Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/11000/34509
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorMollá, Nuria-
dc.contributor.authorHeavinc, Ciara-
dc.contributor.authorRabasa, Alejandro-
dc.contributor.otherDepartamentos de la UMH::Estadística, Matemáticas e Informáticaes_ES
dc.date.accessioned2025-01-15T19:28:56Z-
dc.date.available2025-01-15T19:28:56Z-
dc.date.created2022-05-
dc.identifier.citationJournal of Decision Systems Volume 31, 2022es_ES
dc.identifier.issn2116-7052-
dc.identifier.issn1246-0125-
dc.identifier.urihttps://hdl.handle.net/11000/34509-
dc.description.abstractTraditionally, Decision Support Systems (DSS) data were stored statically and persistently in a database. Increasing volume and intensity of information and data streams create new opportunities and challenges for DSS experts, data scientists, and decision makers. Novel data stream contexts require that we move beyond static DSS modelling techniques to support data-driven decisionmaking. Implementing incremental and/or adaptive algorithms may help to solve some of the challenges arising from data streams. This research investigates the use of these algorithms to better understand how their performance compares with more traditional approaches. We show that an adaptive DSS engine has the potential to identify errors and improve the accuracy of the model. We briefly identify how this approach could be applied to unexpected highly uncertain decision scenarios. Future research considers new opportunities to pursue a multidisciplinary approach to adaptive DSS design, development, and implementation leveraging emerging machine learning techniques in tackling complex decision problems.es_ES
dc.formatapplication/pdfes_ES
dc.format.extent17es_ES
dc.language.isoenges_ES
dc.publisherTaylor and Francis Groupes_ES
dc.rightsinfo:eu-repo/semantics/closedAccesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectDecision support systemses_ES
dc.subjectDSSes_ES
dc.subjectdata streamses_ES
dc.subjectstatices_ES
dc.subjectincrementales_ES
dc.subjectadaptivees_ES
dc.subject.otherCDU::5 - Ciencias puras y naturales::50 - Generalidades sobre las ciencias purases_ES
dc.titleData-driven decision making: new opportunities for DSS in data stream contextses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherversionhttps://doi.org/10.1080/12460125.2022.2071404es_ES
Aparece en las colecciones:
Artículos Estadística, Matemáticas e Informática


no-thumbnailVer/Abrir:

 _4 DatadrivendecisionmakingnewopportunitiesforDSSindatastreamcontexts.pdf



1,92 MB
Adobe PDF
Compartir:


Creative Commons La licencia se describe como: Atribución-NonComercial-NoDerivada 4.0 Internacional.