Please use this identifier to cite or link to this item: https://hdl.handle.net/11000/34439
Full metadata record
DC FieldValueLanguage
dc.contributor.authorLópez García, Miguel-
dc.contributor.authorVALERO, SERGIO-
dc.contributor.authorSenabre, Carolina-
dc.contributor.otherDepartamentos de la UMH::Ingeniería Mecánica y Energíaes_ES
dc.date.accessioned2025-01-12T18:11:22Z-
dc.date.available2025-01-12T18:11:22Z-
dc.date.created2017-
dc.identifier.citation2017 14th International Conference on the European Energy Market (EEM)es_ES
dc.identifier.issn2165-4093-
dc.identifier.urihttps://hdl.handle.net/11000/34439-
dc.description.abstractThis paper presents an application of linear mixed models to short-term load forecasting. The starting point of the design is a currently working model at the Spanish Transport System Operator, which is based on linear autoregressive techniques and neural networks. The forecasting system currently forecasts each of the regions within the Spanish grid separately, even though the behavior of the load in each region is affected by the same factors in a similar way. The integration of several regions into a linear mixed model allows using the information from other regions to learn general behaviors present in all regions while also identifying individual deviation in each regions. This technique is especially useful when modeling the effect of special days for which information from the past is scarce. The model described has been applied to the three most relevant regions of the system, focusing on special day and improving the performance of both currently working models used as benchmark.es_ES
dc.formatapplication/pdfes_ES
dc.format.extent5es_ES
dc.language.isoenges_ES
dc.publisherIEEEes_ES
dc.relation.ispartof2017 14th International Conference on the European Energy Market (EEM)es_ES
dc.rightsinfo:eu-repo/semantics/closedAccesses_ES
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectmixed effects modelses_ES
dc.subjectshort-term load forecastinges_ES
dc.subjectneural networkses_ES
dc.subject.otherCDU::6 - Ciencias aplicadas::62 - Ingeniería. Tecnología::621 - Ingeniería mecánica en general. Tecnología nuclear. Electrotecnia. Maquinariaes_ES
dc.titleShort-term load forecasting of multiregion systems using mixed effects modelses_ES
dc.typeinfo:eu-repo/semantics/conferenceObjectes_ES
dc.relation.publisherversionhttps://doi.org/10.1109/EEM.2017.7981957es_ES
Appears in Collections:
Congresos, ponencias y comunicaciones


no-thumbnailView/Open:

 Short-term_load_forecasting_of_multiregion_systems_using_mixed_effects_models.pdf



310,91 kB
Adobe PDF
Share:


Creative Commons ???jsp.display-item.text9???