Título : Efficiency analysis trees: A new methodology for estimating production
frontiers through decision trees |
Autor : Esteve, Miriam  Aparicio, Juan  Rabasa, Alejandro  Rodriguez-Sala, Jesus Javier  |
Editor : Elsevier |
Departamento: Departamentos de la UMH::Estadística, Matemáticas e Informática |
Fecha de publicación: 2020-07 |
URI : https://hdl.handle.net/11000/34508 |
Resumen :
In this paper, we introduce a new methodology based on regression trees for estimating production frontiers satisfying fundamental postulates of microeconomics, such as free disposability. This new approach, baptized as Efficiency Analysis Trees (EAT), shares some similarities with the Free Disposal Hull (FDH) technique. However, and in contrast to FDH, EAT overcomes the problem of overfitting by using cross-validation to prune back the deep tree obtained in the first stage. Finally, the performance of EAT is measured via Monte Carlo simulations, showing that the new approach reduces the mean squared error associated with the estimation of the true frontier by between 13% and 70% in comparison with the standard FDH
|
Palabras clave/Materias: Data envelopment analysis Frontier analysis Free disposal hull Overfitting Classification and Regression Trees |
Área de conocimiento : CDU: Ciencias puras y naturales: Generalidades sobre las ciencias puras |
Tipo de documento : info:eu-repo/semantics/article |
Derechos de acceso: info:eu-repo/semantics/closedAccess Attribution-NonCommercial-NoDerivatives 4.0 Internacional |
DOI : https://doi.org/10.1016/j.eswa.2020.113783 |
Publicado en: Expert Systems with Applications 162 (2020) 113783 |
Aparece en las colecciones: Artículos Estadística, Matemáticas e Informática
|