:46Z-
dc.date.created2021-07-
dc.identifier.citationEntropy 2021, 23(7)es_ES
dc.identifier.issn1099-4300-
dc.identifier.urihttps://hdl.handle.net/11000/34512-
dc.description.abstractIn the machine learning literature we can find numerous methods to solve classification problems. We propose two new performance measures to analyze such methods. These measures are defined by using the concept of proportional reduction of classification error with respect to three benchmark classifiers, the random and two intuitive classifiers which are based on how a non-expert person could realize classification simply by applying a frequentist approach. We show that these three simple methods are closely related to different aspects of the entropy of the dataset. Therefore, these measures account somewhat for entropy in the dataset when evaluating the performance of classifiers. This allows us to measure the improvement in the classification results compared to simple methods, and at the same time how entropy affects classification capacity. To illustrate how these new performance measures can be used to analyze classifiers taking into account the entropy of the dataset, we carry out an intensive experiment in which we use the well-known J48 algorithm, and a UCI repository dataset on which we have previously selected a subset of the most relevant attributes. Then we carry out an extensive experiment in which we consider four heuristic classifiers, and 11 datasets.es_ES
dc.formatapplication/pdfes_ES
dc.format.extent29es_ES
dc.language.isoenges_ES
dc.publisherMDPIes_ES
dc.rightsinfo:eu-repo/semantics/openAccesses_ES
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectentropyes_ES
dc.subjectclassification methodses_ES
dc.subjectintuitive classification methodes_ES
dc.subjectperformance measureses_ES
dc.subjectbenchmarkinges_ES
dc.subject.otherCDU::5 - Ciencias puras y naturales::50 - Generalidades sobre las ciencias purases_ES
dc.titleBenchmarking Analysis of the Accuracy of Classification Methods Related to Entropyes_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherversionhttps://doi.org/10.3390/e23070850es_ES
Aparece en las colecciones:
Artículos Estadística, Matemáticas e Informática


Vista previa

Ver/Abrir:
 _6 BenchmarkAnalysis.pdf

403,01 kB
Adobe PDF
Compartir:


Creative Commons La licencia se describe como: Atribución-NonComercial-NoDerivada 4.0 Internacional.